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Abstract: We propose a distributed consensus algorithm for multi-agent systems. In contrast to the
standard consensus algorithm that relies on only current states, the proposed algorithm uses both current
states and outdated states stored in memory. The proposed algorithm is analyzed under an undirected
communication graph. It is shown that the proposed algorithm converges faster than the standard
consensus algorithm while requiring identical maximum control effort if the outdated states are chosen
properly. Simulation results demonstrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Autonomous vehicles have received significant attention due to
their potential applications in both civilian and military sectors.
The vehicles can replace human beings in various dangerous
environments such as in hazardous chemical factories, deep
sea, coal mining, etc. Even though autonomous vehicles can
perform well when executing a solo task, multiple autonomous
vehicles can perform even better through cooperation and coor-
dination.

As a distributed strategy to multi-vehicle cooperative control,
consensus algorithms have received significant attention re-
cently (see Ren et al. [2007] and references therein). Consen-
sus algorithms rely on neighbor-to-neighbor information ex-
change. Through updating the information states received from
its neighbors, each vehicle responds to the deviations between
its state and its neighbors’ states. With proper communication
among all vehicles, their information states will converge to a
common value. Examples of information states include posi-
tions, velocities, orientations, and phases.

In Jadbabaie et al. [2003], a nearest neighbor rule is analyzed in
a multi-agent consensus context under an undirected commu-
nication graph. Olfati et at. [2004] studies average consensus
problems over a directed communication graph. In Moreau
[2005] and Ren et al. [2005], the results in Jadbabaie et al.
[2003] are extended to a directed communication graph. Re-
cent research also includes extensions of consensus algorithms.
For example, in Jin et al. [2006], the author considers multi-
hop relay in consensus problems. The control input of each
agent depends not only on its neighbors’ states, but also on its
neighbors’ neighbors’ states. By introducing more information
with second hop, Jin et al. [2006] demonstrates that the consen-
sus speed is improved. However, the tradeoff for introducing

⋆ This work was supported in part by a National Science Foundation CAREER

Award (ECCS-0748287), the Utah Water Research Laboratory, and the Com-

munity/University Research Initiative.

second-hop information is that extra communication and larger
control effort are required.

In this paper, we introduce a distributed consensus algorithm
that uses both current states and outdated states stored in
memory. The motivation is that 1) outdated state information
is within any control system and deserves consideration, and
2) memory is very cheap. In contrast, the standard consensus
algorithm (see Ren et al. [2007] and references therein) relies
on only current states. While there is a vast literature on
consensus algorithms with delays (see references surveyed in
Ren et al. [2007]), the delays are considered a negative factor
and the focuses there are usually on how the delays affect
the stability of the consensus algorithms. Compared with the
algorithm in Jin et al. [2006], our algorithm does not require
second hop communication. The difference between this paper
and other work in time-delay systems (see Chen et al. [1994],
Olgac et al. [2002], Gu et al. [2003]) is that outdated state
information is considered as a positive factor and is, therefore,
applied to multi-agent consensus problems while Chen et al.
[1994], Olgac et al. [2002], Gu et al. [2003] consider the
effect of time delay on stability of a single system. We will
show that with both current states and extra outdated states
stored in memory, the proposed algorithm converges faster
than the standard consensus algorithm while requiring identical
maximum control effort when the outdated states are chosen
properly.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce definitions and background. In Section 3,
we introduce a distributed consensus algorithm using both cur-
rent and outdated states and provide convergence analysis. Sim-
ulation results are given in Section 4 while Section 5 contains
the conclusion.
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2. DEFINITIONS AND BACKGROUND

Suppose that there are n agents in a team. We model infor-
mation exchange among the n agents by an undirected graph
G = (V, W ), where V = {v1, v2, . . . , vn} and W ⊆ V 2

represent the node set and the edge set, respectively. The edge
(vi, vj) ∈ W denotes that both agent i and agent j can ac-
cess each other’s information. All the neighbors of agent i are
denoted as N(i) = {vj |(vj , vi) ∈ W . A path is a sequence
of edges of the form (vi1 , vi2), (vi2 , vi3), . . .. Graph G is con-
nected if there is a path between every pair of distinct agents.

The adjacency matrix A = [aij ] ∈ IRn×n associated with
graph G is defined as aij > 0 if (vj , vi) ∈ W and aij = 0
otherwise. Because G is undirected, A is symmetrical. The
Laplacian matrix L = [ℓij ] ∈ IRn×n associated with G is
defined as

ℓij =







∑

j∈N(i)

aij , i = j,

−aij , i 6= j.

