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Abstract: In this paper, we present a nonlinear H∞ control technique for the bilateral teleoperation of a 
nonlinear master-slave system. The proposed controller guarantees robust stability in the presence of 
uncertainty in operator and environment impedances.  The guidelines to include nonlinear intervening tool 
between master and slave robot are suggested. The proposed technique enables adjusting weighting of 
position and force tracking error functions for both amplitude and frequency domain. To solve the 
corresponding partial differential equation, called HJI, an approximation method based on Taylor series 
expansion of the solution is used. A numerical simulation demonstrates that the linear controller tends to 
instability in contact tasks while the third order approximated nonlinear controller yields desired 
performance. 

 

1. INTRODUCTION 

Bilateral teleoperation systems have been a benchmark for a 
variety of control systems, from Lyapunov-based designs 
(Lee et. al., 2006), predictive controls (Sirouspour et. al., 
2006) and H∞ techniques (Leung et. al., 1995) to passivity 
control (Lee et. al., 2006) and adaptive control approaches 
(Hashtrudi et. al., 1996).  It is challenging, since it seeks for 
robust stability to the uncertain human and environment 
impedance and time-delayed feedback signals. Moreover, 
unlike many control problems which are formulated within a 
regulation problem, it asks for impedance matching. The 
impedance of the environment should be transmitted to the 
human operator with minimum distortion. Ideally, a 
teleoperation system should be transparent. More recent 
applications of teleoperation systems enable user to touch the 
virtual environment. Thus, with the incorporation of digital 
computers, quantizing feedback and control signals and the 
sampling rate should also be considered in the performance 
and stability of the overall system.  

Historically, early approaches to the control of teleoperation 
systems discuss different control aspects of a linear 1-DOF 
robotic systems (Lawrence, 1993 and Cavusoglu et. al., 
2002). However, recent works apply the design process 
directly to nonlinear n-DOF robotic systems (Lee et. al., 
2006). Although this complicates the design extremely, the 
final results could be directly applied to the nonlinear system 
without the need of an intermediate linearization step. The 
control of robotic manipulator using nonlinear H∞ control has 
been reported in (Yazdanpanah et. al., 1998 and Park et. al., 
2000); however, there are not important works about the 
application of this approach to a teleoperation system. This 
work presents a nonlinear control framework for a 
teleoperation system. The approach used in this paper is 
nonlinear H∞ control. Using advantages of this approach in 
controlling a teleoperation system, nonlinear objectives such 

as amplitude dependant error functions and nonlinear 
intervening tool are handled.  

2. PRELIMINARIES 

2.1 Modelling 

Consider a teleoperator system consisting of two master and 
slave robots which are governed by two n-DOF nonlinear 
mechanical systems as follows: 

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

2 2

( ) ( ) ( , ) ( ) ( ) ( ) ( )
( ) ( ) ( , ) ( ) ( ) ( ) ( )

M q q t C q q q t g q T t F t
M q q t C q q q t g q T t F t

+ + = +

+ + = +  
(1)

where qi, Fi, Ti∈ℜn are the position coordinates, human and 
environment forces, and the control signals respectively, 
Mi∈ℜn×n are symmetric and positive definite inertia matrices, 
and Ci∈ℜn×n are Coriolis matrices, with i=1,2. 

The main objective in controller design of a teleoperation 
system is to transfer the mechanical impedance of the remote 
task to the operator in a way that s/he feels as if s/he is 
performing the task directly. This should be done with 
minimum distortion in the frequency and amplitude of 
interest.  

2.1 Performance criteria 

Trade-off between performance and stability plays an 
important role in control system design of a teleoperation 
system; since, it asks the multivariable performance objective 
(i.e. impedance match) while maintaining stability in the 
presence of the uncertainty of operator’s hand impedance and 
the one’s of the environment under manipulation as a part of 
the closed loop system. A state of the art controller design 
framework has to incorporate this trade-off in the design 
process in order to be applicable. 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12727 10.3182/20080706-5-KR-1001.2754



 
 

     

 

The performance of the controller design, i.e. the impedance 
match as described above,  requires the equality between two 
force signals, F1 and F2, and two position signals, q1 and q2. 
Position tracking can be achieved through minimizing the 
following frequency and amplitude dependant error function: 

( ) ( )1 1 1

1 1 2

( ) ( ) ( )p p

p

z t h e t a e t

e q qα

= ×

= −
 

(2)

where αp is the scaling factor for the position tracking, hp is 
the output of a linear low pass filter used to weight position 
tracking error over frequencies, and static map ap determines 
the amplitude of interest for tracking. Incorporation of the 
amplitude in z1 is due to the fact that frequency bandwidth of 
the signals produced by the operator is mainly amplitude-
dependant. Human operator could produce high frequency 
movements only in low amplitudes while movements with 
high amplitude are restricted to low frequencies. One possible 
choice of ap can be the following Gaussian function: 

( ) ( )Tk x x
pa x e −=  (3)

A more extensive criterion for force tracking adds a virtual 
tool intervening between the operator and the environment. 
This could be achieved through minimization of the 
following error function: 

( )2 1 1 2( ) ( )t fz t F z q Fα= − +
 

(4)

where αf is the scaling factor for force tracking and zt is the 
output of a desirable nonlinear dynamic of the intervening 
tool. 

