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Abstract: We consider nonlinear systems with both control and disturbance inputs. The main
problem addressed is the design of state feedback control laws, achieving ISS and integral-
ISS disturbance attenuation, with restricted control under the assumption that an appropriate
control Lyapunov function is known. Our results generalize the previous results on ISS and
integral-ISS stabilization to the restricted cases when controls are only allowed to take positive
or bounded positive values.

1. INTRODUCTION

Since formulated in the seminal paper Sontag [1989a], the
notion of input-to-state stability (ISS) has found wide
applications, especially in the area of feedback design and
analysis to achieve ISS disturbance attenuation for closed-
loop systems, see for instance, the textbooks Krstić et al.
[1995], Khalil [2002], Isidori [1999] and references therein.
One of the variations of ISS, the notion of integral-ISS,
was introduced and studied in Sontag [1998], Angeli et al.
[2000a,b]. Applications of the integral-ISS property can
be found in Angeli [1999], Arcak et al. [2002], Jiang et al.
[2004], Liberzon et al. [2002]. As remarked in Sontag [1998]
and Angeli et al. [2000a], the integral-ISS property is
strictly weaker than the ISS property in the sense that
the ISS property implies the integral-ISS property but not
vice-versa. As a consequence, it is much more feasible to
achieve integral-ISS property than to achieve ISS property,
especially in the case of restricted controls.

Most of the past work on ISS and integral-ISS stabi-
lization was carried out for systems with controls that
can take arbitrary values. In practice, however, controls
are often constrained. It is thus interesting to investigate
feedback design and analysis for different types of stability
properties with restricted controls. A primary concern of
our work is about ISS and integral-ISS stabilization by
using controls that only take positive values. Systems with
positive controls have appeared in applications including
physical systems, ecological systems, and human behavior
patterns, see for instance, DeAngelis et al. [1986], Mailleret
et al. [2004], Mulsum [1968], Benvenuti et al. [2003] and
references there. Very often the controllers of such systems
only interact positively with variables that have intrinsi-
cally a constant sign, for instance, flight attitudes, level of
liquid in tanks, biological variables in an ecological system.
There is a rich literature in the study of systems with
positive controls, in particular in the linear case, see for
instance, de Leenheer and Aeyels [2001], Smimov [1999],
Rami and Tadio [2005], and Frias et al. [2005]. Some
recent work on nonlinear systems with positive controls
includes Bastin and Praly [1999] (on dissipative mass-
balance systems) and Kaliora and Astolfi [2002] (on a class
of nonlinear cascades in feedforward form). For an excel-

lent collection of papers on related topics about positive
systems and monotone systems, see Benvenuti et al. [2003].
The results to be developed in our work will be based on
the approach of control Lyapunov functions.

Control Lyapunov functions (CLF) have been used to de-
sign control laws for various class of nonlinear controllers.
One notable example is the universal formula proposed
in the work Sontag [1989b]. It is also shown in Praly
et al. [1991] that CLF can be used to design adaptive
stabilizers for linearly parameterized nonlinear systems.
The results in Sontag [1989b] was extended in Lin and
Sontag [1991] to deal with bounded controls, and in Lin
and Sontag [1995] to deal with positive (bounded and
unbounded) controls. In the work Malisoff and Sontag
[2000], the authors considered a stabilization problem with
controls taking bounded values in different norms. In the
direction of disturbance attenuation, the work in Lin and
Sontag [1991] was extended in Liberzon [1999] to achieve
ISS and integral-ISS stabilization with bounded controls.

We will consider in this work the integral-ISS and ISS
stabilization by using positive controls or bounded positive
controls, assuming the existence of an appropriate CLF.
While the design of smooth feedback laws developed in
Liberzon [1999] used a patching argument (by an abstract
function based on a partition of unity), we are able to
develop the feedback laws based on the universal formula
without the patching argument.