(1)

Because G is undirected, L is symmetric positive semidefinite
and has a zero eigenvalue with an eigenvector 1n ∈ IRn, where
1n = [1, 1, . . . , 1]T . If G is connected, then L has a simple zero
eigenvalue and all the other eigenvalues are positive (see Chung
[1997]).

In this paper, we will consider agents with single-integrator
dynamics given by

ξ̇i(t) = ui(t), i = 1, . . . , n, (2)

where ξi(t) ∈ IR and ui(t) ∈ IR represent, respectively,
the state of the ith agent and the associated control input. A
standard consensus algorithm for (2) is

ui(t) = −
∑

j∈N(i)

aij [ξi(t) − ξj(t)], (3)

where aij is the (i, j) entry of adjacency matrix A.

Using (3), (2) can be written in matrix form as

Ξ̇(t) = −LΞ(t),

where Ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]T ∈ IRn and L is the
corresponding Laplacian matrix defined in (1).

Consensus is reached among the n agents if for all ξi(0),
ξi(t) → ξj(t) as t → ∞. Using (3), consensus is reached if
and only if graph G is connected (equivalently, L has a simple
zero eigenvalue and all the other eigenvalues are positive).

3. CONSENSUS ALGORITHM USING BOTH CURRENT
AND OUTDATED STATES

In this section, we will introduce and analyze a consensus
algorithm using both current and outdated states. We will focus
on how this algorithm can affect the performance, especially the
convergence speed and the maximum control effort, in contrast
to the standard algorithm (3).

We propose a consensus algorithm that uses both current and
outdated states as

ui(t) = −
∑

j∈N(i)

aij{[ξi(t)− ξj(t)] + [ξi(t− τ)− ξj(t− τ)]},

(4)
where ξi(t) is the current state of the ith agent and ξi(t − τ) is
the outdated state stored in memory, where τ > 0 characterizes
how old the state is. The larger τ is, the more outdated ξi(t−τ)

is. In the following, we assume that ξi(t − τ) , ξi(t) for
0 ≤ t < τ . In contrast to (3), (4) introduces extra outdated
states stored in memory.

To form a common basis for comparison, we will compare (4)
with

ui(t) = −
∑

j∈N(i)

aij{[ξi(t) − ξj(t)] + [ξi(t) − ξj(t)]}. (5)

In essence, we have replaced one term ξi(t) − ξj(t) in (5) with
ξi(t − τ) − ξj(t − τ) to get (4).

3.1 Single-agent Case

In this subsection, we focus on the single-agent case. The
results here will serve as a basis for analysis in the multi-agent
case. We consider a single agent system with single-integrator
dynamics given by

φ̇(t) = w(t), (6)

where φ ∈ IR is the state and w ∈ IR is the control input, and
compare the following two control inputs:

w(t) = 2aφ(t), (7)

w(t) = aφ(t) + aφ(t − τ), (8)

where a < 0 and τ > 0. We assume that φ(t − τ) , φ(t) for
0 ≤ t < τ . The difference between (7) and (8) is that φ(t) in (7)
is partly replaced with φ(t − τ) in (8). In other words, (8) uses
both current and outdated states while (7) uses only the current
state. If (8) achieves larger convergence speed and requires
no larger control effort than (7), we say that (8) achieves
better performance than (7). As shown below, while (8) cannot
outperform (7) for any τ > 0, (8) outperforms (7) when τ is
chosen properly.

Before moving on, we need the following lemma.

Lemma 3.1. All closed-loop poles of system (6) using control
input (8) are on the open left half plane if τ > 0. In addition, the
real parts of all these poles are smaller than 2a if τ satisfies τ ∈
(0, ζ), where ζ is the minimal positive real number satisfying

cos aζ
√

e−4aζ − 1 = e2aζ .