2.3  Consideration of Uncertainties 

The force applied by the operator to the master robot, F1, can 
be modeled by the following equation: 

2

2

* *
1 1 1 1 1h h

d d
h h h hdtdt

F F F F z q

z M B K

= − = −

= + +
 (5)

where *
1F is a L2-bounded  exogenous force generated by the 

operator’s hand and zh is a mass-damper-spring model of the 
hand’s muscular system. Mh, Bh, Kh are unknown positive 
definite matrices with H-infinity norms belonging to a known 
bound. It is reported in several works that a linear model 
could capture the dynamics of the human’s arm (Cavusoglu 
et. al., 2002, Hashtrudi et. al., 1996). Moreover, the 
assumption of L2-boundedness of *

1F  generalizes the design 
to a large class of applications. 

In a similar way, the environment can be modeled as follows: 

2 2

2 2

* *
1 2 1 1 1

.
e e

d d
h e e edt dt

F F F F z q

z M B K

= − = −

= + +
 (6)

' 

3. NONLINEAR H∞ CONTROL 

We present a brief review of nonlinear H∞ control problem in 
this section. The application of this approach to the control of 
teleoperation systems is then presented in the next section.  

Consider the nonlinear system 

( , , )
( , , )

x f x w u
z h x w u

=
=

 (7)

where x∈ℜn is the state vector, w∈ℜm1 is the exogenous 
input containing disturbance signals to be rejected and 
references to be tracked, u∈ℜm2 is the control vector, and 
z∈ℜp is the controlled output. We want to design a controller 
to stabilize the system and attenuate the effect of the 
exogenous input w on the controlled output z. Consider the 
following Hamiltonian function 

2 22( , , , ) ( , , )TH x w u p p f x w u w zγ= − +  (8)

where pT=Vx. If there exist a nonnegative function V(x) 
vanishing at x=0 such that Hamilton-Jacobi-Isaacs (HJI) 
inequality 

H(x,w,u,Vx) ≤ 0 (9)

holds, the resulting closed loop system with the control 

*( , ( ))T
xu u x V x=  (10)

is stable and dissipative with respect to the supply rate 

2 22( , )s w z w zγ= −  (11)

Hence, the closed loop system has an L2 gain less than or 
equal to γ. Moreover, it is locally asymptotically stable if the 
system is zero state detectable (Van der Schaft, 2004). 

In general, it is not possible to find the explicit solution of the 
HJI partial differential inequality (8). One practical way is to 
consider the Taylor expansion of the solution up to a 
desirable order and, then, find the solution by means of a 
polynomial approximation method. 

We briefly explain the procedure of finding the approximated 
solution of the HJI inequality (8). Consider the series 
expansion for v*(x) and V(x) up to order d 

(1) (2) ( ) ( )
*

1
1

(2) (3) ( 1) ( )

2

( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ... ( ) ( )

d
d i

x x x x
i

d
d i

i

v x v x v x v x v x

V x V x V x V x V x

=
+

+

=

= + + + =

= + + + =

∑

∑
 

(12)

where v=[wT uT]T ∈ℜm1+m2 in which vx
(d) is all the 

polynomials of the form 

1 2
1 2 ... nj j j

k nc x x x    with  j1+ j2+...+ jn=d (13)
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The function V(2) ,and consequently vx
(1) , is determined by 

solving the corresponding algebraic Riccati equation (ARE) 
of the linearized model of the system (6). Consider the 
linearization of the system around the origin 

x Ax Bv
z Cx Dv

= +
= +  

(14)

with 

(0,0) (0,0)

(0,0) (0,0)

( , ) ( , )

( , ) ( , )

A f x v B f x v
x v

B h x v D h x v
x v

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂
 

(15)

and the corresponding ARE as follows 

1 0T TF K KF KBR B K Q−+ − + =  (16)

with 

1

2
1

1

,

0 ,
0 0

T

m

T T T

F A BR D C

IR DTD

Q C C C DR D C

γ

−

−

= −

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦

= −  

(17)

Then, the solution to the linear H∞ problem may be computed 
as 

(2)

(1) 1
*

( )

( )

T

T T

V x x Kx

v R B K D C x Kx−

=

= − + = −  
(18)

 

3.1 Approximated controller 

By using Eq.8 and the fact that v* defines a saddle point for 
the Hamiltonian function, we get the following equations 
(Christen, et. al., 1997) 

* *

( )( )
* 1 * * *

( )

( ) 1
*

( )( ) * ( , ) ( , )

3, 4,..

