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Abstract: In this paper, a method is explored to introduce dissipation in the closed-loop, zero-
dynamics systems that arise in the vertically transverse function approach (VTFA) recently
proposed by the authors. The VTFA is an attempt to extend the transverse function approach
(TFA) of Morin and Samson to deal with practical point-stabilization of a class of critical
simple mechanical systems on Lie groups. This class comprises systems that are not kinematic
reductions and hence fall beyond the scope of application of the TFA as originally formulated.
The VTFA gives rise to a nontrivial zero dynamics that ultimately determines the qualitative
nature of the trajectories and, in order to constrain the velocity (or “fiber”) coordinates to
vanish asymptotically, as required in typical applications, dissipation must be injected into the
zero dynamics. Reported below is a possible way to reach that goal based on the adjunction
of additional auxiliary inputs, via generalized vertically transverse functions, and the use of
nonlinear, high-order averaging theory. Also included is an illustrative example as well as
numerical simulations suggesting that the feedback laws herein designed yield promising results.
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1. INTRODUCTION.

Recently, a methodology was introduced in Lizárraga and
Sosa (2005) for the control of a class of second-order
systems on tangent Lie groups by means of vertically trans-
verse functions (VTF). The ultimate application of that
methodology is to practically stabilize points—and more
general trajectories whenever possible—for simple me-
chanical systems (SMS), whose dynamic equations are de-
rived from the Euler-Lagrange principle with Lagrangians
equal to kinetic minus potential energies, cf. e.g. Bullo and
Lewis (2005). Within this class one finds systems that are
fully or partially actuated, holonomically or nonholonom-
ically constrained and, in particular, systems (referred to
as “critical”) that at some states do not satisfy Brockett’s
necessary condition for point-stabilization by continuous
state feedback.

The idea of using VTF arises as an attempt to generalize,
to the more ample case of SMS, the methodology proposed
by Morin and Samson (2003) for critical controllable drift-
less systems. In essence, the term practical stabilization
refers to the property that the trajectories of the controlled
system ultimately converge to a predefined neighborhood
of the desired equilibrium. The procedure in Lizárraga
and Sosa (2005) may be roughly described as follows.
One starts with a second-order system, the target system,
defined on a tangent Lie group TG. More specifically, it is
assumed that the target is determined by the specification
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of a second-order, drift vector field on TG, and a control
distribution spanned by vector fields that are vertical lifts
of vector fields on G. It is also assumed that the original,
unlifted vector fields define a driftless system which is
locally accessible at some point. As proved in Morin and
Samson (2001), the latter condition is equivalent to the
existence of a mapping (a transverse function) which, in a
sense that differs slightly from the usual one, is transverse
to the associated control distribution. In turn, the tangent
mapping of a transverse function is vertically transverse
for the corresponding lifted distribution, as defined and
stated in Lizárraga and Sosa (2005). The image of the
VTF is an immersed submanifold of TG, submanifold
on which one defines an additional auxiliary second-order
system. Together, the target and the auxiliary define what
is called the compound system, the state of which is re-
ferred to as the compound state. An error signal is then
defined, with the aid of the Lie group operation on TG,
to quantify the difference between the states of the target
and auxiliary systems; under appropriate assumptions, the
dynamics of the error signal can be assigned arbitrarily
by smooth feedback defined in terms of the compound
state. If the error dynamics is assigned to be positive-
complete and to admit the zero-velocity state over the
identity element as an exponentially stable equilibrium,
the configuration coordinates ultimately approach a pre-
scribed neighborhood of the desired configuration. In that
case, however, the evolution of the fiber coordinates—the
velocities when the target is a SMS—is determined by a
nontrivial, autonomous zero dynamics, with the structure
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of a (perturbed) affine connection control system, cf. e.g.
(Bullo and Lewis, 2005, Chap. 4).

Much in the spirit of the approach of Morin and Sam-
son (2004), the methodology we propose in this paper
is based on the notion of generalized transverse function
(GTF), and it aims at providing the closed-loop zero dy-
namics with new, independent control inputs. In principle,
these inputs appear as an additional degree of freedom
which allows one to influence the behavior of the zero
dynamics, and we estimate that by using appropriately
defined feedback laws, dissipation could be injected into
the system to have the velocities asymptotically vanish.
Although the zero dynamics that arises in our approach is
an affine-connection control system, the associated affine-
connection may not be the Levi-Civita connection of any
Riemannian metric, in which case it is not clear how to
assign the extra inputs to introduce dissipation. As an
alternative, we analyze the possibility of designing such
control inputs by techniques of high-order averaging, es-
pecially as recently developed in Sarychev (2001) and Vela
(2003), both of whom make use of tools from the chrono-
logical calculus developed in Agrachev and Gramkrelidze
(1979).