Proof: The Laplace transform of system (6) using (8) can be
written as

sφ(s) − φ(0) = aφ(s) + ae−sτφ(s),

where φ(s) is the Laplace transform of φ(t) and φ(0) is the
initial condition of φ(t). The closed-loop poles therefore satisfy

s − (1 + e−sτ )a = 0. (9)

Let s = x + yi, where x ∈ IR and y ∈ IR are, respectively, the
real and imaginary parts of s, then we can get

x = a[1 + e−τx cos(yτ)], (10)

y = −ae−τx sin(yτ). (11)

From (10) and (11), we have

(x − a)2 + y2 = a2e−2τx. (12)

Suppose that x > 0, then it follows that |e−τx cos(yτ)| < 1,
which implies 1+e−τx cos(yτ) > 0. Then it follows from (10)
that x = a[1+e−τx cos(yτ)] < 0 because a < 0, which results
in a contradiction. Similarly, suppose that x = 0, then we have
y = 0 according to (12). Therefore, it follows from (10) that
x = a[1 + e−τx cos(yτ)] = 2a < 0, which also results in
contradiction. Therefore, we conclude that x < 0 for all τ > 0.
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Note that (9) 1 has the property that each root is continuous
with respect to τ . Also note that

dx

dτ
|τ=0 = −ae−τx(τ

dx

dτ
+ x) cos(yτ)|τ=0

− ae−τx(y + τ
dy

dτ
) sin(yτ)|τ=0

= −ax < 0,

where we have used the fact that x < 0 from the first statement
of the lemma. The continuity of dx

dτ
with respect to τ implies

that there exists ε > 0 such that dx
dτ

≤ 0 for all 0 < τ ≤ ε.
Note that x = 2a when τ = 0. Also note that x is a continuous
function of τ , it follows that x < 2a when 0 < τ < ζ, where
ζ is the minimal positive real number such that x(τ)|τ=ζ = 2a.
Equivalently, ζ is the minimal positive real number satisfying

2a = a[1 + e−2aζ cos(yζ)], (13)

y = −ae−2aζ sin(yζ). (14)

From (13), we have cos(yζ) = e2aζ , then (14) becomes

y = ±ae−2aζ
√

1 − e4aζ . (15)

Combining (13) and (15), we get cos aζ
√

e−4aζ − 1 = e2aζ .

Note that the closed-loop pole of system (6) using (7) is 2a.
From Lemma 3.1, we can see that the closed-loop poles of
system (6) using (8) are always on the left hand side of the
closed-loop pole of system (6) using (7) when τ ∈ (0, ζ). As a
result, system (6) using control input (8) converges faster than
system (6) using control input (7). The following lemma will
show that the maximal control effort using (8) is identical to
that using (7).

Lemma 3.2. The maximum control effort using (8) is identical
to that using (7). In particular, maxt≥0 |w(t)| = |w(0)| =
2|aφ(0)|.

Proof: For system (6) using control input (7), we know that the
state |φ(t)| exponentially decays because the only closed-loop
pole is 2a < 0, which implies that maxt≥0 |φ(t)| = |φ(0)|.
Therefore, it follows that maxt≥0 |w(t)| = maxt≥0 2|aφ(t)| =
2|aφ(0)|.
For system (6) using control input (8), there are infinity number
of closed-loop poles. However, all poles are on the open left
half plane when τ > 0 as shown in Lemma 3.1. Therefore, the
state will decay with possible oscillations. For 0 ≤ t < τ , we

get w(t) = 2aφ(t) because φ(t − τ) , φ(t) for 0 ≤ t < τ .
Therefore, |φ(t)| will exponentially decay, which implies that
|w(t)| = 2|aφ(t)| ≤ 2|aφ(0)| for 0 ≤ t < τ . For t = τ , we
have φ(t − τ) = φ(0), which implies that |w(τ)| = |aφ(τ) +
aφ(0)| ≤ |aφ(τ)| + |aφ(0)| ≤ 2|aφ(0)|. For t > τ , because
all the closed-loop poles of system (6) using (8) are on the
open left half plane, it follows that |φ(t)| < |φ(τ)| and |φ(t −
τ)| < |φ(0)| for t > τ , which implies that |w(t)| < |w(τ)|
for t > τ . Combing the above arguments, we can see that
maxt≥0 |w(t)| = 2|aφ(0)| using (8).

To illustrate, we compare (7) with (8). Let a = −1 and τ =
0.25 s in. Also let φ(0) = 4. The states and control inputs
using (7) and (8) are shown in Figs. 1 and 2, respectively. From
these two figures, we can see that the state using (8) converges
to zero faster than the state using (7). In addition, we can see
that using either (7) or (8), maxt≥0 |w(t)| = 2|aφ(0)| = 8.

1 Equation (9) is called quasipolynomial.
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Fig. 1. States and control effort using (7)
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Fig. 2. States and control effort using (8)

From Lemmas 3.1 and 3.2, we can see that the convergence
speed using (8) is larger than that using (7) while the maximal
control effort remains unchanged. By utilizing both outdated
and current state information, we can achieve better perfor-
mance.