1
2

2,3,...

mm T
x x x

k
T T

k T T T
x x

v v v v

V x A BK x V Bv V f x v g x v v Rv

m

v R g B V f V
v v

k

−

= =

⎡ ⎤− = − − − −⎣ ⎦
=

⎛ ⎞− ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
=

 

 (19)

where  

,f f Ax g h C x Dv= − = − −  (20)

The write-hand side of Eq.19 is determined by the first (m-1) 
terms of V(x) and the first (m-2) terms of v*(x), while v*

(k) 
depends on the first (k-1) terms of v*(x) and (k+1) terms of 

V(x). Hence, the consecutive terms of v*(x) and V(x) can be 
computed in the following sequence up to a desirable order 

(1) (2)(2) (3)
* *, , , ,....V v V v  (21)

4.  APPLICATION TO A TELEOPERATION SYSTEM 

In the preceding section, we discussed a state space approach 
to the design of the nonlinear H∞ control system. Therefore, 
we proceed with deriving the state space model of the robots 
in this section. Performance objectives are included by 
introducing some exosystems and augmenting their states to 
the states of the robots. 

Using (5) and (6), Equation (1) reads 

2 2 2 2 2 2 2 2

*
1 1 1 1 1 1 1 1 1 1

*
2 2

( ) ( ) ( , ) ( ) ( )

( ) ( ) ( , ) ( ) ( )
h

e

M q q t C q q q t T t F F

M q q t C q q q t T t F F

+ = + −

+ = − −
 (22)

By choosing 1 1 2, , ,q q q and 2q as the states of the system we 
obtain the state space equations in the form 

( )

( )

21
1

1 1 1 1 2 2 1 1 32

43
1

4 2 3 1 3 4 4 2 2 4

( ) ( , )
( , , )

( ) ( , )

xx
M x C x x x u w wx

g x u w
xx

x M x C x x x u w w

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − + + −⎢ ⎥⎢ ⎥ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − + − −⎣ ⎦ ⎣ ⎦

 (23)

where 

1 2 3 4 1 1 2 2

* *
1 2 1 2 1 2 1 2,

T TT T T T T T T T

T T TT T T T T T T T
h e

x x x x q q q q

w F F F F u u T T

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (24)

Force signals applied by human and environment are 
considered disturbances to the system. Force sensors may be 
used at each side of a teleoperation system to measure the 
force signals. These signals may also be incorporated as 
inputs to the control system. We determine the bandwidth of 
the measurements by two low-pass filters. Consider the 
following two low-pass filters 

( )
( )

1 1 1 3

2 2 2 4

lp

lp

F F w w

F F w w

= −

= − −
 (25)

The state space model of Eq.25 may be written in the form of 

5
1 5 1 3

5

6
2 6 2 4

6

( , , )

( , , )

lp

lp

x
f x w w

x

x
f x w w

x

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

 (26)

where 5 6,x x are the outputs of the filter. 

Now, consider the position tracking error function, (2). Say x7 
to be the states of the low-pass filter hp. We can write the 
equation of the exosystem as 
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( )
7 7 1 3

1 1 7

( , , ),

( )
px f x x x

z t h x

=

=
 (27)

Also, by choosing x8 as the states of the intervening tool, zt, 
one may write the exosystem equations as 

( )
8 8

2 2 8

( , ),

( ) ,
tx f x x

z t h x x

=

=
 (28)

The closed-loop system should also be robustly stable to the 
uncertain human and environment impedances. Considering 
(5), for the human operator, the following conditions should 
hold 

1 1 12 2 2

2 2 2

1 1 1, ,
h h h

q q q

F F FK B M∞ ∞ ∞
≤ ≤ ≤  (29)

where X X ∞∞
≤ . To add this conditions to the control 

objectives, fictitious outputs will be added as follows, 

3 1 1 1
T T T T

h h hz M q B q K q
∞ ∞ ∞

⎡ ⎤= ⎣ ⎦  (30)

This definition of outputs adds the acceleration to the 
measurement which is undesirable. Hence, one may use the 
approximation of the acceleration signals in the desirable 
frequency domain, i.e.  

