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Abstract: This paper reports a finite step scheme for the computation of near-optimal control
of general nonlinear control systems. It is developed based on the first order estimation of
the system and the associated adjoint variational equation. The search is an extension of
the standard steepest descent method to the functional case based on the variation of the
Hamiltonian function H. Convergence analysis are included to show this scheme does converge
to a desired admissible control in finite steps. Consistency of the approximation of the associated
adjoint equation is also discussed. A linear quadratic control example and some numerical
simulations are also included for illustration purpose.

1. INTRODUCTION

There have been quite a lot of research conducted to ad-
dress the computation of optimal control of deterministic
systems since 1960. Among them, the well-known Maxi-
mum Principle and dynamic programming naturally lead
to the numerical solutions to the equations obtained by
these powerful theoretical results. However, such solution
is not satisfactory because their associated convergence is
for the resulted equations and not directly pointing to the
optimal control problem itself.

An early historical survey has been done by Polak in
Polak [1973]. It summarizes the computational methods
in Hilbert space and the associated gradient method and
Newton-Raphson method. With the Frechet differential,
the gradient of the functional to be minimized can be
shown to be the partial derivative of the Hamiltonian
function. Similar methods is reported again recently in
Roberts [2002], where the primary and adjoint equations
are combined together to form a 2-D system.

Parametrization method, in corporate with wavelets or
spline functions, has been a useful tool for numerical
computation of optimal control. See Teo et al. [1992] and
references cited therein. The control is first parameterized
using a class of spline function, wavelets, or piece-wise
linear functions as the simplest case. Then, the optimal
control problem is converted into the nonlinear optimiza-
tion problem for these parameters with constraints. By
increasing the number of the function basis used in the
parametrization, the resulted controls form a sequence.
This sequence can be shown to be convergent weakly to
the optimal control.

In Schwartz and Polak [1996], an epigraphic convergence
concept is defined as a frame to analyze the approximation
of problems in a Hilbert space with a sequence of problems
in finite dimensional subspaces of this Hilbert space. To
some aspects, this approach can be considered as an
extension or abstraction of the parametrization method.

The epigraphic method is naturally extended to handle
the distributed system in Pironneau and Polak [2002].

Recently, near-optimality for optimal control problem has
attracted attention. See Zhou [1998] for details. Among
many advantages claimed in these articles, the solution
to near-optimal control is usually easier to obtain and of
better properties such as smoothness.

In Jiang [2005], a steepest descent algorithm is proposed
for the computation of stochastic near-optimal control.
Here, the similar approach is proposed for deterministic
near-optimal control. Comparing to existing results for
numerical computation of optimal control, the proposed
approach has several advantages. First, the algorithm is
proposed for near-optimal solution instead of the optimal
one. This leads to a finite-step algorithm. By using a
progressive precision sequence, the proposed algorithm can
also be used to compute the optimal control. Second, for
most algorithms available for optimal control computa-
tion, only week convergence property is guaranteed. Let
along the convergence rate. In our proposed algorithm,
the error bound is explicitly obtained, which guarantees
the convergence of the cost value. Third, as a small but
meaningful variation of the steepest descent algorithm, the
stepsize in the proposed algorithm can be time-varying,
where that of all available versions are constant. This
variation equips the algorithm more flexibility. Due to the
length limit, some theoretical proofs to results in this paper
are omitted. Interested reader may contact the author for
details.

2. PROBLEM STATEMENTS AND PRELIMINARIES

Let us first introduce notations that will be used in this
paper:

u(·) : the m-dimensional control input.
Lebesgue measurable from [t0, T ] ⊂ � to
a given compact set Γ ⊂ �m. The bound
of Γ is also denoted as Γb.

Uad[t0, T ] : the set of admissible controls.
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M� : the transpose of matrix or vector M .
| a | : the norm of a vector or a matrix a.

It is the sum of absolution value of its
components.

∂ρ

∂z
: the partial derivative of a vector function

ρ with respect to a vector variable z.
More specifically,

(
∂ρ
∂z

)
i,j

= ∂ρi

∂zj
.

ai : the i-th row vector of a matrix a.
a·i : the i-th column vector of a matrix a.

(aij) : A matrix that its (i, j)-th element is aij .