This paper is organized as follows. In Section 2, we re-
view the notions of ISS, integral-ISS, control Lyapunov
functions, and other related notions that will be used
in the work. In Section 3 we discuss notions on control
Lyapunov functions with positive and bounded positive
controls, and we show how to construct feedback laws to
achieve the integral-ISS property based on given integral-
ISS control Lyapunov functions. We also provide some
sufficient conditions for a control Lyapunov function for
the zero-disturbance system to be an integral-ISS control
Lyapunov function. In Section 4 we present some conclud-
ing remarks.
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2. PRELIMINARIES

Throughout this work, we use |ξ| to denote the Euclidean
norm for ξ ∈ Rn, and use ‖u‖ to denote the L∞ norm of u
on [0,∞). A function ϕ : Rn → R is called almost smooth
if it is C∞ away from 0, and continuous everywhere.

A function α : R≥0 → R≥0 is of class K if it is continuous,
positive definite, and strictly increasing; and is of class K∞
if it is also unbounded. A function β : R≥0 × R≥0 → R≥0

is said to be of class KL if for each fixed t ≥ 0, β(·, t) is of
class K, and for each fixed s ≥ 0, β(s, t) decreases to 0 as
t→∞.

2.1 ISS and Integral-ISS

In this section we briefly review the notions of ISS and
integral-ISS. For more detailed discussions, we refer the
reader to Sontag [1989a], Sontag and Wang [1995a], Sontag
[1998] and Angeli et al. [2000a].

Consider a nonlinear system as follows:
ẋ = F (x,w), (1)

where F : Rn × Rm → Rk is a C∞ map, and F (0, 0) = 0.
For each t, x(t) takes values in Rn. The disturbance w
is a measurable, locally essentially bounded function that
takes values in Rd. We use x(·, x0, w) to denote the solution
of the system with the initial condition x(0) = x0 and the
disturbance w.

System (1) is input-to-state stable (ISS) if there are β ∈ KL
and κ ∈ K such that

|x(t, x0, w)| ≤ β(|x0| , t) + κ(‖w‖) ∀ t ≥ 0, (2)

for all x0 and all w.

System (1) is integral-input-to-state stable (integral-ISS) if
there exist some functions σ, κ ∈ K∞ and β ∈ KL such
that

σ(|x(t, x0, w)|) ≤ β(|x0| , t) +

t∫
0

κ(|w(s)|) ds ∀ t ≥ 0, (3)

for all x0 and all w.

A C∞ function V : Rn → R≥0 is called an integral-ISS-
Lyapunov function of (1) if it is proper, positive definite,
and for some positive definite function α and some function
γ ∈ K, it holds that

DV (x)f(x,w) ≤ −α(|x|) + γ(|w|) ∀x,w. (4)

If the function α in (4) can be chosen to be a K∞ function,
then V is called an ISS-Lyapunov function of (1).

Clearly, an ISS-Lyapunov function is always an integral-
ISS Lyapunov function. See Sontag and Wang [1995a] and
Angeli et al. [2000a] for the following results:
Theorem 1. Consider a system as in (1).

(1) The system is ISS if and only if it admits an ISS-
Lyapunov function.

(2) The system is integral-ISS if and only if it admits an
integral-ISS-Lyapunov function. 2

Statement (2) of Theorem 1 can be modified to:
Lemma 2.1. System (1) is integral-ISS if and only if it
admits a smooth, proper, and positive definite Lyapunov
function V such that

DV (x)f(x,w) < γ(|w|) ∀x 6= 0, ∀w. (5)

Proof. Assume the system is integral-ISS. Then it admits
an integral-ISS Lyapunov function that satisfies (4) which
trivially implies (5).

On the other hand, suppose (1) admits a Lyapunov func-
tion satisfying (5). Then the disturbance-free system ẋ =
f(x, 0) is globally asymptotically stable. By Theorem 1 of
Angeli et al. [2000a], the closed-loop system is integral-
ISS.