The paper is organized as follows. In Section 2, the basic
notations are fixed and some mathematical concepts, in-
cluding that of vertically transverse function, are recalled.
Generalized vertically transverse functions are introduced
in Section 3, along with a description of its applications
to the control of SMS and the general structure of the
resulting zero dynamics. In Section 4, a brief description
is made of the main ideas of averaging theory and the way
we plan to use it to introduce dissipation. An example is
developed in Section 5, where the construction of time-
varying feedback laws by means of averaging theory is
explored. Finally, Section 6 contains closing remarks and
an outline of our current research efforts.

2. PRELIMINARY CONCEPTS AND NOTATION.

In this section we recall basic concepts and fix the nota-
tions used throughout the paper. The reader may consult
Warner (1983); Abraham and Marsden (1985); Bullo and
Lewis (2005) for further reference. All manifolds, map-
pings, vector fields and related constructs involved in the
sequel are assumed to be smooth (of class C∞), unless
otherwise stated.

2.1 Differential-geometric notions and Lie groups.

Given a (finite-dimensional, paracompact) manifold Q,
TqQ is the tangent space at q ∈ Q, and πQ : TQ −→ Q
is the associated tangent bundle. Given f : Q −→ P ,
Tqf : TqQ −→ Tf(q)P is the tangent mapping of f at
q ∈ Q. The tangent bundle map covering f is denoted
by Tf . The set of (smooth) vector fields on Q (resp.
TQ) is denoted by Γ(TQ) (resp. Γ(TTQ)). Given a vector
field X , we write either Xq or X(q) to denote its value
at a point q. A vector field X ∈ Γ(TTQ) is said to be
second-order if TπQ ◦ X = idTQ, and vertical-valued
(or simply vertical) if TπQ ◦ X = 0. Given v ∈ TQ,
the vertical space over v is the subset of TvTQ given
by TvTQvert = {α ∈ TvTQ : Tvπ(α) = 0} . The

disjoint union of the spaces TvTQvert, v ∈ TQ, with
the differentiable structure naturally induced by TTQ, is
called the vertical subbundle of TTQ and is denoted
by TTQvert. Given v, w ∈ TQ with πQ(v) = πQ(w), the
vector in TvTQ defined by lift(v, w) = d/dt|0 (v + tw)
is the vertical lift of w by v. The vertical lift of
a vector field X on Q is a vector field on TQ given
by X lift(v) = lift(v, Xv). The zero-section of a tangent
bundle TQ is the subbundle Z(TQ) of zero-vectors in
TQ; as an embedded submanifold, it is diffeomorphic to
Q. The Liouville vector field C on Q is defined by
C(v) = lift(v, v). A spray S is a second-order vector field
satisfying [C, S] = S. T

κ denotes the torus of dimension κ.
Let h : TT

κ1 × TT
κ2 −→ T (Tκ1 × T

κ2) and H : TTT
κ1 ×

TTT
κ2 −→ TT (Tκ1 ×T

κ2) denote natural identifications.

Assume that G is a Lie group with group composition

denoted by µ̂, and let L̂a, R̂a : G −→ G denote the
left and right translations by a on G, respectively. The
tangent bundle TG, with composition given by µ(x, y) =

T L̂πG(x)(y) + T R̂πG(y)(x), is also a Lie group, usually
referred to as the tangent Lie group of G. We let
Lv, Rv : TG −→ TG denote the left and right translations
by v on TG, respectively. Sometimes we use x · y or xy
in place of µ(x, y). We write e for the identity element in
G, and 0e (the zero vector in TeG) for the corresponding
identity in TG. A vector field X on G is said to be left-

invariant if Xgh = T L̂g(Xh) for all g, h ∈ G.

