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Abstract: This paper is concerned with a gait generation for legged robots via iterative learning
control (ILC) including discrete state transitions. This method allows one to obtain solutions
of a class of optimal control problems without using precise knowledge of the plant model
by iteration of laboratory experiments. Generally in walking motion, there are discrete state
transitions caused by landing. The proposed framework can also deal with such state transitions
without using the parameters of the transition model by combining ILC method and the least-
squares. It is applied to the compass gait biped to generate optimal gait on the level ground.
Furthermore, some numerical examples demonstrate the effectiveness of the proposed method.

Keywords: Intelligent robotics; Mobile robots; Iterative learning control; Optimal control
theory; Nonlinear systems.

1. INTRODUCTION

Recently, the walking control has become an active re-
search area. As the technology for walking robots evolves,
an optimization problem of gaits with respect to the energy
consumption becomes important increasingly. In this point
of view, passive dynamic walking studied by McGeer [1990]
attracts attention. The gait is stable and periodic on a
gentle slope and it is generated with no actuation of any
kind, i.e., powered only by gravity. Behavior analysis of
passive walkers were studied by several researchers, Osuka
and Kirihara [2000], Sano et al. [2003]. In Goswami et al.
[1997], Spong [1999], Asano et al. [2004], gait generation
methods based on passive dynamic walking, i.e., designing
appropriate feedback control systems so that the closed
loop systems behave like passive walkers are also proposed.

In the meanwhile, we proposed an iterative learning con-
trol method based on a property of Hamiltonian systems
called variational symmetry. It allows one to solve a class
of optimal control problems by iteration of laboratory ex-
periments. Taking advantage of variational symmetry, this
method does not require the precise knowledge of the plant
model. We also studied on optimal gait generation with
respect to the energy consumption for legged robots via
this technique in Satoh et al. [2006c,a]. Although there are
discrete state transitions in general walking motion caused
by a collision between a leg and the ground, our former
technique could not deal with them directly. Instead, we

restricted the desired walking trajectories to symmetric
ones to avoid this problem in Satoh et al. [2006c,a].

In this paper, we propose a gait generation framework
including discrete state transitions. Transition equations
derived by the conservation law of angular momentum are
often used in walking analysis. However, this law does not
hold exactly with real robots because the law depends on a
theoretical assumptions. For example, It is assumed that
there exists no double support phase at the touchdown.
The proposed method generates a feedforward input for an
optimal gait and estimates the transition mapping via the
least-squares by iteration of experiments. Our framework
does not require the information of the robot parameters
nor the transition model. Applying this technique to a
simple planar biped robot, we generate optimal gait tra-
jectories. Numerical simulations demonstrate the validity
of the proposed framework.

2. ITERATIVE LEARNING CONTROL OF
HAMILTONIAN SYSTEMS BASED ON

VARIATIONAL SYMMETRY

This section refers to iterative learning control (ILC) based
on variational symmetry in Fujimoto and Sugie [2003].

2.1 Variational symmetry of Hamiltonian systems

Consider a Hamiltonian system Σ with a controlled Hamil-
tonian H(x, u, t) described as (x1, y) = Σ(x0, u) :
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ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

y = −
∂H(x, u, t)

∂u

T

x1 = x(t1)

. (1)

Here x(t) ∈ R
n and u(t), y(t) ∈ R

m describe the state,
the input and the output, respectively. The structure
matrix J ∈ R

n×n and the dissipation matrix R ∈ R
n×n

are skew-symmetric and symmetric positive semi-definite,
respectively. In this paper, we describe the time derivative
and the Fréchet derivative on L2 space as d/dt and δ,
respectively. For the system (1), the following theorem
holds. This property is called variational symmetry of
Hamiltonian systems.

Theorem 1. Fujimoto and Sugie [2003] Consider the Hamil-
tonian system (1). Suppose that J and R are constant and
that there exists a nonsingular matrix T ∈ R

n×n satisfying

J =−TJ T−1, R = TR T−1 (2)

∂2H(x, u, t)

∂(x, u)2
=

(

T 0
0 I

)

∂2H(x, u, t)

∂(x, u)2

(

T−1 0
0 I

)

.

