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Abstract: For a homing interceptor, suitable initial condition must be achieved by mid course
guidance scheme for its maximum effectiveness. To achieve desired end goal of any mid course
guidance scheme, two point boundary value problem must be solved online with all realistic
constrain. A Newly developed computationally efficient technique named as MPSP (Model
Predictive Static Programming) is utilized in this paper for obtaining suboptimal solution of
optimal mid course guidance. Time to go uncertainty is avoided in this formulation by making
use of desired position where midcourse guidance terminate and terminal guidance takes over.
A suitable approach angle towards desired point also can be specified in this guidance law
formulation. This feature makes this law particularly attractive because warhead effectiveness
issue can be indirectly solved in mid course phase.

1. INTRODUCTION

Mid course guidance is the longest phase of an interceptor
missile. Midcourse guidance strategy differs for engage-
ment of air-breathing target to engagement of high speed
targets in the form of reentry vehicle. For air-breathing
target, the strategy would be to maximize interceptor
velocity at interception, where as for interception of high
velocity target(i.e target velocity being larger than missile
velocity), midcourse guidance must allow interceptor to
arrive at a particular point with a specific approach angle.
This requirement specifically arises from (i) minimum tra-
jectory correction requirement during homing phase, (ii)
requirement of low value of seeker look angle. Again missile
velocity need not be wasted unneccasrily while achieving
these objectives. Hence design of midcourse guidance needs
special care while addressing a particular class of target.
Numerous midcourse guidance schemes are developed for
missiles. To name a few, one can find general energy
management steering based guidance [1], singular pertur-
bation theory based guidance [2], optimal control theory
based guidance ([3]-[4]) etc. in the literature. For engaging
high speed targets, PN law with a shaping term [7] can
also achieve desired performance, although the solution is
not general enough. Singular perturbation theory based
guidance is well known energy efficient technique. But it
does not address the problem of achieving desired flight
path angle and heading angle.

The idea of using optimal control techniques for the guid-
ance of flight vehicles is not new ([3]-[6]). However, such
a formulation leads to two point boundary value problems
(TPBVP)[4]. The solution approach of the TPBVP prob-
lem requires numerical techniques like shooting method
[7], gradient method [8] etc. Basically, they are iterative
processes and require a lot of storage and computation

time. In addition, it leads to an open-loop solution of
the control variable. An alternative approach, namely the
Hamilton-Jacobi-Bellman (HJB) approach [4], attempts
to get solution in the state feedback form. However, this
approach either leads to complicated nonlinear partial
differential equations which are impossible to solve or it
leads to the curse-of-dimensionality issue, leading to huge
(infeasible) computational and storage space requirements.
Because of this reason, the optimal control theory based
formulations are seldom used in online applications. Even
though attempts are being made to overcome this com-
putational difficulty using optimal critic techniques ([10]-
[13]), these techniques still require high off-line computa-
tions, and hence, do not lead to closed form solutions for
the control variable in true sense (mainly because in off-
line computations all possible operating scenarios like the
adaptive critic technique cannot be accounted for).

In this paper, a new mid course guidance scheme for missile
based on nonlinear model predictive static programming
(MPSP) technique is described based on the philosophy,
which is quite similar to the optimal control theory based
approach([13]-[15]). One of the major advantages of this
new technique is that it leads to a closed form solution
for the control history (sequence) update. Moreover, the
computational requirements are substantially less and the
algorithm can be implemented online.

2. INTERCEPTOR MATHEMATICAL MODEL AND
OBJECTIVE OF MID COURSE GUIDANCE

For successful interception of high speed target, intercep-
tor must have sufficient capability to fulfil terminal guid-
ance requirement and proper initial condition for terminal
guidance phase . So it is quite important for mid course
guidance to provide proper initial condition to terminal
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guidance phase. As interceptor spends most of its time
during mid course guidance phase, it is quite imperative
that this phase should be energy efficient while simultane-
ously achieving its primary performance related objectives.
Hence an optimal Mid course guidance must enable the
interceptor to reach a particular point at a particular range
to go with desired velocity vector and also with minimum
effort. Moreover, missile must reach desired location with
proper flight path angle and heading angle while retaining
sufficient velocity to satisfy terminal guidance requirement
due to handover errors and subsequent requirement due to
target maneuver.

Objective of mid course guidance is the following : Inter-
ceptor has to reach desired point(xd, yd,zd) with desired
heading angle (φd) and flight path angle (γd) using mini-
mum acceleration ηφ and ηγ . The axis used in guidance is
given in fig 1.
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φ

γ

Fig. 1. Axis used in guidance

The following point mass model is being used for this
purpose

ẋ = V cos γ cosφ
ẏ = V cos γ sin φ

ż = V sin γ

V̇ =
T − D

m
φ̇ =

gηφ

V cos γ

γ̇ =
g(ηγ − cos γ)

V

(1)

where x, y and z are the missile position in launcher fixed
frame. V is the velocity of missile. T is thrust and D is
aerodynamic drag of missile.

