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Abstract: Multi-agent systems arise from diverse fields of natural and artificial systems, and a
typical case is that each agent has the tendency to behave as other agents do in its neighborhood
described by a disk or ball. This is actually reflected by the well-known Vicsek model. Since this
model is of fundamental importance in understanding the multi-agent systems, it has attracted
much attention from researchers in recent years. In this paper, we will present a comprehensive
theoretical analysis of the nonlinear Vicsek model in a random framework, without imposing any
connectivity conditions on the system trajectories as did in most of the previous investigations.
To be precise, we will show that for any givenmodel parameters, i.e., the interaction radius r and
the agents’ moving velocity v, the overall system will synchronize as long as the population size
is large enough, which justifies the phenomenon observed previously in simulations by Vicsek et
al. (1995). The proof is based on the recent work of Tang and Guo (2007) for linearized Vicsek
model, and involves the use of spectral graph theory and multi-array martingale estimation
theory.

1. INTRODUCTION

Recently, the collective behavior of multi-agent systems
has drawn much attention from researchers in diverse
fields, including biology, physics, mathematics, and control
theory(cf. Parrish (2002), Vicsek et al. (1995), Jadbabaie
et al. (2003)). A basic problem is to understand how locally
interacting agents lead to collective behavior of the overall
multi-agent systems.

A typical phenomenon in multi-agent systems is that each
agent has the tendency to behave as other agents do in its
neighborhood(cf. Vicsek et al. (1995), Brien (1989)).This
is actually reflected by the local interaction rule in the well-
known Vicsek model, which possesses some key features of
multi-agent systems, such as dynamic behavior and chang-
ing neighbors, besides the local interactions. The Vicsek
model, studied by Vicsek et al. (1995) from the viewpoint
of statistical mechanics, was used to investigate the gath-
ering, transport and phase transition in nonequilibrium
systems, and also applied in biology systems involving
clustering and migration. Through computer simulations,
Vicsek et al. (1995) showed that the system will synchro-
nize when the density is large and the noise is small. A
similar phenomenon was observed by Buhl et al. (2006)
when they studied the behavior of locust swarm through
experiments.

Though the Vicsek model looks simple, the nonlinear
coupled relations in the model make the theoretical anal-
ysis quite complicated. Jadbabaie et al. (2003) initiated
a theoretical study for the synchronization of the Vic-
sek model, but with linearized heading equations. They
showed that the system will synchronize if the associated
? This work was supported by the National Natural Science Foun-
dation of China under grants No. 60574068 and No. 60221301.

neighbor graphs are jointly connected in a certain sense,
which stimulated considerable research interests in this
direction (cf., e.g., Cucker and Smale (2007),Saber (2006)
Ren and Beard (2005), Moreau (2005)). However, how to
remove or verify the troublesome connectivity condition
on the associated dynamical graphs is still a difficult and
challenging issue in theory.

A preliminary step towards the above issue seems to have
been made by Liu and Guo (2007a), where a sufficient
but rough parameter condition to guarantee the synchro-
nization of the Vicsek model is given in a deterministic
framework. A sufficient parameter condition for the syn-
chronization is also given by Cucker and Smale (2007), but
for a modified Vicsek model with global interactions. A
significant step towards the comprehensive analysis of the
Vicsek model is made recently by Tang and Guo (2007),
where a random framework is introduced in the analysis of
the linearized Vicsek model. They proved that the overall
system will synchronize with large probability as long as
the size of the population is large enough, without impos-
ing connectivity condition on the system trajectories.

This paper will establish a similar result as that of Tang
and Guo (2007), but for the nonlinear Vicsek model. In
comparison with Tang and Guo (2007), a key issue now
is to deal with the nonlinearity arising from the heading
equations. We will give a comprehensive theoretical analy-
sis in a random framework with large population, by using
some basic facts in Tang and Guo (2007) and multi-array
martingale estimation theory. We will prove that for any
given model parameters, i.e., given the interaction radius r
and the agents’ moving velocity v, the overall system will
synchronize as long as the size n of the population is large
enough.
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2. MAIN RESULTS

First, we will introduce the model to be studied in this
paper, assuming the readers are familiar with some basic
knowledge of algebraic graph theory(cf. Godsil and Royle
(2001), Chung (2000)).