Then the Fréchet derivative of Σ is described by another
linear Hamiltonian system (x1

v, yv) = δΣ(x0, u)(x0
v, uv) :















































ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = (J −R)
∂Hv(x, u, xv, uv, t)

∂xv

T

,xv(t
0) = x0

v

yv = −
∂Hv(x, u, xv, uv, t)

∂uv

T

x1
v = xv(t

1)

(3)

with a controlled Hamiltonian Hv(x, u, xv, uv, t)

Hv(x, u, xv, uv, t) =
1

2

(

xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

(

xv

uv

)

.

Furthermore, suppose that J −R is nonsingular. Then the
adjoint of the variational system (x1

a, ua) 7→ (x0
a, ya) =

(δΣ(x0, u))∗(x1
a, ua) is given by the same state-space re-

alization (4) with the initial state x(t0) = x0 and the
terminal state x̄v(t

1) = −(J−R)T x1
a and x0

a = −T−1(J−
R)−1x̄v(t0) as



























































ẋ = (J −R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

˙̄xv = −(J −R)
∂Hv(x, u, x̄v, ua, t)

∂x̄v

T

,

x̄v(t1) = −(J −R)T x1
a

ya = −
∂Hv(x, u, x̄v, ua, t)

∂ua

T

x0
a = −T−1(J −R)−1x̄v(t0)

. (4)

Remark 1. This theorem reveals that the variational sys-
tem and its adjoint of a Hamiltonian system (1) have
almost the same state-space realizations. This means that

the input-output mapping of the adjoint can be calculated
by the input-output data of the original system as

πU ◦ (δΣ(x0, u))∗(ξ, v)

= R ◦ πY ◦ (δΣ(x0, u))
(

−(J −R)Tξ,R(v)
)

(5)

≈ R ◦ πY ◦
(

Σ
(

x0 − (J −R)Tξ, u+ R(v)
)

− Σ(x0, u)
)

provided appropriate boundary conditions are selected,
where π(·) denotes the projection operator onto (·) and
R is the time reversal operator defined by

R(u)(t − t0) = u(t1 − t), ∀t ∈ [t0, t1]. (6)

2.2 Optimal control via iterative learning

Let us consider the system Σ : X×U → X×Y in (1) and

a cost function Γ̂ : X2×U×Y → R with Hilbert spaces X,
U and Y. Typically, X = R

n and U, Y = Lm
2 [t0, t1]. The

objective is to find an optimal input minimizing the cost
function Γ̂(x0, u, x1, y) = Γ(x0, u) by (x1, y) = Σ(x0, u). Here
we can calculate

δΓ(x0, u)(δx0, δu)

= δΓ̂((x0, u),Σ(x0, u))
(

(δx0, δu), δΣ(x0, u)(δx0, δu)
)

= 〈Γ′(x0, u, x1, y),

(

id
δΣ(x0, u)

)

(δx0, δu)〉X2×U×Y

= 〈
(

id, (δΣ(x0, u))∗
)

Γ′((x0, u),Σ(x0, u)), (δx0, δu)〉X×U , (7)

where id represents the identity mapping. Well-known
Riesz’s representation theorem and the linearity of Fréchet
derivative guarantee that an operator Γ′(x0, u, x1, y) satis-
fying Eq. (7) exists. Therefore, if the adjoint (δΣ(x0, u))∗

is available, we can reduce the cost function down at least
to a local minimum by the iteration law with K(i) > 0 as

u(i+1) = u(i) −K(i)πX ◦
(

id, (δΣ(x0
(i), u(i)))

∗
)

× Γ′(x0
(i), u(i), x

1
(i), y(i)). (8)

Here i denotes the i-th iteration in laboratory experiment.

The results in Subsection 2.1 enable one to execute this
procedure without using the parameters of the original
system Σ by Eq. (5), provided Σ is a Hamiltonian system
and the boundary conditions are selected appropriately.

3. OPTIMAL GAIT GENERATION FOR THE
COMPASS GAIT BIPED

In this section, we propose a framework to generate
an optimal gait trajectory via iterative learning control
method mentioned in Section 2. First, we consider a simple
biped robot. Then, let us define a cost function, by which
one can generate optimal periodic trajectories minimizing
the L2 norm of the control input. Such periodic trajectories
satisfy one of the necessary conditions for periodic gaits.
Following that, the iteration law with respect to the cost
function is derived.
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Table 1. Parameters and variables

Notation Meaning Unit

mH hip mass kg
m leg mass kg
a length from m to ground m
b length from hip to m m
l = a + b total leg length m
g gravity acceleration m/s2