Consider the following nonlinear control system:{
ẋ(t) = f(t, x(t), u(t)),

x(t0) = x0,
(1)

where f is measurable in (t, x, u). The objective of optimal
control is to find the admissible control to minimize the
cost function given by:

J(u(·)) =

T∫
t0

L(t, x(t), u(t))dt + h(x(T )), (2)

where L is a measurable function in (t, x, u) and h is a
function of x(T ). If the time interval and the initial state
value of considering can change, J is also a function of
t0, x0 and T. We also let the optimal cost, usually called
value function, be denoted as V or V (t0, x0, T ).

We say that an admissible control uε is near optimal if
the value of the corresponding cost is near the value of
V . More specifically, for given ε > 0, uε is ε-optimal if
| J(u(·)) − V |≤ ε. In some cases it is not easy to justify
the real meaning of near-optimal for one single fixed ε.
We consider a positive sequence converges to zero, say,
E := {εn} → 0+. A sequence of admissible controls {un(·)}
is called E-optimal if | J(un) − V |≤ εn. In this study, we
need the following assumption:
Assumption 1. (A1). f and L are measurable in (t, x, u)
and continuously differentiable in x and u. (A2). h is
continuously differentiable. (A3). There is a constant
C such that the following Lipschitz type conditions are
satisfied:

| ρ(t, x, u) |≤ C(1+ | x |),
| ρ(t, x, u) − ρ(t, x′, u′) | + | ∂ρ

∂x
(t, x, u) − ∂ρ

∂x
(t, x′, u′) |

+ | ∂ρ

∂u
(t, x, u) − ∂ρ

∂u
(t, x′, u′) |≤ C(| x − x′ | + | u − u′ |),

| h(x) |≤ C(1+ | x |),
| h(x) − h(x′) | + | ∂h

∂x
(x) − ∂h

∂x
(x′) |≤ C | x − x′ |,

where ρ = f, L.

In the proof of the proposed algorithm, we also need the
following result borrowed from Ekeland [1974]:
Lemma 1. (Ekeland’s Principle) Let (S, d) be a complete
metric space and ρ(·) : S → �1 be lower-semicontinuous
and bounded below. For ε ≥ 0, if uε ∈ S satisfies ρ(uε) ≤
infu∈S ρ(u)+ ε. Then, for any λ > 0, there exists a uλ ∈ S
such that

ρ(uλ)≤ ρ(uε), d(uλ, uε) ≤ λ,

ρ(uλ)≤ ρ(u) +
ε

λ
d(uλ, uε),

where d(uλ, uε) is the distance in the metric space.

3. ADJOINT EQUATION, MAXIMUM PRINCIPLE,
AND CONDITIONS TO NEAR-OPTIMALITY

For a given admissible control input ū(t), let the trajectory
of the equation (1) be denoted as x̄(t). Then, the first
order variational equation for the optimal control problem
defined by (1) and (2) are defined as the following differ-
ential equation with initial condition:

ẏ1(t) =
∂f

∂x
(t, x̄(t), ū(t))y1(t)

+f(t, x̄(t), u(t)) − f(t, x̄(t), ū(t)) (3)

y1(t0) = 0, (4)

This equation is closely related to the first order expansion
of the cost function (2). More specifically, let the cost be
defined as:

J1(u(·)) = E[

T∫
t0

∂L

∂x
(t, x̄(t), ū(t))y1(t)dt

+
∂h

∂x
(x̄(T ))y1(T )], (5)

The adjoint equation associated with the first order solu-
tion is given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗ(t) = −∂f

∂x
(t, x̄(t), ū(t))�p(t)

−∂L

∂x
(t, x̄(t), ū(t)),

p(T ) =
∂h

∂x
(x̄(T )).

(6)

By using the integral by part method, the following
relationships can be established:

J1(u(·)) =

T∫
t0

p(t)�[f(t, x̄(t), u(t))

−f(t, x̄(t), ū(t))]dt. (7)

Define the Hamiltonian function H as:

H(t, x, v, p) = L(t, x, v) + p�f(t, x, v). (8)

Then, the so-called Maximum Principle and the major
results in Zhou [1998] can be summarized by the following
theorem:
Theorem 1. Assume that conditions in Assumption 1 in
previous section are all satisfied.
(1). The necessary condition for an admissible control ū(t)
minimizing the cost function J is that ū(·) minimizes the
functional