2.2 Vertically transverse functions.

In this section we recall some of the results presented in
Lizárraga and Sosa (2005). Consider a set {X1, . . . , Xm}
of left-invariant vector fields on a n-dimensional Lie group
G (m ≤ n) satisfying the LARC (Local Accessibility Rank
Condition) at a point which, without loss of generality, we
assume to be e ∈ G. Consider also a second-order vector
field S on TG. The class of control systems we consider
are of the form

ẋ = Sx +
m∑

i=1

uiX lift
i,x . (1)

When dealing with SMS, we require S to be equal to
the geodesic spray of some Riemannian metric minus the
vertical lift of the gradient of a potential energy function.

As shown in Morin and Samson (2003), given a neighbor-
hood U of e, the local accessibility of {X1, . . . , Xm} at e
is equivalent to the existence of a transverse function
near e, i.e., a mapping f : T

κ −→ G, with κ = n−m, such
that f(Tκ) ⊂ U and, for every θ ∈ T

κ,

Tf(θ)G = Tf(TθT
κ) ⊕ span

R
{X1,f(θ), . . . , Xm,f(θ)}. (2)

In this paper we focus on systems evolving on Lie groups;
nevertheless, this notion of transversality also makes sense
for systems on more general manifolds, in which case
κ ≥ n − m and the sum in (2) need not be direct.

In Lizárraga and Sosa (2005), it is proved that the tangent
of a transverse function for a set {X1, . . . , Xm} at e ∈ G
is vertically transverse to the set of lifted vector fields
{X lift

1 , . . . , X lift
m } in the sense that

TTf(ω)TGvert = TTf((TωTT
κ)vert)

⊕ span
R
{X lift

1,Tf(ω), . . . , X
lift
m,Tf(ω)},
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for every ω ∈ TT
κ. The procedure in Lizárraga and

Sosa (2005), which appeals to VTF for practical point-
stabilization of second-order systems, may be seen as a
particular case of the procedure described in the next
section, which makes use of vertically transverse functions
derived from generalized transverse functions.

3. GENERALIZED VERTICALLY TRANSVERSE
FUNCTIONS FOR CONTROL.

In this section we recall a slightly weakened version of
generalized transverse function introduced in Morin and
Samson (2004), and then define the related notion of gen-
eralized vertically transverse function (GVTF). A natural
way to construct a GVTF is by taking the tangent map
associated to a generalized transverse function.

Definition 1. A generalized transverse function (GTF)
for a given set of vector fields {X1, . . . , Xm} ⊂ Γ(TG),
n = dim(G), near e ∈ G, for a given neighborhood U
of e, is a map f : T

κ1 × T
κ2 −→ G, κ1 = n − m,

κ2 ≥ 1, such that (a) f(Tκ1 × T
κ2) ⊂ U ; and (b) for

every σ = (θ1, θ2) ∈ T
κ1 × T

κ2 ,

Tf(σ)G = span
R
{X1,f(σ), . . . , Xm,f(σ)} ⊕ Tfθ2

(Tθ1
T

κ1),
(3)

with (fθ2
)θ2∈Tκ2 being the associated family of maps

defined by fθ2
(θ1) = f(θ1, θ2).

In a coordinate chart θ = (θ1, θ2) = (θi
1, θ

j
2), for T

κ1 ×T
κ2 ,

(i = 1, . . . , κ1; j = 1, . . . , κ2), condition (b) in Definition
1, reduces to

R
n = span

R
{X1f (θ), . . . , Xm,f(θ)}

⊕span
R

{
∂fθ2

∂θ1

1

(θ), . . . ,
∂fθ2

∂θ
κ1

1

(θ)
}

.

The following proposition, a consequence of (3), is rather
straightforward to prove.

Proposition 2. Let f : T
κ1 × T

κ2 −→ G with κ1 = n − m,
κ2 ≥ 1, be a GTF for {X1, . . . , Xm} ⊂ Γ(TG) around
e. Then Tf : T (Tκ1 × T

κ2) −→ TG is a generalized
vertically transverse function for {X lift

1 , . . . , X lift
m } ⊂

Γ(TTGvert) in the sense that, for every ν ∈ T (Tκ1 ×T
κ2),

TTf(ν)TGvert = TTf ◦ H((TωTT
κ1)vert × {0}) (4)

⊕ span
R
{X lift

1,Tf(ν), . . . , X
lift
m,Tf(ν)},

with H the natural diffeomorphism TTT
κ1 × TTT

κ2 −→
TT (Tκ1 × T

κ2).