θ1 stance leg angle w.r.t vertical rad
θ2 swing leg angle w.r.t vertical rad
u1 ankle torque Nm
u2 hip torque Nm
xg horizontal position of C.o.M m
yg vertical position of C.o.M m

3.1 Description of the plant

Let us consider a full-actuated planar compass-like biped
robot called the compass gait biped Goswami et al. [1996]
depicted in Fig. 1. The robot can walk down a gentle slope

x

y 

θ1

θ2

m m

mH

g

yg

xg

u 1 

2u

a

b
l

O 

Fig. 1. Model of the compass gait biped

without any control inputs under appropriate initial con-
ditions McGeer [1990]. Table 1 shows physical parameters
and variables. Furthermore, We assume some assumptions
on this robot. Some important ones are as follows. The
rest of them conforms Goswami et al. [1996].

Assumption 1. The foot does not bounce back nor slip on
the ground (inelastic impulsive impact).

Assumption 2. Transfer of support between the stance
and the swing legs is instantaneous.

Table 2. Some notations

Notation Meaning

q := (θ1, θ2)T generalized coordinate
p := (p1, p2)T generalized momentum
x := (qT, pT)T state
θ := (θ1, θ2)T angles of legs

θ̇ := (θ̇1, θ̇2)T angular velocities of legs

Θ := (θT, θ̇T)T angles and their velocities

x0 := (q0T
, p0T

)T initial state

x1 := (q1T
, p1T

)T terminal state

·
−(+) just before (after) transfer

Note that θ ≡ q and x−

≡ x1.

We use number of notations with respect to the state.
Table 2 summaries these ones. Here is a new input defined
as ū := (ū1, ū2)

T = (u1 + u2,−u2)
T Then, the dynamics

of this robot is described by a Hamiltonian system in (1)
with the Hamiltonian

H(θ, θ̇, ū) =
1

2
θ̇TM(θ)θ̇ + V (θ) − ūTθ

where a positive definite matrix M(θ) ∈ R
2×2 denotes the

inertia matrix and a scalar function V (θ) ∈ R denotes the
potential energy of the system. The details are as follows

M(θ) =

(

mH l
2 +ma2 +ml2 −mbl cos(θ1 − θ2)

−mbl cos(θ1 − θ2) mb2

)

V (θ) = {(mH l +ma+ml) cos θ1 −mb cos θ2}g. (9)

Note that using (9), the generalized momentum is de-

scribed as p = M(θ)θ̇.

Assumption 1 and Assumption 2 imply that there exists
no double support phase. Following the law of conservation
of the angular momentum, we can obtain a transition
equation as

Q+(θ+)θ̇+ = Q−(θ−)θ̇−, (10)

where θ̇− and θ̇+ denote the angular velocities just before
and just after the state transition caused by a collision
between a leg and the ground, respectively. θ+ can be
obtained by

θ+ =

(

0 1
1 0

)

θ− =: Cθ−,

where the matrix C exchanges the support and the swing
leg angles. The matrices in (10) are as follows

Q−(θ−) =
(

(mH l
2 + 2mal) cos(θ−1 − θ−2 ) −mab −mab

−mab 0

)

Q+(θ+) = (11)
(

mH l
2 +ma2 +ml(l− b cos(θ+1 − θ+2 ))

−mbl cos(θ+1 − θ+2 )

mb(b− l cos(θ+1 − θ+2 ))
mb2

)

Here we rewrite the transition equation in (10) as

θ̇+ = Q(θ−)θ̇−, (12)

where Q(θ−) := Q+−1
(Cθ−) Q−(θ−).

3.2 Definition of the cost function

Let us propose a cost function as

ΓΘ(Θ0, ū,Θ1) :=
1

2
(Θ0 − Φ(Θ1))TΛx (Θ0 − Φ(Θ1))

+
1

2

∫ t1

t0
ū(τ)TΛū ū(τ)dτ

=
1

2
(ψ0(x

0) − ψ1(x
1))TΛx (ψ0(x

0) − ψ1(x
1))

+
1

2

∫ t1

t0
ū(τ)TΛū ū(τ)dτ =: Γ̂(x0, ū, x1), (13)

where Λx and Λū represent appropriate positive definite
matrices. Here Φ(Θ1) is defined to be the angles and its
velocities just after the transition with exchanging legs as

Φ(Θ1) :=

(

θ+

θ̇+

)