∫ T

t0
H(t, x̄(t), u(t), p̄(t))dt, where x̄ is the system

trajectory corresponding to ū.
(2). There exists a constant C1 > 0, such that an admis-
sible control ū(t) and its corresponding solution x̄(t) is
ε-optimal. Then, the following inequality is satisfied:
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T∫
t0

H(t, x̄(t), ū(t), p̄(t))dt ≤

inf
u∈Uad[t0,T ]

T∫
t0

H(t, x̄(t), u(t), p̄(t))dt + C1ε
1/2 (9)

(3). There exists a constant C1, which is related to the
Lipschitz constant C, the time interval [t0, T ] and the
value range Γ of admissible controls but independent
of ε. Assume the Hamiltonian function H(t, x(t), u(t), p)
defined in (8) and the function h(x) in the terminal cost of
the cost function given by (2) are convex in with respect
to t and x, respectively. If for some ε > 0, there is an
admissible control ū such that the inequality (9) holds.
Then, J(ū(·)) ≤ infu∈Uad[t0,T ] J(u(·)) + C2ε

1
4 .

In the proof of the result corresponding to (3) of Theorem
1 in Zhou [1998], one can see that ∂H

∂u to be small is a result
of the inequality (9). In this paper, whether

∫ T

t0
| ∂H

∂u | dt

is small is the major criterion that our scheme based on.
For this concern, we need the following theorem:
Theorem 2. Assume that conditions in Assumption 1 in
previous section are all satisfied.
(1). There exists a constant C2 > 0 independent of ε,
such that, if uε(·) is an ε-optimal control, the following
estimation holds:

T∫
t0

| ∂H

∂u
(t, xε(t), uε(t), pε) | dt < C2ε

1
4 . (10)

(2). Assume the Hamiltonian function H defined in (8)
and the function h(x(t)) in the terminal cost of the cost
function given by (2) are convex. Then, there is a constant
C3 > 0 independent of ε such that for any ε > 0, as long
as an admissible control ū(·) satisfies

T∫
t0

| ∂H

∂u
(t, x̄, ū, p̄) | dt < C3ε, (11)

ū is guaranteed to be an ε1/2-optimal control.

The proof to this theorem is omitted to save space.

4. A FUNCTIONAL STEEPEST DESCENT SCHEME

Now we are ready to present a finite step computation
scheme for the near-optimal control of the problem given
by (1) and (2). More specifically, given a small positive
real number ε, an ε-optimal solution can be obtained in
finite step using the algorithm proposed in the subsequent
paragraph. However, the convergence proof is arranged in
next section for the ease of reading.

Functional Steepest Descent Algorithm
Initial step: Start with an arbitrarily selected admissible
control ū(·).
Updating rule:
(1) Calculate x̄(t) according to the equation (1) .
(2) Solve the first order adjoint equation (6) for p̄(t).
(3) Update ū(t) with

ū(t) − λ(t)
∂H

∂u
(t, x̄(t), ū(t), p̄(t)), (12)

where λ(t) is a positive scaler function bounded by a some
constant Cū(·).

An example: Linear Quadratic Gaussian Control
Consider the following problem:

{
ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = x0,
(13)

J(u(·)) =
1

2

T∫
t0

[< L(t)x(t), x(t) > +
1

2
< Gx(T ), x(T ) >

+2 < M(t)x(t), u(t) > + < N(t)u(t), u(t) >]dt, (14)

where L,M, N,G are matrices of appropriate dimensions,
and < ·, · > denote the inner product in Euclidean space.

Now the adjoint equations become:{
ṗ(t) = −

{
A�(t)p(t) +

1

2
L(t)x(t) + u�(t)M(t)

}
p(T ) = Gx(T ),

(15)

The Hamiltonian function H is the following:

H(t, x, u, p) =
1

2
< L(t)x(t), x(t) > + < M(t)x(t), u(t) >

+
1

2
< N(t)u(t), u(t) > +p�(t)[A(t)x(t) + B(t)u(t)]. (16)

It can be calculated that:

∂H(t, x, u, p)

∂u
= M(t)x(t) + N(t)u(t) + B�(t)p(t). (17)

Apparently, the proposed scheme is a normal iterative
method to solve the equation:

M(t)x(t) + N(t)u(t) + B�(t)p(t) = 0

for u.