2.2 CLF and Universal Formulas

Consider a system as follows:
ẋ = f(x) + g(x)u, (6)

where f, g : Rn → Rn are C∞ maps, and f(0) = 0.
For each t, x(t) takes values in Rn. For simplicity, we
consider the case of single input. We assume that controls
are restricted to take values in some subset U of R:

u(t) ∈ U ⊆ R.

Different subsets U impose different constraints for feed-
back design problems. For the preliminary discussions,
below U is only assumed to be a subset of R. Specific
structures on the set U will be posted later.

We say that a system as in (6) is stabilizable if there is
a feedback function u = k(x) which is almost smooth,
satisfying the property that k(x) ∈ U , that stabilizes the
closed-loop system in the sense that the system

ẋ = f(x) + g(x)k(x).

is globally asymptotically stable.

Let V : Rn → R≥0 be proper, positive definite, and almost
smooth. We say that V is a control Lyapunov function
(CLF) for (6) with the control value set U if V satisfies
the following:

inf
u∈U

{DV (x)f(x) +DV (x)g(x)u} < 0 ∀x 6= 0 (7)

Let a(x) = DV (x)f(x), b(x) = DV (x)g(x). Then (7) can
be rewritten as

inf
u∈U

{a(x) + b(x)u} < 0 ∀x 6= 0. (8)

We say that a CLF V satisfies the small control property
(SCP) if for every ε > 0, there exists some δ > 0 such that
for every 0 < |x| < δ there exists some |µ| < ε such that

a(x) + b(x)µ < 0.

Instead of saying V satisfies the small control property, we
will sometimes say that the pair (a(x), b(x)) satisfies the
small control property.

The following result can be found in Sontag [1989b] for
the case when U = U0 := R; in Lin and Sontag [1991]
for the case when U = U1 := (−1, 1); and in Lin and
Sontag [1995] for the cases when U = U2 := (0, 1) and
when U = U3 := (0,∞).
Theorem 2. Consider system (6) with the control value set
Ui for i = 0, 1, 2, 3. The system is stabilizable by an almost
smooth feedback u = ki(x) if and only if the system admits
a CLF satisfying (8) with U = Ui and the SCP property.

To develop our results for disturbance attenuation, we
provide below the explicit feedback laws associated with
Theorem 2 for the cases when U = U2 or U = U3. For
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U2, the stabilizing feedback is given by u = k2(x) =
κ2(a(x), b(x)), where

κ2(a, b) = κ̃2(r, θ − (3/2)π),

and where (r, θ) (0 < θ < 2π) is the polar coordinate
representation of (a, b), and

κ̃2(r, θ) =
χ(r, θ)− χ(r,−π)
χ(r, π/4)− χ(r,−π)

,

with

χ(r, θ) =
(

2
π

arctan
(
θ

r

)
+ 1

)
θ. (9)

For the case of U3, the stabilizing feedback law is given by
u = k3(x) = κ3(a(x), b(x)) = κ̃3(r, θ), where

κ̃3(r, θ) =
3π

2(π − 2θ)
(χ(r, θ)− χ(r,−π)) , (10)

where χ is as defined in (9).

3. INTEGRAL-ISS STABILIZATION WITH POSITIVE
AND BOUNDED POSITIVE CONTROLS

In this section we consider the disturbance attenuation for
systems of the following type:

ẋ = f(x) + g(x)u+ p(x)w, (11)

where u is the control input which takes values in some U ,
and w denotes the disturbances.

The work on the problem of integral-ISS stabilization for
the case of U = U1 was developed in Liberzon [1999]. Below
we consider the problem for the cases when U = U2 and
U = U3.