=

(

C 0
0 Q(θ−)

)

Θ1. (14)
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Regarding the relation between x and Θ, we have

x =

(

q
p

)

=

(

θ

M(θ)θ̇

)

=

(

I 0
0 M(θ)

)

Θ. (15)

Equations (14) and (15) imply that ψ1(x
1) and ψ0(x

0) are
also defined as

ψ1(x
1) :=

(

C 0
0 Q(θ−)M(θ−)−1

)

x1

ψ0(x
0) :=

(

I 0
0 M(θ0)−1

)

x0. (16)

3.3 Derivation of the iteration law

This subsection derives the iteration law with respect to
the cost function defined in (13) based on the steepest
descent method referred in Subsection 2.2. Let us calculate
the Fréchet derivative of the cost function (13) as follows

δ Γ̂(x0, ū, x1)(δx0, δū, δx1, δy)

= 〈
(

Λx(ψ0(x
0) − ψ1(x

1)),Λūū
)

,
(

δψ0(x
0)(δx0), δū

)

〉

+〈
(

Λx(ψ0(x
0) − ψ1(x

1)), 0
)

,
(

−δψ1(x
1)(δx1), δy

)

〉

= 〈
(

δψ0(x
0)∗Λx(ψ0(x

0) − ψ1(x
1)),Λūū

)

+δΣ(x0, ū)∗
(

−δψ1(x
1)∗Λx(ψ0(x

0) − ψ1(x
1)), 0

)

, (δx0, δū)〉

. (17)

Suppose Eq. (5) holds, then using Eqs. (5) and (17),
iterative learning control law for the control input is given
by















x0
(2i) = x0

(1) − ǫ(i)(J −R)Tδψ1(x
1
(2i−1))

∗

× Λx(ψ0(x
0
(2i−1)) − ψ1(x

1
(2i−1)))

ū(2i) = ū(2i−1)

(18)



















x0
(2i+1) = x0

(1)

ū(2i+1) = ū(2i−1)−K(i)

(

Λūū(2i−1)

+
1

ǫ(i)
R(y(2i) − y(2i−1))

)

(19)

provided that the initial input ū(1) ≡ 0 and the first initial

condition x0
(1) is appropriately chosen. Here ǫ(·) denotes

a sufficiently small positive constant and an appropriate
positive definite matrix K(·) represents a gain. The pair of
iteration laws (18) and (19) implies that this learning pro-
cedure needs two experiments to execute a single update
step in the steepest decent method. In the 2i-th iteration,
we can get the output signal of Σ

(

x0−(J−R)Tξ, ū+R(v)
)

in Eq. (5) (note that in this case v ≡ 0.) and then we can
calculate the input and output signals of (dΣ)∗ from Eq.
(5). The input for the (2i+1)-th iteration is generated by
Eq. (8) with these signals.

Equations (18) and (19) imply that the procedure requires
the precise knowledge of δψ1(x

1) which includes the tran-
sition equation and the information of the inertia matrix is
also necessary because the state x includes the momentum
p = M(θ)θ̇. Regarding real robots, however, the numerical
model of the state transition does not hold exactly. For

example, the angular momentum is not always preserved.
And it is sometimes difficult to get the accurate inertia
information of robots. So in the next section, we derive a
learning algorithm with respect to Θ not the state x which
estimates the transition mapping by experimental data.

4. MODIFICATION OF THE ITERATION LAW

In this section, we reconsider the iteration laws (18)
and (19) in order not to use the knowledge of the state
transition mapping and the inertia matrix. This method
allows one to execute the learning procedure by only using
the information of the output and the angular velocities
just before and after transition.

Let us approximate the cost function (13) by the following
one so that we deal with the functional of the output y = θ
and its time derivative instead of the state

Γ̃(y, ẏ, ū) :=

1

2

∫ t1

t0
(y(τ) − CR(y)(τ))TΛy(τ)(y(τ) − CR(y)(τ))dτ

+
1

2

∫ t1

t0
(ẏ(τ)−R(fQ(y, ẏ))(τ))TΛẏ(τ)(ẏ(τ)−R(fQ(y, ẏ))(τ))

+
1

2

∫ t1

t0
ū(τ)TΛū(τ)ū(τ)dτ, (20)

where Λ(·)’s represent the weighting function with respect
to y, ẏ and ū respectively. Since the transition mapping
(12) is generally a nonlinear function with respect to