Considering the special case where M = 0, let the sym-
metric matrix P (t) is defined by:

−Ṗ (t) = P (t)A(t) + A�(t)P (t)

−P (t)B(t)N−1(t)B�(t)P (t) + L(t).
Then, at the equilibrium solution where

u(t) = −N−1(t)[M(t)x(t) + B�(t)p(t)],

it can be easily checked by simple computation that
p(t) = P (t)x(t) satisfies the adjoint equation (15). This is
a reminiscence to the classical results given in [Anderson
and Moore, 1989, Pages 20-26].

5. CONVERGENCE ANALYSIS

In this section, technical results of the convergence analysis
will be given. Consider two consecutive controls uk(·),
and uk+1(·) in the iterative computing process using
scheme in the Functional Steepest Descent Algorithm. We
will analyze the convergence of that algorithm through
evaluating the difference J(uk+1(·)) − J(uk(·)). First, we
will see how well the first-order approximation can be used
to estimate the difference. To this end, the following lemma
holds:
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Lemma 2. For any two generic consecutive controls calcu-
lated based on the updating rule in the algorithm, assume
the step size is chosen such that

∫ T

t0
| λk(t) |2 dt ≤ 1. The

following estimation holds:

|xk+1(t) − xk(t) − y1(t)|2 ≤ C5(

t∫
t0

| λk(τ) |2 dτ)2,

∀t ∈ [t0, T ], (18)

where y1(t) is the first-order approximation defined by
the equations (3).

The proof to this lemma is omitted to save space, in-
terested reader may contact the author for details. Now
we are ready to present the convergence property of the
Functional Steepest Descent Algorithm.
Theorem 3. For given an ε > 0, assume that the admissi-
ble control value set Γ is big enough so that no ε-optimal
control can reach the δ0 neighborhood of the boundary of
Γ, where δ0 is a small positive constant. Then, there exist
positive constants α, β and δ such that, if λk(t) is selected
in the interval [α, β] and satisfies

∫ T

t0
| λk(t) |2 dt ≤ 1, the

cost value is guaranteed to decrease at least by the amount
of δ, by using the proposed scheme starting from any
admissible control. Therefore, if the cost function J(u(·))
is bounded below, the proposed scheme achieves ε-optimal
solution in finite steps.

Proof: Consider the cost function difference between two
consecutive steps:

J(uk+1(·)) − J(uk(·))

=

T∫
t0

[L(t, x̃k(t), uk(t)) − L(t, xk(t), uk(t))]dt

+

T∫
t0

[L(t, xk(t), uk+1(t)) − L(t, xk(t), uk(t))]dt

+

T∫
t0

{[L(t, x̃k(t), uk+1(t) − L(t, x̃k(t), uk(t))]

−[L(t, xk(t), uk+1(t)) − L(t, xk(t), uk(t))]} dt

+I1 + I2 + (h(x̃k(T )) − h(xk(T )), (19)

where: x̃k(t) = xk(t) + y1(t),

I1 =

T∫
t0

[L(t, xk+1(t), uk+1(t) − L(t, x̃k(t), uk+1(t))]dt,

I2 = (h(xk+1(T )) − h(x̃k(T ))).

By the Lipschitz assumption and Lemma 2, one can see
that

| Ii |≤ Const. · ( max
t∈[t0,T ]

λk(t))2, i = 1, 2. (20)

Now we can evaluate each items in (19). Let the first three
integral items be denoted as E1, E2, E3, respectively. Then:

E1 =

T∫
t0

∂L

∂x
(t, xk, uk)y1(t)dt

+
1
2

T∫
t0

y1(t)�
∂2L

∂x�∂x
(t, xk(t), uk(t))y1(t)dt

+I3, (21)

E3 =

T∫
t0

[
∂L

∂x
(t, xk, uk+1) − ∂L

∂x
(t, xk, uk)]y1(t)dt

+
1
2

T∫
t0

y1(t)�[
∂2L

∂x�∂x
(t, xk(t), uk+1(t))

− ∂2L

∂x�∂x
(t, xk(t), uk(t))]y1(t)dt + I4, (22)

where | Ii |≤ Const. · (| y1(t) |2 + | y2(t)‖2), i = 3, 4.

By the same token, we can see that

h(x̃k(T )) − h(xk(T ) = [
∂h

∂x
(xk(T ))y1(T )]

+
1
2

(
y1(T )�

∂2h

∂x�∂x
(x(T ))y1(T )

)
+ I5, (23)

where I5 ≤ Const.· | y1(t) |2 .