3. MODEL PREDICTIVE STATIC PROGRAMMING
(MPSP) DESIGN

In this section, we combined the philosophies of Model
Predictive Control (MPC) and Approximate Dynamic
Programming (ADP)to propose an innovative technique
for a class of finite horizon optimal control problems. Here
we present the mathematical details of the new Model
Predictive Static Programming (MPSP) design taking into
account the discrete nonlinear model of dynamic system .
The state and output dynamics of which are given by

Xk+1 = Fk(Xk, Uk) (2)

Yk = h(Xk) (3)

where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp and k = 1, 2, . . . , N
are the time steps. The primary objective is to come up
with a suitable control history Uk, k = 1, 2, . . . , N − 1, so

that the output at the final time step YN goes to a desired
value Y ∗

N , i.e. YN → Y ∗

N . In addition, we aim to achieve
this task with minimum control effort (which is described
later in this section).

For the technique presented here, one needs to start
from a ”guess history” of the control solution. With the
application of such a guess history, obviously the objective
is not expected to be met, and hence, there is a need to
improve this solution. In this section, we present a way
to compute an error history of the control variable, which
needs to be subtracted from the previous history to get
an improved control history. This iteration continues until
the objective is met i.e. until YN → Y ∗

N . Note that the
technique presented here comes up with a control update
history in closed form, and hence, the computational
requirement is substantially lesser. Hence, algorithm can
be implemented online. Next, we present the mathematical
details of the MPSP design.

Expanding YN about Y ∗

N using Taylor series expansion

YN = Y ∗

N +

[

∂YN

∂XN

]

dXN + HOT (4)

where HOT contains the higher order terms. From (4) we
can write the error in the output as

YN − Y ∗

N =

[

∂YN

∂XN

]

dXN + HOT (5)

Using small error approximation, we write

△YN
∼= dYN =

[

∂YN

∂XN

]

dXN (6)

However from (2), we can write the error in state at time
step (k + 1) as

dXk+1 =

[

∂Fk

∂Xk

]

dXk +

[

∂Fk

∂Uk

]

dUk (7)

where dXk and dUk are the error of state and control at
time step k respectively.

Expanding dXN as in (7)(for k = N − 1) and substituting
it in (6), we obtain,

dYN =
∂YN

∂XN

([

∂FN−1

∂XN−1

]

dXN−1 +

[

∂FN−1

∂UN−1

]

dUN−1

)

(8)

Similarly the error in state at time step (N − 1), dXN−1,
can be expanded in terms of the errors in state and control
at time step (N − 2) and (8) can be re-written as:

dYN =

[

∂YN

∂XN

] [

∂FN−1

∂XN−1

] ([

∂FN−2

∂XN−2

]

dXN−2

+

[

∂FN−2

∂UN−2

]

dUN−2

)

+

[

∂YN

∂XN

] [

∂FN−1

∂UN−1

]

dUN−1

Next, dXN−2 can be expanded in terms of dXN−3 and
dUN−3 and so on. Continuing the process initial k = 1, we
can write
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dYN = AdX1 + B1dU1 + B2dU2 + . . . + BN−1dUN−1(9)

where

A =

[

∂YN

∂XN

] [

∂FN−1

∂XN−1

]

. . .

[

∂F1

∂X1

]

Bk =

[

∂YN

∂XN

] [

∂FN−1

∂XN−1

]

. . .

[

∂Fk+1

∂Xk+1

] [

∂Fk

∂Uk

]

,

k = 1, . . . , N − 1

Since the initial condition is specified, there is no error in
the first term; which means dX1 = 0. With this (9) reduces
to

dYN = B1dU1 + B2dU2 + . . . + BN−1dUN−1

=
N−1
∑

k=1

BkdUk

(10)

Note that while deriving (10), we have assumed that the
control variable at each time steps to be independent of
the previous values of states and control input. Intuitive
justification of this assumption comes from the fact it is
a decision variable, and hence, independent decision can
taken at any point of time.

At this point, we would like to point out that if one
evaluates each of the Bk, k = 1, . . . , (N − 1) as in (10),
it will be a computationally intensive tasks (especially
when N is high). However, it is possible to compute them
recursively. For doing this, first we define B0

N−1
as follows

B0
N−1 =

[

∂YN

∂XN

]

(11)

Next we compute B0
k, k = (N − 2), (N − 3), . . . , 1 as

B0
k = B0

k+1

[

∂Fk+1

∂Xk+1

]

(12)

Finally, Bk, k = (N − 2), (N − 3), . . . , 1 can be computed
as:

Bk = B0
k

[

∂Fk

∂Uk

]

(13)

Equation (11)-(13) provides a recursive way of computing
B0

k, k = (N − 1), (N − 2), . . . , 1, which leads to saving of
computational time enormously.