θ− and θ̇−, we consider the transition mapping to be a
nonlinear function described by θ̇+ = fQ(θ−, θ̇−) in what
follows. Equation (12) gives a special case of fQ. We define
the weighting functions Λy and Λẏ as diag(ky1

, ky2
)Λ(t)

and diag(kẏ1
, kẏ2

)Λ(t), where k(·)’s are positive constants
and

Λ(t) :=







1

2

(

1 − cos

(

∆t− t

∆t− t0
π

))

(t0 ≤ t ≤ ∆t)

0 (∆t < t ≤ t1)

.(21)

Due to the weighting function Λ(t), we can evaluate θ0

and θ̇0 approximately by choosing ∆t sufficiently close to
t0.

In the previous work of the iterative learning control in
Fujimoto and Sugie [2003], it is not possible to choose
a functional of the time derivative of the output ẏ. We
proposed an extension by employing a pseudo adjoint of
the time derivative operator to take the time derivative of
the output into account in Satoh et al. [2006b].

Lemma 1. Satoh et al. [2006b] Consider differentiable sig-
nals ξ and η ∈ L2[t

0, t1] and a time derivative operator
D(·) which maps the signal ξ into its time derivative is
defined by

D(ξ)(t) :=
dξ(t)

dt
.

Suppose that the signal ξ satisfies the condition

ξ(t0) = ξ(t1) = 0.

Then the following equation holds.

〈η,D(ξ)〉L2
= 〈−D(η), ξ〉L2

(22)
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Assumption 3. In order to utilize Eq. (22), we assume that
the following conditions hold

‖y(j)(t
0) − y(j−1)(t

0)‖ ≪ 1 (23)

‖y(j)(t
1) − y(j−1)(t

1)‖ ≪ 1. (24)

In the existing iterative learning control framework, it is
assumed that all the initial conditions are the same, which
is almost equivalent to the condition (23). In our method,
an additional condition (24) is assumed. In order to let Eq.
(24) approximately hold, we add an extra cost function
(25) to Eq. (20) with an appropriately large positive gain
Ky

∫ t1

t1−ǫ

Ky‖y(τ) − Cθ01(τ)‖2dτ, (25)

where ǫ represents a sufficiently small positive constant
and 1(t) represents an identity operator 1(t) = 1(t0 ≤
t ≤ t1). The cost function (25) weights the difference
between the output and its desired value around t = t1

and penalizes the left hand side of the inequality (24).

Let us calculate the Fréchet derivative of the cost function
(20) as follows

δ Γ̃(y, ẏ, ū)(δy, δẏ, δū)

= 〈Λy(y − CR(y)), δy − CR(δy)〉 + 〈Λẏ(ẏ −R(fQ(y, ẏ))),

δẏ −R(∂yfQ(y, ẏ)(δy)) + ∂ẏfQ(y, ẏ)(δẏ)〉 + 〈Λūū, δū〉

= 〈(id −RC)Λy(id − CR)(y) − ∂yfQ(y, ẏ)∗R

Λẏ(ẏ −R(fQ(y, ẏ))) −D
(

(id − ∂ẏfQ(y, ẏ)∗R)

Λẏ(ẏ −R(fQ(y, ẏ)))
)

, δy〉 + 〈Λūū, δū〉

=: 〈Γ̃′
y, δy〉 + 〈Γ̃′

ū, δū〉

= 〈Γ̃′
ū + (δΣx0

(ū))∗Γ̃′
y, δū〉. (26)

Here Σx0

(ū) : U → Y represents a simpler notation
of Σ(x0, ū) under a fixed initial condition x0. ∂yfQ(y, ẏ)
and ∂ẏfQ(y, ẏ) represent the partial Fréchet derivative of
fQ(y, ẏ) with respect to y and ẏ, respectively. Using Eqs.
(5) and (26), the iterative learning control law for the
control input is calculated as below. The detail of the
derivation is omitted due to the limitation of space

ū(2i) = ū(2i−1) + ǫ(i)R
(

Γ̃′
y(2i−1)

)

(27)

ū(2i+1) = ū(2i−1) −K(i)

(

Γ̃′
ū(2i−1) +

1

ǫ(i)
R(y(2i) − y(2i−1))

)

. (28)