Applying the estimation (21), (22) and (23) to the cost
difference, with some intermediate results in Lemma 2 ,
we can reach that

J(uk+1(·)) − J(uk(·)) = J1(uk+1(·)) + J2(uk+1(·))

+
1

2

T∫
t0

y�
1

∂2L

∂x�∂x
(t, xk, uk)y1dt

+

T∫
t0

[L(t, xk, uk+1) − L(t, xk, uk)]dt

+

T∫
t0

[
∂L

∂x
(t, xk, uk+1) − ∂L

∂x
(t, xk, uk)

]
y1dt

+
1

2

T∫
t0

y�
1

[
∂2L

∂x�∂x
(t, xk, uk+1) − ∂2L

∂x�∂x
(t, xk, uk)

]
y1dt

+
1

2

[
y1(T )

∂2h

∂x�∂x
(xk(T ))y1(T )

]
+ I5, (24)

where | I5 |≤ Const.· | λk(t) |2 . We can rewrite this
equation as:

J(uk+1(·)) − J(uk(·))

=

T∫
t0

[Hxk,uk(t, xk, uk+1) −Hxk,uk(t, xk, uk)]dt + I5.

(25)

As such, there exists a constant C� > 0 such that
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| J(uk+1) − J(uk) −
T∫

t0

∂H

∂u
(t, xk, uk, pk)(uk+1 − uk)dt |

≤ C� | λk |2 . (26)

On the other hand, it can be proved that

(

T∫
t0

| ∂H

∂u
(t, xk, uk, pk) | dt)2 ≤

T − t0
2

T∫
t0

∂H

∂u
(t, xk, uk, pk)[

∂H

∂u
(t, xk, uk, pk)]�dt.

for given ε > 0, if
∫ T

t0
| ∂H

∂u (t, xk, uk, pk) | dt < C3ε, we
know that uk is ε-optimal control. Assume that

T∫
t0

∂H

∂u
(t, xk, uk, pk)[

∂H

∂u
(t, xk, uk, pk)]�dt ≥ 2C2

3 ε2

T − t0
,

otherwise uk is already ε-optimal. Then, choose α and β
such that

0 ≤ α ≤ β < 1, β <
C2

3 ε2

C�(T − t0)
. (27)

It can be checked that for any λk(t) selected in the interval
[α, β], there holds:

J(uk+1) < J(uk) − C2
3 ε2

T − t0
α. (28)

Therefore, the claim is proved.

6. CONSISTENT APPROXIMATION SOLUTIONS TO
ADJOINT DIFFERENTIAL EQUATIONS

The convergence analysis conducted in the last section
is based on the assumption that precise solution to the
adjoint equation can be available. In this section, the
approximation of the adjoint differential equation is dis-
cussed. Rather than to develop an approximation algo-
rithm, the objective is to consider the precision required
for a consistent approximation algorithm so as to achieve
desired near optimal solution to the original stochastic
control problem.

Consider the case where two pairs of an approximated
solution (p̂k(t) is obtained to the adjoint equation (6) at
the step k using the proposed iterative scheme. Let the
solution to the equation (3) with u(t) replaced by ûk+1

be denoted as ŷ1(t), where ûk+1 is the next step control
computed using the approximation solutions p̂k. For sim-
plicity, we also denote all other variables associated with
these approximation solution using a hat symbol .̂ Then,
considering the convergence analysis in last section, one
can see that the difference of cost functions between two
consecutive steps can always be decomposed in the form
of (19) regardless of whether x̃k is an good approximation
of xk+1 or not. However, (20) needs to be verified in this
case. Similarly, one can see that (21), (22), and (23) hold
with y1 replaced by ŷ1. Notice the estimation to I3, I4, I5

are still correct. In order to obtain the estimation on I1, I2

and obtain (25), we need the following lemma:

Lemma 3. Given an admissible control ū(·), let the cor-
responding state trajectory be denoted as x̄(·), and the
solution to the adjoint equation (6) be denoted as p̄(·).
Assume p̂(·) is an approximated solution to those adjoint
equations such that

T∫
t0

| p̂(t) − p̄(t) |2 dt < η, (29)

where η is a given small positive real number. Then, the
following results hold:
(1).