3.1 Application of generalized VTF to control.

In this subsection we explore the use of GVTF to prac-
tically stabilize points for systems of the form (1), as an
extension of the methodology presented in Lizárraga and
Sosa (2005).

Consider an auxiliary control system, with state (ω(t), η(t))
evolving on TT

κ1 × TT
κ2 , given by

ω̇ = ∆ω +
∑κ1

i=1 viΩi,ω

η̇ = Λη +
∑κ2

i=1 wiΥi,η,
(5)

where ∆ and Λ are second-order vector fields on Γ(TTT
κ1)

and Γ(TTT
κ2) resp. and {Ωi : i = 1, . . . , κ1}, {Υi :

i = 1, . . . , κ2} are global frames for (TTT
κ1)vert and

(TTT
κ2)vert, respectively.

Now define a map to quantify the error between the state
of (1) and the image by Tf of the auxiliary control system
state:

ze(t) = x(t) · Tf(ν(t))−1,

where ν = h(ω, η) and h is the natural diffeomorphism
mapping TT

κ1 × TT
κ2 onto T (Tκ1 × T

κ2).

Whenever ze(t) ≡ e, the state x(t) of the control system
(1) coincides with the image by Tf of the state ν(t), whose
dynamics is given by

ν̇ = Πν +

κ1∑

i=1

viΦi,ν +

κ2∑

i=1

wiΨi,ν , (6)

for some vertical vector fields Φi, Ψj on T (Tκ1 × T
κ2)

associated with Ωi and Υj respectively, (i = 1, . . . , κ1; j =
1, . . . , κ2), and for some second-order vector field Π on
T (Tκ1 × T

κ2) associated with ∆ and Λ.

By differentiating along the trajectories of systems (1) and
(6), one checks that the error dynamics is given by

że(t) = TRTf(ν(t))−1

(
ẋ(t) − TLze(t) ◦ TTf(ν̇(t))

)
(7)

for every t in R for which the trajectories of the compound
system (1)-(6) are defined. Hence

że = TRTf(ν)−1

((
Sx +

∑m

i=1
uiXlift

i,x

)

−TLze ◦ TTf
(
Πν +

∑κ1

i=1
viΦi,ν +

∑κ2

i=1
wiΨi,ν

))
.

(8)

By using the left-invariance of the X lift
i , and the fiberwise

linearity of the tangent maps one obtains

że = TRTf(ν)−1

(
D(ze,ν,w)

)
+

TRTf(ν)−1 ◦ TLze

(∑m
i=1 uiX lift

i,Tf(ν)

−
∑κ1

i=1 viTTf (Φi,ν)
)

,

(9)

where D(ze,ν,w) is defined by SzeTf(ν) − TLze
◦

TTf
(
Πν +

∑κ2

i=1 wiΨi,ν

)
.

Proposition 3. Given a second-order vector field Sd ∈
Γ(TTG), there is a unique feedback law (u, v) =(
u1, . . . , um, v1, . . . , vκ1

)
: TG×TT

κ1×TT
κ2×R

κ2 −→ R
n

such that the error dynamics (9) satisfies że = Sd,ze
.

The proof of this result follows from straightforward com-
putations using property (4).

In accordance with Proposition 3, by appropriately se-
lecting the input functions for (1)-(6), 0e can be made
an exponentially stable equilibrium point (in some coordi-
nates) for the error dynamics (9). Whenever the solutions
of the compound system in closed loop exist, the state
of the control system (1) converges to the image by Tf
of the auxiliary system (6). Since f(Tκ1 × T

κ2) is con-
tained in a predefined neighborhood U of e by Definition
1, the methodology ensures that the configuration coor-
dinates are ultimately bounded and close to the desired
equilibrium point, independently of how the extra control
functions wi (i = 1, . . . , κ2) are chosen. However, the
dynamics of the fiber coordinates is determined by the
zero dynamics, which is obtained by setting ze = 0e in the
closed-loop system. The zero dynamics is given by

(
STf(ν) +

∑m
i=1 ui(0e, ν, w)X lift

i,Tf(ν)

)
=

TTf
(
Πν +

∑κ1

i=1 vi(0e, ν, w)Ψi,ν

)

+
∑κ2

i=1 wi TTf ◦ Υi,ν .