Assume that there is a feedback u = k(x) ∈ U that
renders the closed-loop system to be integral-ISS, there is
a smooth, positive definite, and proper Lyapunov function
V such that

a(x) + b(x)k(x) + q(x)w ≤ −α(|x|) + ρ(|w|)

where

a(x) =DV (x)f(x), b(x) = DV (x)g(x),

q(x) =DV (x)p(x),
α(·) is a positive definite function, and ρ(·) is of class K∞.
This implies that

inf
u∈U

{a(x) + b(x)u+ q(x)w} ≤ −α(|x|) + ρ(|w|). (12)

For a system as in (11) with the control value set U , we
say that a smooth, positive definite, and proper function
V is an integral-ISS CLF if V satisfies (12). We say that V
satisfies the SCP property if the pair (a(x), b(x)) satisfies
the SCP property. It follows from Theorem 1 that if a
system admits an integral-ISS stabilizing feedback, then it
admits an integral-ISS CLF. Assume that the system (11)
admits an integral-ISS CLF satisfying (12), and hence,

inf
u∈U

{a(x) + b(x)u+ q(x)w − χ(|w|} ≤ −α(|x|),

for all χ ∈ K∞ satisfying χ(r) ≥ ρ(r). Let
ω(x) = max

w
{a(x) + q(x)w − χ(|w|)}.

Observe that one can always choose χ large enough so that
ω(x) = max

|w|≤π(|x|)
{a(x) + q(x)w − χ(|w|)} (13)

for some function π ∈ K∞. For instance, one can simply
let χ be a function such that

χ(r) ≥ max{ρ(r), q0(r)r}

with π(r) = r, where q0 ∈ K∞ is such a function that
|q(x)| ≤ q0(|x|). Hence

inf
u∈U

{ω(x) + b(x)u} ≤ −α(|x|).

Modifying ω(x) if necessary so that one may assume that
ω is a smooth function and

inf
u∈U

{ω(x) + b(x)u} ≤ −α(|x|)
2

. (14)

One may also choose π(|x|) as in (13) small enough around
x = 0 such that

|q(x)|π(|x|) ≤ ψ(|x|)(|a(x)|+ |b(x)|) (15)

in a neighborhood of 0 for some smooth function ψ ∈ K
(note that the function |a(x)|+ |b(x)| is positive definite).

Lemma 3.1. Assume the pair (a(x), b(x)) satisfies the SCP
property. Suppose π is chosen so that (15) holds. Then the
pair (ω(x), b(x)) satisfies the SCP property.

Proof. First note that the SCP property is equivalent to
the property that for any ε > 0, there exists some δ > 0
such that

a(x)− ε |b(x)| < 0 ∀ 0 < |x| < δ. (16)

Let ε > 0. Applying (16) to ε/4, one sees that there exists
some δ > 0 such that for every 0 < |x| < δ,

a(x)− ε

4
|b(x)| < 0.

Without loss of generality, we assume that ε < 1. Shrink-
ing δ if necessary, one may assume that ψ(δ) < ε/4 (where
ψ is as in (15)), and hence, for all 0 < |x| < δ,

|q(x)|π(|x|) ≤ ε

2
(|a(x)|+ |b(x)|). (17)

Let 0 < |x| < δ. If a(x) ≤ 0, then

a(x) +
ε

2
(|a(x)|+ |b(x)|)− ε |b(x)|

≤ a(x)
2

− ε

2
|b(x)| < 0.

If a(x) > 0, then

a(x) +
ε

2
(|a(x)|+ |b(x)|)− ε |b(x)|

≤ 2a(x)− ε |b(x)|
2

< 0.

In both cases, one has

a(x) +
ε

2
(|a(x)|+ |b(x)|)− ε |b(x)| < 0 (18)

for all 0 < |x| < δ. Note that

ω(x) = max
|w|≤π(|x|)

{a(x) + q(x)w − χ(|w|)}

≤ a(x) + |q(x)|π(|x|).
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Hence, it follows from (17) and (18) that
ω(x)− |b(x)| ε < 0 ∀ 0 < |x| < δ.