In equation (10), we have (N-1)m unknowns and p equa-
tions. Usually p < (N − 1)m, and hence, it is an under-
constrained system of equations. Hence there is a scope for
meeting additional objectives. We take advantage of this
opportunity and aim to minimize the following objective
(cost) function

J =
1

2

N−1
∑

k=1

(U0
k − dUk)T Rk(U0

k − dUk) (14)

where U0
k , k = 1, . . . , (N − 1) is the previous control

history solution and dUk is the corresponding error in

the control history. The cost function in (14) needs to
be minimized subjected to the constraint in (10), where
Rk > 0 (a positive definite matrix) is the weighting
matrix, which needs to be chosen judiciously by the control
designer. The selection of such a cost function is motivated
from the fact that we are interested in finding a l2-norm
minimizing control history, since (U0

k−dUk) is the updated
control value at k (see (22)).

Equations (10) and (14) formulate an appropriate con-
strained static optimization problem. Hence, using opti-
mization theory , the augmented cost function is given by

J̄ =
1

2

N−1
∑

k=1

(U0
k − dUk)T Rk(U0

k − dUk)

+λT (dYN −

N−1
∑

k=1

BkdUk)

(15)

Then the necessary conditions of optimality are given by

∂J̄k

∂dUk

= −Rk(U0
k − dUk) − BT

k λ = 0 (16)

∂J̄k

∂λ
= dYN −

N−1
∑

k=1

BkdUk = 0 (17)

Solving for dUk from (16), we get

dUk = R−1

k BT
k λ + U0

k (18)

Substituting for dUk from (18) into (17), it leads to

−Aλλ + bλ = dYN (19)

where

Aλ =

[

−

N−1
∑

k=1

BkR−1

k BT
k

]

, bλ =

[

N−1
∑

k=1

BkU0
k

]

Note that Aλ is a p × p matrix and bλ is a p × 1 vector.
Assuming Aλ to be nonsingular, the solution for λ from
(19) is given by

λ = −A−1

λ (dYN − bλ) (20)

Using (20) in (18), it leads to

dUk = −R−1

k BT
k A−1

λ (dYN − bλ) + U0
k (21)

Hence, the updated control at time step k = 1, 2, . . . , (N −

1) is given by

Uk = U0
k − dUk = R−1

k BT
k A−1

λ (dYN − bλ) (22)

It is clear from (22) that the updated control history so-
lution in (22) is a closed form solution, and hence, control
solution can be updated with very minimal computational
requirement. We also mention that the relative magni-
tude of the control input at various time steps can be
adjusted by properly adjusting the weight matrixes Rk,
k = 1, . . . , (N − 1) associated with the cost function.

At this point, we would like to point out that we have
used “small error approximation” in deriving the closed
form control update. This approximation may not hold
good in general. Hence the process needs to be repeated
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in an iterative manner before one arrives at the converged
(optimal) solution, which is define as the solution when
YN → Y ∗

N . Note that to minimize computational time,
one iteration may be carried out at each instant of time.

From the discussion in this section one may observe that
even though we have used the philosophies of MPC and
ADP, the new formulation outlined here does not fall into
either of these. This is because we have considered a static
costate variable λ and have formulated the problem as a
static optimization problem (rather than a dynamic one).
Hence, it is named as Model Predictive Static Programming
(MPSP) technique. Because a state space model is consid-
ered here, we call it is as MPSP-state space formulation.

4. MID COURSE GUIDANCE WITH MPSP

In state equation of the interceptor as described in equa-
tion 1, time is used as an independent variable. Hence if we
want to propagate state, we must have knowledge of final
time which is quite difficult to predict accurately before
hand. So instead of time, x can be used as independent
variable as final position is known (because Missile has to
reach at a desired point after mid course). For this purpose
missile model can be modified as

t′ =
1

V cos γ cosφ
y′ = tanφ

z′ =
tan γ

cos φ

V ′ =
T − D

mV cos γ cosφ

φ′ =
gηφ

V 2 cos2 γ cosφ

γ′ =
g(ηγ − cos γ)

V 2 cos γ cosφ

(23)

where X ′ represent the derivative of state with respect to
position x. For MPSP design, state model has to be in
discreet form as

Xk+1 = Fk(Xk, Uk) (24)

Where states Xk and Uk are defined as:

Xk = [tk yk zk Vk φk γk]
T

(25)

Uk = [ηφk
ηγk

]
T

(26)

Following are the step for designing mid course guidance
based on MPSP technique:

• Initialize ηφk
and ηγk

with some guess.