(10)
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Note that the evolution in zero dynamics of the target sys-
tem, the left-hand member of equation (10), is determined
by the zero dynamics of the auxiliary control system, the
right-hand member of (10). Thus, if one accomplishes to
design w1, . . . , wκ2 as functions of the auxiliary state so
that the zero-section of T

κ1 × T
κ2 is (locally) attractive,

the net effect is that the velocities of the auxiliary and
target systems tend to zero. Achieving this goal, which
turns out to be a nontrivial task, apparently calls for the
use of time-varying feedback techniques, and remains an
open research problem. The main aim of this paper is to
outline an approach based on averaging techniques for the
design of those feedback laws. Section 5 illustrates, via
a numerical example, that the asymptotic convergence of
the velocities to zero may be achievable by means of time-
varying feedback laws.

4. AVERAGING THEORY AS A TOOL TO RENDER
THE ZERO-SECTION LOCALLY ATTRACTIVE.

Here we recall the basics of high-order averaging theory
with a view toward the design of time-varying feedback
to render the zero-section (locally) attractive for the zero
dynamics (10). The reason to explore time-varying feed-
back is that there exist obstructions—in fact, extensions of
those embodied in the main result of Brockett (1983)—to
the existence of continuous state feedback which achieves
that goal. Nonlinear, high-order averaging theory has
proved to be useful for the design of time-varying stabiliz-
ers for driftless controllable systems and for some specific
second-order systems, cf. Vela (2003); Sarychev (2001). In
essence, that theory aims at reducing the qualitative study
of the flow of a periodic time-varying vector field to the
study of an autonomous (i.e., time invariant) one. This
is similar to Floquet theory except that a parameter λ is
introduced, as in singular perturbation theory, to obtain
series approximations of the autonomous vector field. For
more enlightening discussions on this topic, see Sarychev
(2001), Vela (2003) and the references therein. We shall
only detail some of the expressions for the averaging of
systems with drift to be used in the next section. Consider
a system on R

n, written in the standard form for averaging

ẋ = λX(x, t), (11)

with X a T -periodic time-varying vector field and λ a small
positive real. By means of the chronological exponential
−→

exp, cf. Agrachev and Gramkrelidze (1979), one obtains a
system

ż = Z(z), (12)

where Z, viewed as “the average of X ,” is given by

Z = 1
T

ln
−→

exp
(∫ T

0 λX( · , τ) dτ
)

. (13)

Z is such that the trajectories of (11) coincide with the
trajectories of (12) up to a time-periodic diffeomorphism
or flow, i.e., x(t) = P (t, z(t)), P (t + T, · ) = P (t, ·), where
P is called the Floquet mapping, cf. Vela (2003). Typically,
however, Z is very difficult to compute explicitly, and the
way to circumvent this difficulty is by using an infinite
series expansion of the form Z = 1

T

∑
∞

i=1 λiΛi(Xτ ), where
Λi(Xτ ) is called the ith variation of the identity flow corre-
sponding to Xτ = X( · , τ). By analyzing the mth-partial
sum (or “truncate”) Truncm(Z) = 1

T

∑m
i=1 λiΛi(Xτ ), one

may infer some stability properties of (11) for sufficiently
small values of λ.

These ideas can also be used to design time-varying
feedback for second-order systems, as proposed in Vela
(2003). Consider the class of systems on TR

n of the form

ẋ = Xx +

m∑

i=1

ui(x, t)Y lift
i,x , (14)

where X is a spray and Yi a vector field on R
n.

The continuous mapping ui : R
n × R −→ R is as-

sumed to have the form ui(x, t) = f i(x) + 1
λ
vi(t/λ)

(i = 1, . . . , m), with λ > 0 small. Define V
(i)
(n)(t) =

∫ t

t0

∫ sn−1

t0
· · ·

∫ s2

t0
vi(s1) ds1 . . . dsn−1 and V

(i1,...,ik)
(n1,...,nk)(t) =

V
(i1)
(n1)(t) · · ·V

(ik)
(nk)(t) for k ≥ 1, i, ik = 1, . . . , m. In a sim-

ilar manner, we define integrals and averages of these

terms, for instance V
(̂i)

(n̂)
(t) =

∫ t

t0
V

(i)
(n)(τ) dτ , V

(i)
(n)(t) =

1
T

∫ t

t0
V

(i)
(n)(τ) dτ . Following the procedure in Vela (2003),

we rescale the time variable and consider a truncate of
the “nonlinear variation of constants” for (14), yielding a
system in the standard form for averaging (11):

ẋ = λ

(
XS,x + V

(i)

(1)
(t)

[
Y lift

i , XS

]
x
− 1

2
V

(i,j)

(1,1)
(t) 〈Yi : Yj〉

lift
x

)
.