This shows that the pair (ω(x), b(x)) satisfies the SCP
property.
Theorem 3. Consider a system as in (11) with either U =
U2 or U = U3. If V is an integral-ISS CLF for the system
(11) satisfying the small control property, then there is a
feedback law which is almost smooth for the system so
that the closed-loop system is integral-ISS.

Proof. Assuem V is an integral-ISS CLF for the sys-
tem that satisfies (12). Choose the function π so that
the resulted ω(x) is smooth, satisfies (14), and the pair
(ω(x), b(x)) satisifes the SCP property. Applying Theorem
2 for the cases when U = U2 and U = U3 respectively,
one sees that there exists an almost smooth feedback law
u = ki(x) such that ki(x) ∈ Ui for each i = 2, 3 and that

ω(x) + b(x)ki(x) ≤ −α(x)
2

.

Hence, along the trajectories of the closed-loop system,
one has

d

dt
V (x(t)) = a(x(t)) + b(x(t))ki(x(t)) + q(x(t))w(t)

≤ ω(x(t)) + b(x(t))ki(x(t)) + χ(|w|) < χ(|w|)
for all x 6= 0. By Lemma 2.1, the closed-loop system is
integral-ISS.

3.1 Remarks on CLF’s

In this section we consider the question when a CLF for
the 0-disturbance system

ẋ = f(x) + g(x)u (19)

of (11) is an integral-ISS Lyapunov function for (11).

Let V be a CLF for (19). Then
inf
U
{a(x) + b(x)u} ≤ −α(|x|).

When applied to system (11), one has
inf
U
{a(x) + b(x)u+ q(x)w} ≤ −α(|x|) + q(x)w.

The next result applies to a system as in (11) for any given
control value set U :
Proposition 3.2. Consider system (11). Suppose V is a
CLF for the corresponding 0-disturbance system (19).
Assume that there is some function ν ∈ K such that

(1)

∞∫
0

1
1 + ν(s)

ds = ∞ ; and

(2) |q(x)| ≤ ν(V (x)).

Then the function W given by W = ρ ◦ V is an integral-
ISS function, where ρ(s) =

∫ s

0
1

1+ν(s) ds, for (11). Further
more, W satisfies the SCP condition if and only if V
satisfies the SCP condition.

Proof. For the function W given by W = ρ ◦ V , it holds
that

DW (x)f(x) +DW (x)g(x)u+DW (x)p(x)w

=
a(x)

1 + ν(V (x))
+

b(x)
1 + ν(V (x))

u+
q(x)

1 + ν(V (x))
w

≤ ã(x) + b̃(x)u+ |w| ,
where

ã(x) =
a(x)

1 + ν(V (x))
, b̃(x) =

b(x)
1 + ν(V (x))

.

Note then that

inf
u∈U

{ã(x) + b̃(x)u+ |w|} ≤ − α(|x|)
1 + ρ(V (x))

+ |w| . (20)

From this one can see that W is an integral-ISS CLF
for (11). It should be clear that (a(x), b(x)) satisfies the
SCP condition if and only if (ã(x), b̃(x)) satisfies the SCP
condition.

It can easily be observed that for the Lyapunov function
W , one can let ω(x) = ã(x). Hence, if one applies the
feedback laws ki(x) (0 ≤ i ≤ 3) by using W as the CLF to
(11), then the closed-loop system is integral-ISS.
Corollary 3.3. Consider a system as in (11) with U = Ui
(0 ≤ i ≤ 3). Assume that the 0-disturbance system (19)
admits a CLF for which b satisfies conditions (1) and (2)
in Proposition 3.2. Then the system (11) is integral-ISS
stabilized by u = ki(x) with W as the CLF. 2

Below we consider a system as (11) with U = U3 (=
(0,∞)). Let the set B3 = {x : b(x) ≥ 0}. Assume V is
a CLF for the 0-disturbance system (19), and so

inf
u>0

{a(x) + b(x)u} ≤ −α(|x|). (21)

This implies that
x 6= 0, x ∈ B3 ⇒ a(x) < 0.