• Define present state as k = 1 and desired state as
k = N and calculate increment of x (h) as

h =
xd − x1

N − 1
(27)

• Propagate point mass model of missile using ηφk
and

ηγk
till xd to get final state of missile(Xf ) and find

dYN as

dYN =







yf − yd

zf − zd

φf − φd

γf − γd






(28)

• If either element of dYN is not within desired limit,
the correction has to be made for ηφk

and ηγk
. For

this, B0
N−1

is calculated as

B0
N−1 =







0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1






(29)

BN−1 can be calculated as:

BN−1 = B0
N−1

[

∂FN−1

∂UN−1

]

(30)

where ∂FN−1

∂UN−1
is obtained from (24) at N − 1 th step.

• For k = 1 to N − 2 Bk can be calculated as

Bk = B0
k

[

∂Fk

∂Uk

]

(31)

where

B0
k = B0

k+1

∂Fk+1

∂Xk+1

(32)

∂Fk+1

∂Uk+1
and ∂Fk+1

∂Xk+1
can be calculate from eq 24 at

k + 1 th step.

• Once Bk is calculated Bλ and Aλ can be calculated
from (19) and ηφk

and ηγk
can be written as :

[

ηφk

ηγk

]

= BT
k A−1

λ [Bλ − dYN ] (33)

Here Rk is chosen as unit matrix.Note that ηφk
and

ηγk
, will be used as the guidance command .

5. RESULT AND DISCUSSION

The initial position (x ,y and z coordinates ) of missile
for simulation is chosen as 0, 0 and 6500 m and velocity is
chosen as 1400m/s . Initial heading angle and flight path
angle is taken as 45 deg.

The maximum acceleration of the interceptor has a specific
value. To show the capability of guidance, different cases
for final condition have been chosen(see Table 1).

Table 1. final condition of missile

Case Position Position Position Vel φ γ
X(m) Y(m) Z(m) (m/s) (deg) (deg)

1 6600 6200 15000 - 0 45
2 6600 6200 15000 - 70 45

In case 1, missile has to reach at desired position with
φ = 0. Figure 2 shows x vs y position of missile. Straight
Blue lines is the path corresponding to first guess of accel-
eration. Red line is the final path achieved by missile and
rest are the intermediate path which are converging to red
line after few iteration (here it is taking 5 iteration). Green
Star point is the desired point . The similar phenomena
can be observed in figure 3 which shows x vs z position
of interceptor. Figures 4 and 5 show the heading angle
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and flight path angle demanded (Green Star point) and
achieved by missile ( red line). Rest of the lines are the
intermediate heading angle and flight path angle. Figure 6
and 7 show the acceleration required (red line) to achieve
desired goal. The remaining lines are the intermediate
history of acceleration.
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Fig. 2. x position vs y position for case 1
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Fig. 3. x position vs z position for case 1
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Fig. 4. Heading angle (φ) vs Time for case 1

In case 2, missile has to reach desired position with φ = 70
deg. Figure 8 shows x vs y position of interceptor. Here it
can be observed that straight blue line is similar to case 1
because first guess is the same for both case. Here it takes
7 iterations to reach desired path. Figure 9 shows x vs
z position of interceptor. It is similar to case 1 because
desired condition is same. Figure 10 and 11 show the
acceleration required (red line) to achieve desired goal for
case 2.
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Fig. 5. flight path angle (γ) vs Time for case 1
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Fig. 6. Acceleration in xy-plane vs Time for case 1
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Fig. 7. Acceleration in xz-plane vs Time for case 1
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Fig. 8. x position vs y position for case 2
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Fig. 9. x position vs z position for case 2
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Fig. 10. Acceleration in xy-plane vs Time for case 2
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Fig. 11. Acceleration in xz-plane vs Time for case 2

6. CONCLUSION

In this paper, a newly developed MPSP (Model Predictive
Static Programming) is utilized to solve optimal mid-
course guidance problem for a homing interceptor. Here
the acceleration demand has been minimized for reaching
desired position with desired velocity vector. This tech-
nique is computationally efficient and can be applied online
for getting closed form suboptimal solution of mid course
guidance problem. Time to go uncertainty is avoided in
this formulation by making use of desired position to go,
which is quite accurate, as missile position is accurately
known from INS (inertial navigation systems) and de-
sired position is known from pre launched computation.
In this formulation, closed form control history solution
is suitably updated at every control interval, which min-
imizes jump in control variable at two successive instant.

Moreover output of the guidance scheme are acceleration
commands in two perpendicular planes, which are robust
control variables for the plant.
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