(15)

Here, XS = X +
∑m

i=1 f iY lift
i and the operator 〈· : ·〉,

a generalization of the notion of symmetric product,

cf. Bullo and Lewis (2005), is given by 〈X : Y 〉
lift

=[
X lift,

[
XS , Y lift

]]
.

Assuming that the first order time averages of the inputs vi

vanish, i.e., V
(i)
(0) (t) = vi(t) = 0, the first and second order

averaged truncates in terms of Lie brackets and symmetric
products of the drift and control vector fields in (15) are

ż = Trunc1(Z)z = XS,z + V
(i)
(1) (t)

[
Y lift

i , XS

]
z

− 1
2V

(i,j)
(1,1) (t) 〈Yi : Yj〉

lift
z

,
(16)

ż = Trunc2(Z)z =

Trunc1(Z)z + λ

(
V

(i)

(2)
(t) − 1

2
T V

(i)

(1)
(t)

)[[
Y lift

i
, XS

]
, XS

]
z

− 1
2
λ

(
V

(î,j)

(1̂,1)
(t) − 1

2
T V

(i,j)

(1,1)
(t)

)[
〈Yi : Yj〉

lift , XS

]
z

+ 1
2
λV

(i,j)

(2,1)
(t)

[[
Y lift

i
, XS

]
,
[
Y lift

j
, XS

]]
z

+ 1
2
λ

(
V

(i,j,k)

(2,1,1)
(t) − 1

2
T V

(i)

(1)
(t)V

(j,k)

(1,1)
(t)

)
〈Yi : 〈Yj : Yk〉〉

lift
z

.

(17)

The rationale to design ui(x, t) for system (14) is to set
f i(x) such that it stabilizes the state components that are
“directly controlled.” The inputs vi are chosen as zero-
average functions of t, e.g. a sin(ωt) + b cos(2ωt), where a
and b are to be designed in terms of z in order to render the
zero-section locally attractive, as exemplified in the next
section.

5. EXAMPLE: THE ECF.

In this section we illustrate the application of GVTF,
along with averaging techniques, to examine the possibility
of rendering the zero-section of TT

κ1 × TT
κ2 locally

attractive under the zero dynamics. Although stabilizing
only a subset, e.g. the zero-section, of the state manifold
may seem more relaxed an aim than stabilizing a point, it
should be kept in mind that the zero dynamics in the form
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(10) may not be accessible but at generic points. Consider
the 3-dimensional Extended Chained Form (ECF), a SMS
with state (x, ẋ) evolving on TR

3 ≃ R
6, given by:

ẍ1 = u1

ẍ2 = u2

ẍ3 = x2u1.

After relabeling state variables, it can be written as

ẋ = Sx + u1X
lift
1,x + u2X

lift
2,x, (18)

where Sx = x4 ∂/∂x1+x5 ∂/∂x2+x6 ∂/∂x3 is the geodesic
spray given by the Euclidean metric on R

3 and X lift
1,x =

∂/∂x4 + x2 ∂/∂x6, X lift
2,x = ∂/∂x5 are the control vector

fields on TR
3 ≃ R

6. These vector fields are left-invariant
provided TR

3 is endowed with the (tangent) Lie group
multiplication given by x · y = (x1 + y1, x2 + y2, x3 + y3 +
x2y1, x4 + y4, x5 + y5, x6 + y6 + x2y4 + x5y1). Since the set
{X1, X2} satisfies the LARC at e = 0 ∈ R

3, there exists
a transverse function near e, an instance of which is the
map f : T −→ R

3 given by

f(θ) =
(
ε sin(θ), ε cos(θ), 1

4ε2 sin(2θ)
)
, ε > 0. (19)

Note that by taking ε sufficiently small, f(T) may be made
to lie in an arbitrarily predefined neighborhood U of e. A
GTF g1 : T × T −→ R can be constructed by defining
g1(θ) = f(θ2) · f(θ1 + θ2)

−1 for θ = (θ1, θ2) ∈ T × T. In
the sequel we use ‘s’ and ‘c’ for ‘sin’ and ‘cos’ respectively.
Explicitly one has

g1(θ1, θ2) =
(
ε(s(θ1 + θ2) − s(θ2)), ε(c(θ1 + θ2) − c(θ2)),

ε2

4 (s(2θ2) + s(2θ1 + 2θ2))

− ε2

2 (s(2θ2 + θ1) + s(θ1))
)

.