3.2 Multi-agent Case

In this subsection, we will analyze consensus algorithm (4)
under an undirected communication graph and compare algo-
rithm (4) with algorithm (5) in terms of convergence speed and
maximum control effort.

Before moving on, we need the following lemma:

Lemma 3.3. Kim et al. [2006] Suppose that the undirected
communication graph is connected. Let λi be the ith eigenvalue
of L, where L is the Laplacian matrix defined in (1), where
λn ≥ λn−1 ≥ · · · ≥ λ2 > λ1 = 0. The convergence speed (i.e.
how fast consensus is reached) of algorithm (3) (respectively,
algorithm (5)) is determined by λ2 (respectively, 2λ2).
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Theorem 3.1. Suppose that the undirected communication graph
is connected. Let λi be the ith eigenvalue of L as in Lemma 3.3.
Using (4), consensus is reached for any τ > 0. In addition,
algorithm (4) reaches consensus faster than algorithm (5) if
τ satisfies τ ∈ (0, ζ), where ζ = mini=2,...,n ζi, where
ζi, i = 2, . . . , n, is the minimal positive scalar satisfying

cos λiζi

√
e4λiζi − 1 = e−2λiζi .

Proof: Using (4), (2) can be rewritten in matrix form as

Ξ̇(t) = −LΞ(t) − LΞ(t − τ), (16)

where Ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]T ∈ IRn and L ∈ IRn×n

is the corresponding Laplacian matrix. The Laplace transform
of (16) is

sΞ(s) − Ξ(0) = −LΞ(s) − e−sτLΞ(s),

which can be rewritten as

(sIn + L + e−sτL)Ξ(s) = Ξ(0), (17)

where Ξ(0) = [ξ1(0), ξ2(0), . . . , ξn(0)]T ∈ IRn, and In ∈
IRn×n is the identity matrix. The closed-loop poles of (2)
using (4) satisfy

det[sIn + (1 + e−sτ )L] = 0. (18)

Noting that −λi denotes the ith eigenvalue of −L, it follows
that

det(sIn + L) =
n

∏

i=1

(s + λi). (19)

By comparing (18) and (19), we know that the closed-loop
poles of (2) using (4) satisfy

det[sIn + (1 + e−sτ )L] =
n

∏

i=1

[s + (1 + e−sτ )λi] = 0.

As a result, the closed-loop poles of (2) using (4) satisfy

s + (1 + e−sτ )λi = 0, i = 1, . . . , n. (20)

There may exist multiple roots of (20) corresponding to each
λi. Noting that λ1 = 0, it follows that the unique root of (20)
corresponding to λ1 is zero. Note that −λi < 0, i = 2, . . . , n.
According to Lemma 3.1 with −λi playing the role of a, it
follows that the roots of (20) corresponding to λi, i = 2, . . . , n,
are on the open left half plane. Thus (20) has a simple root
at zero and all the other roots are on the open left half plane.
Noting that L1n = 0, it follows that ξi = ξj is an equilibrium
of (2) using (4). Therefore, it follows that ξi(t) → ξj(t) as
t → ∞. That is, consensus is reached using (4) for any τ > 0.

Similarly, according to Lemma 3.1 with −λi playing the role
of a, if τ ∈ (0, ζi), i = 2, . . . , n, then the real parts of all
roots of (20) corresponding to λi, i = 2, . . . , n, are smaller
than −2λi, i = 2, . . . , n. Therefore, if τ ∈ (0, ζ), where
ζ = mini=2,...,n ζi, then the real parts of all roots of (20) are
smaller than −2λ2. Noting that the convergence speed of (2)
using (5) is determined by 2λ2 according to Lemma 3.3, we
conclude that algorithm (4) converges faster than algorithm (5).

Similar to Lemma 3.2, we have the following lemma for maxi-
mum control effort.

Lemma 3.4. The maximum control effort using (4) is iden-
tical to that using (5). In particular, maxi maxt≥0 |ui(t)| =
maxi |ui(0)|.