Assume that

lim
x→∞
x∈B3

−a(x)
|q(x)|

= +∞ (22)

where we make the convention that −a(x)
q(x) = ∞ at the

points where q(x) = 0. (The meaning of the limit along B3
is that values of the function is large as long as |ξ| is large
and x ∈ B3. If B3 happens to be bounded, this condition
is vacuous.)

By the proof of Theorem 2 in the work Sontag and Wang
[1995b], one sees that there exists some smooth function
ψ ∈ K∞ such that

a(x) + ψ(|x|) |q(x)| < −α(|x|) ∀x ∈ B3,

that is,
b(x) ≥ 0 ⇒ a(x) + ψ(|x|) |q(x)| ≤ −α(|x|). (23)

Let χ(r) = max|x|=r{ψ(|x|)q(|x|)}. Then

a(x) + q(x)w ≤ a(x) + ψ(|x|) |q(x)|+ χ(r),

and hence,

inf
u>0

{a(x) + q(x)w + b(x)u− χ(|w|)}

≤ inf
u>0

{a(x) + ψ(|x|) |q(x)|+ b(x)u− χ(|w|)}.

By (23), one sees that
inf
u>0

{a(x) + q(x)w + b(x)u− χ(|w|)} ≤ −α(|x|).
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This shows that V is an integral-ISS CLF for the sys-
tem (11).
Proposition 3.4. Consider the system (11) with U =
(0,∞). Assume that V is a CLF for the 0-disturbance
system (19). If property (22) holds, then V is an integral-
ISS CLF for (11).

If in addition, the function α appeared in (21) is of class
K∞, then V is an ISS CLF for (11). 2

It is worth to note that to have α ∈ K∞ is equivalent to
have the property that

lim
x→∞
x∈B3

(−a(x)) = +∞. (24)

Observe that the same argument can be applied to the case
of U = U0 (= R) with B3 replaced by B0 := {x : b(x) = 0}
to establish the following:
Proposition 3.5. Consider the system (11) with U = R.
Assume that V is a CLF for the 0-disturbance system (19).
If the following holds:

lim
x→∞
x∈B0

−a(x)
|q(x)|

= +∞, (25)

then V is an integral-ISS CLF function for (11).

If in addition, the function α appeared in (21) is of class
K∞, then V is an ISS CLF for (11). 2

Similarly, to have α ∈ K∞ is equivalent to the property
lim

x→∞
x∈B0

(−a(x)) = +∞. (26)

Example 3.6. Consider the system
ẋ = x2 − u+ xw, u ∈ (0,∞). (27)

A CLF for the zero-disturbance system ẋ = x2 − u is
V = x2/2 with

a(x) = x3, b(x) = −x.

Note that since whenever b(x) > 0, a(x) = x3 < 0, hence,

inf
u>0

{a(x) + b(x)u} ≤ |x|3.

For system (27), one has q(x) = x2, and condition (22)
holds, and hence, V is also an integral-ISS CLF for (27).
In fact, since (24) holds, V is an ISS CLF for (27). To find
an ISS stabilizing feedback law, let

ω(x) = max
|w|≤|x|/2

{a(x) + q(x)w}

= a(x) +
|q(x)x|

2
= x3 +

∣∣x3
∣∣

2
,

and
V̇ (x) ≤ ω(x)− xu+ |w|3 .

Observe that the pair (ω(x), b(x)) satisfies the SCP prop-
erty.