It is readily verified that g1 is a GTF for (18). Con-

sider the auxiliary control system θ̈1 = u3, θ̈2 =
u4 on TT × TT. Define an error signal z = x ·

Tg1(θ, ω)
−1

, where ω = θ̇. Given a second-order vector
field, say Sd(z) = (z4, z5, z6,−z1 − z4,−z2 − z5,−z3 − z6),
by Proposition 3 there exists a unique feedback law
(u1(x, θ, ω, u4), u2(x, θ, ω, u4), u3(x, θ, ω, u4)) which sets the
error dynamics equal to ż = Sd(z). Thus, in closed-loop the
trajectories z(t) approach zero exponentially, which in turn
forces the state x(t) to approach Tg1(θ, ω) forcing the con-
figuration trajectories to ultimately enter a neighborhood
of e. The zero dynamics, however, must be analyzed to
determine the evolution of the fiber-coordinates. Moreover,
the trajectories should be made to converge to the zero-
section. The resulting controlled zero dynamics is given
by 


θ̇1

θ̇2

ω̇1

ω̇2



 =




ω1

ω2

Γ1(θ, ω)
0



 +




0
0

−2 + 2 c(θ1)
1



u4, (20)

where
Γ1(θ, θ̇) = −s(2θ1 + 2θ2) θ̇2

1 − 2 s(2θ1 + 2θ2)θ̇1θ̇2 − 2 s(θ1)θ̇1θ̇2

+2 s(θ1 + 2θ2)θ̇1θ̇2 − s(2 θ2)θ̇2
2 + 2 s(θ1 + 2θ2)θ̇2

2

−2 s(2θ1 + 2θ2)θ̇2
2 .

Consider an input of the form

u4(ω, t) = −k2ω2 + 1
τ
(α1,1s(t/τ) + α1,2c(t/τ) + · · ·

+αn,1s(n t/τ) + αn,2c(n t/τ)),
(21)

with k2 > 0. Computing the truncated expressions for
averaging, at least for n ≤ 4, the linearization of the
truncated first order average expression is of the form

ż1 = z3

ż2 = z4

ż3 = a1,1(z)α1,1
2 + a1,2(z)α1,2

2 + · · ·
+an,1(z)αn,1

2 + an,2(z)αn,2
2

ż4 = −k2z4,

where the terms ai,j are sums of sines and cosines of
functions of z1 and z2. Note, however, that it is impossible
to solve for α1,1 and α1,2 in terms of z if one wishes to
obtain, say, ż3 = −k1z3.

By examining next the truncated expression for second
order averaging, setting u4 as in (21), with n = 1, we
end up with a system that is no longer second-order.
To preserve the second-order nature, one may choose
u4 = −k2z4 + α1,2c(t/τ). However, the application of
such input yields ż3 = a1,2(z)α2

1,2 leading, in turn, to the
impossibility of designing α1,2 to make the zero-section
locally attractive.

The choice of a GTF may be essential to determine prop-
erties of the resulting zero dynamics, such as accessibility.
Therefore, alternative GTFs may yield a controlled zero
dynamics which allows one to achieve the required goals.
Consider, for instance, the GTF defined on T

3 given by

g(θ) =
(
εs(θ1/2) + εs(θ3), εc(θ1/2), 1

4
ε2s(θ1) + ε2s(θ2)

)
. (22)

The resulting controlled zero dynamics is

(
θ̇
ω̇

)
= S(θ,ω) +





0
0
0

4c(θ2)
1
0




u4 +





0
0
0

−4c(θ1/2)c(θ3)
0
1




u5,

(23)

where S(θ,ω) = (ω1, ω2, ω3, Γ(θ, ω), 0, 0) and Γ(θ, ω) =

−1/2 s(θ1)ω
2
1 − 4 s(θ2)ω

2
2 + 4 c(θ1/2)s(θ3)ω

2
3 .