The Vicsek model is composed of n autonomous agents
(or subsystems or particles) moving in the plane with
the same absolute velocity, and with each agent’s heading
updated according to the vector average of its neighbors.
The neighbors of an agent i(1 ≤ i ≤ n) at time t are those
which lie within a circle of radius r(r > 0) centered at
the agent i’s current position. Denote the neighbors of the
agent i at time t as Ni(t), i.e.

Ni(t) = {j
∣∣ dij(t) < r}, (1)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2, and
(xi(t), yi(t)) is the position of the agent i at time t. It
is easy to see that each agent is a neighbor of itself. Each
agent moves in the plane with the same constant absolute
velocity v(v > 0), so its position is updated according to
the following equation:{

xi(t + 1) = xi(t) + v cos θi(t + 1)
yi(t + 1) = yi(t) + v sin θi(t + 1) ∀i, (2)

where θi(t) is the heading of the agent i at time t, which
is updated according to the following formula,

θi(t + 1) = arctan

∑
j∈Ni(t)

sin θj(t)∑
j∈Ni(t)

cos θj(t)
. (3)

Obviously, the dynamical behavior of the above system is
determined completely by the initial states, the moving
velocity v and the neighborhood radius r. Furthermore,
there is a complicated nonlinear relationship between po-
sitions and headings of all agents, which makes a complete
theoretical analysis quite involved.

Note that in the Vicsek model, the neighbors of each agent
will change over time, and we may use a graph sequence
Gt = {V, Et} to describe the evolution of the underlying
system dynamics, where V = {1, 2, · · · , n} is the set of
agents’ indices (vertices), and Et is the edge set which
will change over time. Edges are formed in the following
way: if dij(t) < r, then we define an edge between i and
j, denoted by (i, j) ∈ Et. Obviously, the neighbor graphs
formed in this way are undirected, and contain loops. The
degree, minimum degree and maximum degree of graph
Gt are denoted by di(t)(1 ≤ i ≤ n), dmin(t) and dmax(t)
respectively. And the adjacency matrix, degree matrix and
the normalized Laplacian of graph Gt are denoted by
A(t), T (t) and L(t) respectively. The eigenvalues of L(t)
are usually arranged in the following way: 0 = λ0(t) ≤
λ1(t) · · · ≤ λn−1(t), and λ(t) = max{|1−λ1(t)|, |λn−1(t)−
1|} is the spectral gap of the graph Gt.

The main purpose of this paper is to study the synchro-
nization property of the above Vicsek model in the sense
that the headings of all agents converge to the same value,
i.e., there exists a constant θ, such that limt→∞ θi(t) = θ,
for all agents i.

We will analyze the synchronization behavior of the above
multi-agent system in the following random framework,

which is a natural assumption on the initial states of the
system.
Assumption 2.1. The initial positions and headings of all
agents are mutually independent, with positions uniformly
and independently distributed in the unit square S, and
with headings uniformly and independently distributed in
[−π + ε0, π − ε0], where ε0 ∈ (0, π) is a fixed angle.

It is worth noting that the interval of the initial headings
in the above assumption is much larger than that used in
Liu and Guo (2007b), but may not be further relaxed to
(−π, π] (see Liu and Guo (2006)). Under Assumption 2.1,
the initial graph G0 is a random geometric graph which
has some nice properties (see Section 3.1), which enable
us to establish the following theorem whose proof will be
given in Section 3.
Theorem 2.1. Under Assumption 2.1, for any given veloc-
ity v > 0 and neighborhood radius r > 0, the multi-agent
system described by (1)-(3) will synchronize almost surely
when the population size n is large enough.

3. PROOF OF THEOREM 2.1

First of all, for analyzing the heading equation (3), we
rewrite it into the following equivalent form:

tan θi(t + 1) =
∑

j∈Ni(t)

cos θj(t)∑
k∈Ni(t)

cos θk(t)
tan θj(t), (4)

and put (4) into the following compact matrix form:

tan θ(t + 1) = P (t) tan θ(t), (5)

where tan θ(t) , (tan θ1(t), · · · , tan θn(t))τ , P (t) ,
(pij(t)) is defined as follows:

pij(t) =





cos θj(t)∑
k∈Ni(t)

cos θk(t)
, if (i, j) ∈ Et;

0, otherwise.
(6)

We will also need the linearized version (around θi(t) = 0),
which is denoted by P 0(t) = (p0

ij(t)) and defined explicitly
by

p0
ij(t) =





1
ni(t)

, if (i, j) ∈ Et;

0, otherwise,
(7)

where ni(t) is the cardinality of Ni(t).