1 11
sq q

as
≅

+
 (31)

where s is the Laplace variable and a is the cut-off frequency 
of the low pass filter. This approximation will add additional 
states. Similar formulation is also used for the environment 
impedance, 

4 2 2 2
T T T T

e e ez M q B q K q
∞ ∞ ∞

⎡ ⎤= ⎣ ⎦  (32)

Finally, the overall nonlinear system reads 

( , , )
( , )

x f x w u
z h x w

=
=

 (33)

where 

1 2( , , ) [ ] TT T T T T
lp lp p tf x u w g f f f f=

 

1 2 3 4[ ]T T T T Tz z z z z=  
(34)

5. ILLUSTRATIVE EXAMPLE 

In this example, we consider a pair of two 1-DOF direct-drive 
robots. The dynamics of the master and slave robots are 
governed by the following equations 

2 2 2

*
1 1 1 1 1

*
2 2 2

0.1 ( ) 0.1 ( ) ( )

0.1 ( ) 0.1 ( ) 0.1 ( ) ( )
h

e

q t q t T t F F

q t q t sin q T t F F

+ = + −

+ − = − −
 (35)

as it can be seen, the master robot is linear mass-damper 
system, while the slave robot incorporates a nonlinear term 
due to the gravitational force. Two low pass force 
measurement filters, see (25), are defined as 

1
1 2 (0.01 1)lp lp sF F += =  (36)

the exosystem defined for the position tracking objective is 
defined as,  

7 7 1 3

1 7

10 10( )
( ) 5

x x x x
z t x

= − + −

=
 (37)

which is the realization of a low pass filter with cutoff 
frequency equal to 0.1. This specifies the desirable bandwidth 
of the position tracking. Also, force tracking is achieved 
through minimizing of the following output 

8 8 1 2

2 8 1

1 1 3 2 2 4

10 10( ),
( ) 0.5( 0.1sin )

,

x x F F
z t x x
F w w F w w

= − + −

= −

= − = −

 (38)

which adds a virtual gravitational effect of a mass at the 
master side same as the slave side. The values of upper 
bounds of the uncertainties are summarized in table.1. 

Having discussed the problem, we now present the numerical 
solution of the problem. As mentioned earlier, the first step is 
to find the solution to the ARE and then constructing the 
higher order terms will be computed consecutively. The first 
order linear time-invariant controller should be as good as the 
nonlinear while initial conditions are near the origin and 
disturbance signals are low amplitude. The attenuation gain, 
γ, is set to one. 

To demonstrate the performance of the controller we should 
consider a scenario. The human operator is modeled by a PD 
position tracking controller using spring and damping gains 
as 10 and 1 respectively. At the beginning, he pushes the 
master robot to the position 0.8. Then, he tries to push the 

Table.1 Parameters used in the simulation 

hM ∞ = eM ∞  0.2 hB ∞ = eB ∞  2 

hK ∞ = eK ∞  20   

2 4 6 8 10 12 14
-0.5

0

0.5

1

1.5

2

time,Sec

F1
*

 

Fig.1 Exogenous force signal produced by the operator 
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master robot to the position 1.5. While he is moving the robot 
to this target, he realizes the existence of a hard wall while 
receiving step-like force feedback at the position 1. The hard 
wall is simulated by a spring with 30 N/m stiffness. Fig.1 
shows the exogenous force exerted by the operator used in 
this simulation. The results of the first order controller is 
depicted in Fig.2. In the first five second, *

1F  is low 
amplitude, no contact in occurred (Fe=0). As expected, 
position and force tracking is obtained. When *

1F  become 
large oscillations are seen in response and error signals 
become larger. For this system, stability is no violated in the 
presence of linear controller. Fig.3 shows the results of the 
third order controller. In comparison to the first order 
controller, It shows that less oscillations is occurred in 
contact and less error in the output corresponding with 
intervening tool is occurred.    

6. CONCLUSIONS 

In this paper, a nonlinear H∞ control technique for control of 
a nonlinear master-slave teleoperation system was presented. 
The proposed technique includes the most important 
objectives of the control of a teleoperation system like: 
motion and force scaling, intervening tool between master 
and slave robots, and stability to the uncertainty of operator 
and environment impedances. Corresponding HJI equation is 
solved by Taylor series approximation of the solution. 
Simulation results on a 1-DOF master-slave system shows 
that the first order approximated linear controller can not 
achieve desired performance and oscillation in the force 
response occurs during the contact. It was observed that the 
third order controller for the example in this paper is 
sufficient to achieve good performance. Experimental results 
with a multi-DOF robotic system have to be done in the 
future to demonstrate the effectiveness of the proposed 
method. 
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  Fig.2 Results of the first order controller, A. master and
slave positions, B. master and slave forces, C. the
output corresponding with the intervening impedance,
(z2). 

  Fig.3 Results of the third order controller, A. master 
and slave positions, B. master and slave forces, C. 
the output corresponding with the intervening 
impedance, (z2). 
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