The unlifted control vector fields of (23), X1,θ =
4 c(θ2) ∂/∂θ1 +∂/∂θ2 and X2,θ = −4 c(θ1/2)c(θ3) ∂/∂θ1 +

∂/∂θ3 satisfy the LARC at every point in T
3 except,

possibly, at points in a subset of measure zero. Hence,
depending to a great degree on the drift vector field S, we
may expect (23) to be accessible at generic points (θ, ω)
in TT

3.

The first order average truncate with control inputs of the
form

u4 = −k2z2 − k5z5 + 1/λα s(t/λ)

u5 = −k3z3 − k6z6 + 1/λβ s(t/λ) (24)

in (23) is given by

ż1 = z4

ż2 = z5

ż3 = z6

ż4 = a(z, α, β)
ż5 = −k2z2 − k5z5

ż6 = −k3z3 − k6z6,

where the term a(z, α, β) is given by

a(z, α, β) = − 1
2
s(z1)z4

2 − 4 s(z2)z5
2 + 4 c(z1/2)s(z3)z6

2

−4 k2z2c(z2) − 4 c(z2)k5z5 + 4 k3z3c(z1/2)c(z3)
+4 c(z1/2)c(z3)k6z6 − 4 α2s(z1)c2(z2)
−4 α β c(z2)s(z1/2)c(z3) + 8 α β c(z2)s(z1)c(z1/2)c(z3)
+4 β2s(z1/2)c2(z3)c(z1/2) − 4 β2c2(z1/2)c2(z3s(z1).

Observe that if k2, k5, k3 and k6 are strictly positive, then
the components of the state z2, z5, z3 and z6 converge to
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zero exponentially. Hence we may focus on components
z1 and z4 of the first order average truncate, under the
assumption that the remaining components equal zero,
namely

ż1 = z4

ż4 = − 1
2
s(z1)z2

4 − 4α2 s(z1) + 4αβ s(3/2z1) − β2 s(2z1).
(25)

It is not intuitively evident how to design α and β as
functions of z such that z4 converges to zero. However, we
may set them such that ż4 is quadratic w.r.t. z4, and such
that the term having the product αβ in (25) introduces
“dissipation.” For example, consider

α = −k1s(3/2z1) sgn(z4)z4,
β = k4z4,

(26)

with k1, k4 positive. The closed-loop zero dynamics (23)
derived from the time-varying feedback given by (24) and
(26) turns out to be locally Lipschitz w.r.t. z, ensuring
the local existence and uniqueness of trajectories. Nu-
merical simulations with appropriately fixed parameters
λ, k1, . . . , k6, suggest that the zero-section is locally at-
tractive. However, at present, we have no proof of the
attractiveness of the zero-section.

Furthermore, numerical simulations for the compound sys-
tem with control feedback (u1, u2, u3)(z, θ, ω, u4, u5) de-
signed using the generalized vertically transverse function
associated with (22), and (u4, u5)(z, t) designed by means
of high-order averaging in equations (24) and (26) suggest
that the zero-section is locally attractive. Indeed, the sim-
ulation shown in the figure below is representative of the
qualitative behavior exhibited by the compound system
with different initial conditions. As depicted, the config-
uration components seem to enter a prescribed bounded
neighborhood of e whereas the velocities seem to vanish
asymptotically.
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6. CONCLUSIONS.

This paper, reporting ongoing research, arises as an at-
tempt to further our program to apply vertically transverse
functions for control of (critical) underactuated mechani-
cal systems. In particular, our goal is to introduce dissi-
pation in a system which, under appropriate conditions,
presents an ultimately oscillatory behavior. If this goal is

accomplished, the target trajectories exhibit a behavior
that enforces asymptotic vanishing of their velocity coor-
dinates, a desirable feature in the control of mechanical
systems. The problem is formulated as that of rendering
a compact subset (the zero-section) of the auxiliary state
manifold locally attractive. Given the nature of the control
objective and the applicable obstructions, the solution,
if any, calls for rather sophisticated techniques such as
time-varying feedback. Our approach is based on the in-
troduction of additional inputs for the auxiliary system,
thanks to the use of generalized (vertically) transverse
functions, followed by an application of high-order averag-
ing techniques. The general problem remains to be solved,
nonetheless numerical simulations support our conjecture
that an appropriately chosen generalized vertically trans-
verse function, coupled with the design of the extra control
inputs for the zero dynamics via high-order averaging, may
derive in the asymptotic vanishing of the velocities and
therefore in practical configuration stabilization for a class
of SMS.
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