∫ t

t0

∣∣∂H
∂u (τ, x̂k, ûk, p̂k(ûk))

∣∣2 dτ is bounded by a con-
stant. This constant is depend on the Lipschitz constant
C and the approximation error η.
(2). There is a constant Ĉ such that the auxiliary cost
function J1 defined in (5) satisfies the following estimation:

| J1(u(·)) − Ĵi(u(·)) |< Ĉη, (30)

where Ĵ1 is the corresponding cost defined in (7) with p(t)
replaced by p̂(t).

The proof is omitted to save space.

Applying the claim (1) in Lemma 3, the following result
corresponding to Lemma 2 can be obtained:
Corollary 4. Under the assumption in Lemma 3, for the
first order approximation of the trajectory x(·) at (x̂k, ûk)
based on the approximation solution of the corresponding
adjoint equation, there exists a constant Ĉ5 such that:

E |x̂k+1(t) − x̂k(t) − ŷ1(t)|2 ≤ Ĉ5E(

t∫
t0

| λk(τ) |2 dτ)2,

∀t ∈ [t0, T ],(31)

where Ĉ5 is only depend on the Lipschitz constant C and
the approximation error bound η.

Theorem 5. Assume all assumptions and conditions in
Theorem 3 are satisfied. Choose ηk ≤ supt∈[t0,T ] λ

2
k(t).

Then, there exist positive constants α, β and δ such that,
if λk(t) is selected in the interval [α, β] and satisfies
E

∫ T

t0
| λk(t) |2 dt ≤ 1, the cost value is guaranteed to

decrease at least by the amount of δ, by using the proposed
scheme starting from any admissible control with the
approximated solutions of the adjoint equation satisfying
(29) where the η is replaced by ηk at step k. Therefore, if
the cost function J(u(·)) is bounded below, the proposed
computation scheme achieves ε-optimal solution in finite
steps.

7. ILLUSTRATIVE SIMULATIONS

Consider the optimal control problem discussed in Schwartz
and Polak [1996],and Hager [1976]:

min
u∈U

f(u(·)) := x2(1),

s. t. ẋ =

⎡
⎢⎣

1
2
x1 + u

10
16

x2
1 +

1
2
x1u +

1
2
u2

⎤
⎥⎦ ,

x(0) = [1, 0]�, t ∈ [0, 1]
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Fig. 1. Trajectories of the system control by the optimal control

law and the numerical solution control. The ”*”-curve is the

optimal one. The ”o”-curve is the near-optimal one.

Fig. 2. The difference of optimal and near-optimal controls

Fig. 3. The optimal cost, denoted by the solid line, and near-optimal
costs at each iteration, denoted by ”*” dots.

Fig. 4. The norm of the partial derivatives of the Hamiltonian at
each iteration.

The optimal solution can be given in analytic form: u�(t) =
−(tanh(1 − t) + 0.5)cosh(1 − t)/cosh(1), t ∈ [0, 1], with
the optimal cost equal to e2sinh(2)/(1 + e2))2. As such,
convergence of the near-optimal solutions can be easily
justified. Applying the algorithm proposed, the step size
λ(t) is chosen as 0.4 where k is the iteration number. The
controlled system is simulated using Runge-Kutta (2,3)
method. The control input u(t) is discretized using the grid
obtained by Runge-Kutta ODE solver and interpolated
piece-wise linearly. We compute the near-optimal control
for ε = 10−3. The near-optimal control is obtained in 25
steps with the initial control to be zero. The following
figures 1 - 8 show the simulation results of the algorithm.
It can be seen that the near-optimal control may not
approximate the optimal control very well. But the cost
function is very close.

Fig. 5. Trajectories of the system control by the optimal control
law and the numerical solution control. Now the control is
constrained. The ”*”-curve is the optimal one. The ”o”-curve
is the near-optimal one.

Fig. 6. The norm of the partial derivatives of the Hamiltonian at
each iteration for the system with control constraints.

Consider the same problem with a constraint on the
control input bounded by [−1.3,−0.3]. Now, constant
stepsize is no longer applicable. Instead, we choose a
time varying stepsize by truncating the line search if it
exceeds the bound. Figures 5 and 6 show the simulation
results obtained by the first 20 steps. In these simulation
experiments, the computation is finished at finite steps.
The system trajectories are very close to that under
optimal control strategy. The cost function is within the
desired neighborhood of the optimal cost. The convergence
of control sequence is not demonstrated. However, that
issue itself is not of our concern in this paper.
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