To find the polar coordinate representation (r, θ) for
(ω(x), b(x)), one has

r =
√
ω2(x) + b2(x) =


|x|

√
9
4
x4 + 1 if x ≥ 0

|x|
√

1
4
x4 + 1 if x < 0

and

θ = arctan
b(x)
ω(x)

=


2π − arctan

(
2

3x2

)
if x > 0,

π − arctan
(

2
x2

)
if x < 0,

(where arctan s ∈ (0, π/2) for s > 0). Applying the
feedback law u = k3(x) given by k3(x) = κ3(ω(x), b(x)),
one obtains an almost smooth feedback law that renders
the closed-loop system the ISS property. 2

3.2 Integral-ISS Stabilization for the Unrestricted Case

In this section, we make a brief remark on the integral-
ISS stabilizability for the case when U = Rm for some
m > 0 under a matching condition. For a system as in the
following:

ẋ = f(x) +G(x)u, (28)

where f and G are smooth maps, u takes values in Rm,
consider the problem when there are disturbances w in the
control channel when a feedback law is applied. This leads
to the closed-loop system of the following type:

ẋ = f(x) +G(x)(k(x) + w)
= f(x) +G(x)k(x) +G(x)w. (29)

In Sontag [1989a], it was shown that if one can stablize
a system as in (28) in the case of zero-disturbance by a
feedback law u = k0(x) (in particular, by the universal
formula if a CLF is given), then one can modify the
feedback law to u = k1(x) to yield the ISS property for
the closed-loop system.

Below we show that if the stabilizing feedback law k0(x)
is given by the universal formula, then the closed-loop is
automatically integral-ISS.

Let V be a CLF for the 0-disturbance system. The univer-
sal formula u = k0(x) = κ0(a(x), B(x)) is given by

κ0(a,B) =

−
a+

√
a2 + |B(x)|4

|B|2
B(x)T , if B 6= 0,

0, if B = 0,

(30)

where a(x) = DV (x)f(x), B(x) = DV (x)G(x).

Under the feedback law u = κ0(a(x), B(x)), it holds along
the trajectories of (29) that

d

dt
V (x(t)) = a(x) +B(x)κ(a(x), B(x)) +B(x)w

=−
√
a2(x) + |B(x)|4 +B(x)w

≤−
√
a2(x) + |B(x)|4 +

|B(x)|2

2
+
w2

2

≤−

√
a2(x) + |B(x)|4

2
+
w2

2
where we have applied the inequality 2 |c1c2| ≤ |c1|2 +
c2

2 to the term B(x)w. Since V is a CLF, the function√
a2(x) + |B|4 (x) is positive definite. This implies that

V is an integral-ISS-Lyapunov function for the closed-
loop system with w as input. Hence, we have shown the
following:
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Proposition 3.7. Let V be a CLF for the disturbance-
free system of (28) (that is, ẋ = f(x) + G(x)u). Under
the feedback law given by the universal formula (30), the
closed-loop system of (29) is integral-ISS with w as input.

It can be seen that the main idea in the simple proof
of Proposition 3.7 is the stability margin resulted from
the universal formula can be used to dominate the term
B(x)w. This idea, however, fails to work in the case of
positive controls. Consider, for instance the system ẋ =
−x + x3u with the control value set U3. The system is
stabilized by the feedback law u = 0. But there is no
positive feedback law u = k(x) for which the closed-loop
system

ẋ = −x+ x3k(x) + x3w

is integral-ISS.
Remark 3.8. It can be seen from the proof that if a2(x) +
|B(x)|4 is a proper function, then the closed-loop system
of (29) is ISS under the feedback law u = κ(a(x), B(x)).
This is because when a2(x)+|B(x)|4 is proper, the function
V becomes an ISS-Lyapunov function for the closed-loop
system. 2

4. CONCLUSIONS

In this work we consider the problem of disturbance
attenuation for the cases when controls are restricted to
take positive values or bounded positive values. Our results
provide explicit feedback laws to achieve the integral-
ISS property for the closed-loop system based on control
Lyapunov functions. We also provided some sufficient
conditions for a CLF for the 0-disturbance system to be
an integral-ISS CLF for the system with disturbances. Our
future work will be directed at the stabilization problem
for classes of feedforward and feedback form systems with
restricted controls.
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