Proof: Differentiating (5), gives

u̇i(t) = −
∑

j∈N(i)

2aij(ξ̇i(t) − ξ̇j(t)),

which can be written as

u̇i(t) = −
∑

j∈N(i)

2aij(ui(t) − uj(t)). (21)

Equation (21) can be written in matrix form as

U̇(t) = −2LU(t), (22)

where U(t) = [u1(t), u2(t), · · · , un(t)]T ∈ IRn. The solution
to (22) is given as U(t) = e−2LtU(0), where e−2Lt is a row-
stochastic matrix (see Ren et al. [2005]). It thus follows that
‖U(t)‖∞ ≤

∥

∥e−2Lt
∥

∥

∞
‖U(0)‖∞ = ‖U(0)‖∞, where we have

used the fact that the infinity norm of a row-stochastic matrix is
one.

Similarly, differentiating (4), gives

u̇i(t) = −
∑

j∈N(i)

aij{[ui(t)−uj(t)]+[ui(t−τ)−uj(t−τ)]},

which can be written in matrix form as

U̇(t) = −LU(t) − LU(t − τ). (23)

Note that U(t − τ) , U(t) for 0 ≤ t < τ . Thus (23)

becomes U̇(t) = −2LU(t) for 0 ≤ t < τ , which implies
that ‖U(t)‖∞ ≤ ‖U(0)‖∞ for 0 ≤ t < τ . When t = τ ,
ui(τ) = −

∑

j∈N(i) aij{[ξi(τ) − ξj(τ)] + [ξi(0) − ξj(0)]},

which implies that U(τ) = 1
2 [limt→τ U(t)+U(0)]. Therefore,

it follows that ‖U(τ)‖∞ = 1
2 ‖limt→τ U(t) + U(0)‖∞ ≤

1
2 ‖limt→τ U(t)‖∞ + 1

2 ‖U(0)‖∞ ≤ ‖U(0)‖∞. Noting that
consensus is achieved using (4), we conclude that ‖U(t)‖∞ ≤
‖U(τ)‖∞ when t > τ . Therefore, it follows that ‖U(t)‖∞ ≤
‖U(0)‖∞ for t ≥ 0, i.e., maxi maxt≥0 |ui(t)| = maxi |ui(0)|.

From Lemma 3.4 and Theorem 3.1, we can see that using
outdated states, algorithm (4) reaches consensus faster than
algorithm (5) while requiring identical maximum control effort
if the outdated states are chosen properly. The above result
demonstrates that outdated states are meaningful if they can be
used properly. Moreover, algorithm (4) proposed in the paper
is quite simple with the only requirement that τ be determined
beforehand.

4. SIMULATION RESULTS

In this section, we compare (4) and (5) in simulation. We
consider a team of four agents. The communication topology
among the four agents is shown in Fig. 3. The corresponding
Laplacian matrix is chosen as

L =
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Fig. 3. Multi-agent undirected communication topology.

We let ξi(0) = 6 − 2i, i = 1, . . . , 4. Figs. 4, 5, and 6 show,
respectively, the results using (4) with small τ = 0.12 s, (5),
and (4) with large τ = 0.8 s. We can see that consensus is
achieved faster using (4) with τ = 0.12 s than using (5) while
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Fig. 4. States and control inputs using (4) with τ = 0.12 s.
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Fig. 5. States and control inputs using (5).

Table 1. Comparison between convergence time

Algorithm within 5% of within 2% of

final equilibrium final equilibrium

(4) with τ = 0.12 s 0.53 s 0.61 s

(5) 0.85 s 1.04 s

(4) with τ = 0.8 s 7.12 s 9.36 s

consensus is achieved more slowly using (4) with τ = 0.8 s
than using (5). The maximum control effort is 14.4 in all cases.

Table 1 shows the convergence times using (4) with τ = 0.12
s, (5), and (4) with τ = 0.8 s. We can see that using both
current and outdated states improves the convergence speed for
consensus convergence if τ is below a certain bound defined
explicitly in Theorem 3.1. However, when the delay is too large,
using both current and outdated states has an adverse effect on
the converge speed.
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Fig. 6. States and control inputs using (4) with τ = 0.8 s.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a distributed consensus al-
gorithm utilizing both current and outdated states. We have
shown that the proposed consensus algorithm improves the con-
vergence speed for consensus convergence without increasing
the maximal control effort if the outdated states are chosen
properly. Simulation results have shown the effectiveness of
the proposed algorithm. Future work includes finding optimum
outdated states and considering agents with dynamic models.
In addition, we will consider an algorithm

ui(t) = −
∑

j∈N(i)

aij{[ξi(t) − ξj(t − σj)]

+ [ξi(t − τ) − ξj(t − σj − τ)]},
where σj denotes the delay caused by transmitting information
from agent j to agent i and τ still represents how outdated the
state is.
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