The following sets are useful in the proof of theorem 2.1,

Rj = {i : (1− η)r ≤ dij(0) ≤ (1 + η)r} , (8)

N ′
j(t) = {i : dij(t) < 2r} , t ≥ 0, (9)

where dij(t) is the distance between agents i and j at
time t, and 0 < η < 1 is a constant. Denote Rj , and
n′j(t) as the cardinality of Rj and N ′

j(t) respectively, and
Rmax , maxj Rj .

3.1 The Asymptotic Properties of G0

In this section, we will provide the estimations of some
characteristics of both the initial graph G0 and the head-
ings at time t = 1. The following lemma is given by Tang
and Guo (2007).
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Lemma 3.1. For the random geometric graph G0.

1) The maximum degree and minimum degree satisfy

min
(

π

64
,
πr2

4

)
n ≤ dmin(0) ≤ dmax(0) ≤ n, a.s.;

2) The number of agents in the ring defined via (8) is
bounded by

Rmax ≤ 4nπηr2(1 + o(1)), a.s.; (10)

3) The spectral gap of the initial graph satisfies

λ̄(0) ≤ 1− πr2

512(r +
√

6)4
(1 + o(1)), a.s.

Remark 3.1. For the random geometric graph G0, we have
for large n

i)

min
(
πr2,

π

64

)
n ≤ min

i
n′i(0) ≤ max

i
n′i(0) ≤ n, a.s., (11)

where n′i(0) is the cardinality of N ′
i (0) defined by (9).

ii) By Lemma 3.1 and the above remark, there are
positive constants α and β such that

dmax(0) ≤ βdmin(0)(1 + o(1)),

Rmax ≤ αdmin(0)(1 + o(1))

hold almost surely, which can actually be taken as

β = max
(

64
π

,
4

πr2

)
,

α = max
(
16, 256r2

)
η.

Thus we can take the constant η small enough, such that
α = 1

4 .

By using the multi-array martingale estimation theorem
(see Corollary 3.1 in Liu and Guo (2007b)), we can get
the following estimations of the initial headings:
Lemma 3.2. For large n, we have

1) max
1≤i≤n

∣∣∣
∑

j∈Ni(0)

sin θj(0)
∣∣∣ ≤ C1bn, a.s.

2) max
1≤i≤n

∣∣∣
∑

j∈Ni(0)

(cos θj(0)− C2)
∣∣∣ ≤ C3bn, a.s.

where bn =
√

n log n(1 + o(1)), and

C1 = 3
{

1
2

+
sin 2ε0

4(π − ε0)

}1/2

; C2 =
sin ε0

π − ε0
;

C3 = 3

{
1
2
− sin 2ε0

4(π − ε0)
−

(
sin ε0

π − ε0

)2
}1/2

.

The proofs are similar to those of Lemma 3.3 in Liu and
Guo (2007b), we omit it due to space limitations. Using
the above lemma, we can get the following results.

Corollary 3.1. For θi(1) defined by (3), we have for large
n

1) max
1≤i≤n

| tan θi(1)| ≤ C4
bn

n
, a.s.;

2) max
1≤i≤n

| cos θi(t)− 1| ≤ C5
bn

n
, a.s., ∀t ≥ 1,

where C4 and C5 are some constants depending on ε0 and
r only.

Proof. 1) By Lemma 3.1, we have for large n

bn

di(0)
= O

(
bn

n

)
= O

(√
log n

n

)

= o(1), a.s., i = 1, · · · , n. (12)
Therefore, by (3),(12) and Lemma 3.2, we have

max
1≤i≤n

| tan θi(1)| = max
1≤i≤n

|∑j∈Ni(0)
sin θj(0)|

|∑j∈Ni(0)
cos θj(0)|

≤ C1bn

C2dmin(0)− C3bn
= O

(
bn

n

)
, a.s.

This completes the first inequality of the corollary.