We can calculate Γ̃′
y(·) by estimating the Jacobian of fQ

at the touchdown, since
∂fQ

∂(y,ẏ) = (∂yfQ, ∂ẏfQ) holds and

the weighting function Λt defined by Eq. (21) dismisses for
t ∈ [∆t, t1] by its definition. Since the following equation
holds

dẏ+ =
∂fQ

∂(y, ẏ)

(

dy−

dẏ−

)

, (29)

let us estimate the Jacobian
∂fQ

∂(y,ẏ) by experimental data

via the least-squares method. We define the following data
sets as

∆Y −
(n) :=









y−T
(1) − y−T

(n−1), ẏ
−T
(1) − ẏ−T

(n−1)

...
y−T
(n−2) − y−T

(n−1), ẏ
−T
(n−2) − ẏ−T

(n−1)









,

∆Ẏ +
(n) :=









ẏ+T
(1) − ẏ+T

(n−1)

...
ẏ+T
(n−2) − ẏ+T

(n−1)









. (30)

The size of ∆Y −
(n) is (n − 2) × 4 and that of ∆Ẏ +

(n) is

(n− 2) × 2. By Eq. (29), we have

∆Ẏ +
(n) = ∆Y −

(n)

∂fQ

∂(y, ẏ)

T

. (31)

By solving Eq. (31), we obtain

∂fQ

∂(y, ẏ)

T

= ∆Y −
(n)

†
∆Ẏ +

(n), (32)

where (·)† represents the pseudo inverse matrix of (·).
We can also utilize MATLAB’s arithmetic operator of the
matrix left division to solve Eq. (31) easily.

Here let us summarize the proposed learning procedure.

Step 0: Set the initial condition x0 and k = 1. Then, go
to Step k.

Step k(1 ≤ k ≤ 5): Execute k-th of 5 preliminary exper-
iments in order to obtain data sets for the first control
input under appropriate initial conditions around x0 and
zero control input. If k ≤ 4, set k = k+1 and go to Step
k. Otherwise set i = 3 and go to Step 6.

Step k =2i(i ≥ 3): Utilizing data sets ∆Y −
(2i) and ∆Ẏ +

(2i)

in Eq. (30) and Eq. (32), estimate the Jacobian
∂fQ

∂(y,ẏ) .

With the initial condition x0, executes the 2i-th labora-
tory experiment via the iteration law of (27). and go to
Step 2i+1.

Step k =2i+1(i ≥ 3): With the initial condition x0,
executes the 2i+1-th laboratory experiment via the
iteration law of (28). Set i = i+ 1 and go to Step 2i.

5. SIMULATION

We apply the proposed algorithm in the previous section
to the compass gait biped depicted in Fig. 1 to generate
an optimal gait trajectory on the level ground. We pro-
ceed 80 steps of the learning procedure which means 160
simulations with the initial condition (θ01, θ

0
2 , θ̇

0
1, θ̇

0
2)

T =
(−0.23, 0.25, 1.5,−1)T. The design parameters of the cost
function (20) are (ky1

, ky2
, kẏ1

, kẏ2
) = (10, 10, 1×10−2, 1×

1−2) and Λū = diag(1×10−5, 1×10−5). Parameters of the
learning procedures are ǫ(·) = 1 and K(·) = diag(60, 5).

Fig. 2 shows the history of the cost function (20) along
the iteration decreasing monotonically. It implies that the
output trajectory converges to an optimal one smoothly.
Figs. 3 and 4 show responses of θ and θ̇ at the last step
in the proposed method in solid lines and those at the
1,40,80 and 160th steps in dotted lines. Fig. 5 shows the
control inputs generated in the last iteration. Fig. 6 shows
the phase portrait of θ1 − θ̇1. It exhibits that a limit cycle
which implies a periodic motion generated.
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6. CONCLUSION

In this paper, we have proposed a gait generation frame-
work including discrete state transitions. The proposed
method can generate optimal feedforward control input for
energy efficient gait by combining iterative learning control
based on a symmetric property of Hamiltonian systems
and the state transition mapping estimation based on the
least-squares. It does not require the precise knowledge
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Fig. 6. Phase portrait of θ1 − θ̇1

of the plant system nor the numerical transition model
which is not accurate for real robots. Applying this method
to the compass gait biped, we generate an optimal gait
trajectories on the level ground. Numerical simulations
demonstrate the effectiveness of the proposed framework.
Because our proposed method does not require the infor-
mation intrinsic the robot itself, it is expected that it is
valid for general walking robots.
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