2) First we will consider the asymptotic properties of
max1≤i≤n(1− cos θi(1)). By (3), for any agent i, we have

cos θi(1)

=

∑

j∈Ni(0)

cos θj(0)

{( ∑

j∈Ni(0)

sin θj(0)
)2

+
( ∑

j∈Ni(0)

cos θj(0)
)2} 1

2
,

So by (12) and Lemma 3.2, and the following elementary
inequality:

√
a2 + b2 ≤ a + b, a, b ≥ 0,

we have

1 ≥ cos θi(1)

≥ C2di(0)− C3bn

{(C2di(0) + C3bn)2 + (C1bn)2}1/2

≥ C2di(0)− C3bn

(C2di(0) + C3bn) + C1bn

=
C2 − C3gin

C2 + (C3 + C1)gin
, a.s., (13)

where

gin =
bn

di(0)
= O

(
bn

n

)
= o(1), a.s. (14)

Furthermore, by (13) and (14), we can get

max
i
| cos θi(1)− 1| ≤ max

i

(2C3 + C1)gin

C2 + (C3 + C1)gin

= O

(
bn

n

)
= o(1), a.s. (15)

Moreover, by this and 1) of Corollary 3.1, it is easy to see
that for large n,
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θi(1) ∈ (−π/2, π/2), ∀i. (16)

By (3), we know that min
1≤i≤n

cos θi(t) is non-decreasing for

t ≥ 1, so we have

max
1≤i≤n

(1− cos θi(t)) ≤ max
1≤i≤n

(1− cos θi(1)), ∀t ≥ 1,

which in conjunction with (15) yields the desired result 2).
This completes the proof. ¥

3.2 Dealing with the Nonlinearity.

Tang and Guo (2007) proved that the linearized Vicsek
model will synchronize as long as the population size is
large enough. While the difference between the Vicsek
model and its linearized version is the nonlinearity re-
sulting from the heading update equations (3). In this
subsection, we will mainly deal with this nonlinearity. Set

∆P1(t) , P 0(t)− P (t) = (δpij(t)), (17)

We will estimate the entries δpij(t) first. By the definition
of P (t) and P 0(t) (see (6) and (7)), we have

δpij(t) =





cos θi(t)∑
j∈Ni(t)

cos θj(t)
− 1

ni(t)
, if (i, j) ∈ Et;

0, otherwise.

Note that bn/n =
√

log n/n(1 + o(1)) = o(1). So for any i
and j such that (i, j) ∈ Et, by 2) of Corollary 3.1, we have

|δpij(t)| =
∣∣∣
∑

j∈Ni(t)
(cos θi(t)− cos θj(t))

ni(t)
∑

j∈Ni(t)
cos θj(t)

∣∣∣

≤ 2C5ni(t) bn

n

n2
i (t)(1− C5

bn

n )
=

2C5

ni(t)
bn

n
(1 + o(1))

=
2C5

ni(t)

√
log n

n
(1 + o(1)), a.s., (18)

where ni(t) is the cardinality of the set Ni(t). Next, we
will estimate ‖∆P1(t)‖. Denote

λm(t) , λmax

(
∆P1(t) ·∆P1(t)τ

)
.

By Gěrschgorin Disk Theorem (cf. Horn and Johnson
(1985)), for any eigenvalues λ of the matrix ∆P1(t) ·
∆P1(t)τ , we have

∣∣∣λ−
n∑

l=1

δpil(t)δpil(t)
∣∣∣ ≤

∑

i 6=j

n∑

l=1

|δpil(t)δpjl(t)|,

so we have

λm(t) ≤ max
1≤i≤n

n∑

j=1

n∑

l=1

|δpil(t)δpjl(t)|. (19)

In order to estimate λm(t), we need to introduce the
following sets:

Nij(t) = {l : dil(t) < r, djl(t) < r}
and

Zi(t) = {j : Nij(t) 6= ∅}.
Moreover denote nij(t) and zi(t) as the cardinality of
Nij(t) and Zi(t) respectively. Obviously, we have

max
1≤i,j≤n

nij(t) ≤ min{ni(t), nj(t)} ≤ dmax(t) (20)

and

max
1≤i≤n

zi(t) ≤ max
1≤i≤n

n′i(t), (21)

where n′i(t) is the cardinality of N ′
i (t) defined by (9). By

(19) and the above notations, we have:

‖∆P1(t)‖ =
√

λm(t)

≤ max
1≤i≤n

∑

j∈Zi(t)

∑

l∈Nij(t)

|δpil(t)δpjl(t)|

≤
√

max
1≤i,j≤n

nij(t) max
1≤i≤n

zi(t) max
ij:(i,j)∈Et

|δpij(t)|2.

By substituting (18),(20) and (21) into the above inequal-
ity, we have

‖∆P1(t)‖ ≤

2C5

dmin(t)

√
(log n)dmax(t) max

1≤i≤n
n′i(t)

n
(1 + o(1)), a.s. (22)

Using the asymptotic properties of the characteristics
given in Section 3.1, we can get the following proposition.
Proposition 3.1. Under Assumption 2.1, there exists a
positive constant η, such that the following propositions
hold almost surely for large n:

1) For any agents i and j, their distance satisfies

|dij(t)− dij(0)| ≤ ηr(1 + o(1)), ∀t ≥ 1. (23)

2) The spectral gap of the initial graph G0 satisfies:

λ(0) +
√

β (ε1(t) + ε2)

≤ 1− πr2

3 · 512(r +
√

6)4
(1 + o(1)), ∀t ≥ 1, (24)

where

ε1(t) , sup
1≤s≤t

‖ ∆P1(s) ‖, (25)

ε2 , min(
√

π/64,
√

πr2/4)πr2

3 · 512(r +
√

6)4
, (26)

where ∆P1(s) is defined by (17).

Proof: Denote

δ(t) = max
i,j

{tan θi(t)− tan θj(t)} , (27)

which reflects the error of synchronization. Using Corollary
3.1, we have for large n

δ(1) ≤
√

2max
i
| tan θi(1)| ≤

√
2C4

bn

n
, a.s.; (28)

‖ tan θ(1) ‖≤ √
n max

i
| tan θi(1)| ≤ √

nC4
bn

n
, a.s. (29)
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Moreover, by (3) and (16), we can see that δ(t), t ≥ 1 is
a non-increasing sequence. These facts will be used in the
proof to follow.

By the position update law (2), we can deduce that

|dij(t + 1)− dij(t)| ≤ vδ(t + 1), ∀ t ≥ 0, (30)

where δ(t) is defined by (27).

We will use induction to prove the theorem, and consider
the case for t = 1 first. By setting t = 0 in (30), and using
(28), we have

|dij(1)− dij(0)| ≤ vδ(1)

≤ v
√

2C4
bn

n
=
√

2vC4

√
log n

n
(1 + o(1))

≤ ηr, a.s., (31)

Obviously, the last inequality holds for large n. So (23)
holds for t = 1.

Now, we prove that (24) holds for t = 1. By (31), we see
that the number of each agent’s neighbors changed at time
t = 1 in comparison with its neighbors at the initial time
is bounded by Rmax defined via (8). So by Lemma 3.1, we
have

dmin(1) ≥ dmin(0)−Rmax

≥min
(

πr2

4
,

π

64

)
n− 4nπηr2 (32)

By taking the constant η small enough and substituting
(32) into (22), we can get

‖∆P1(1)‖ =
√

λm(1)

≤ 2C5

dmin(1)

√
(log n)dmax(1) max

1≤i≤n
n′i(1)

n
(1 + o(1))

= O

(√
log n

n

)
, a.s.; (33)

Furthermore, we can take n large enough such that

‖∆P1(1)‖

≤ min(
√

π/64,
√

πr2/4)πr2

3 · 512(r +
√

6)4
(34)

holds almost surely. By (34), Lemma 3.1, Remark 3.1 and
definitions (25) and (26) for ε1(1) and ε2, we have

λ(0) +
√

β (ε1(1) + ε2)

≤ λ(0) + max

(√
64
π

,

√
4

πr2

)
(ε1(1) + ε2)

≤ 1− πr2

3 · 512(r +
√

6)4
(1 + o(1)), a.s.

So (24) holds for t = 1.

Next, we assume that for all s ≤ t, (23) and (24) hold, i.e.,
for any i and j, we have

|dij(s)− dij(0)| ≤ ηr, a.s., (35)
and

λ(0) +
√

β(ε1(s) + ε2)

≤ 1− πr2

3 · 512(r +
√

6)4
(1 + o(1)), a.s. (36)

We will prove that (23) and (24) hold at time t + 1. By
(30), we have

|dij(t + 1)− dij(0)|

≤
t+1∑
s=1

|dij(s)− dij(s− 1)| ≤ v
t+1∑

j=1

δ(j), (37)

where δ(t) is defined by (27), which is a non-increasing
sequence for t ≥ 1. Note that the “linear” time-varying
equation for tan θ(t) defined by (5) has essentially the same
form as that for θ(t) in Lemma 2 of Tang and Guo (2007),
we then have,

δ(s + 1)

≤
√

2β
(
λ(0) +

√
β sup

1≤k≤s
‖ ∆P (k) ‖

)s

‖ tan θ(1) ‖,

0 ≤ s ≤ t, (38)

where ∆P (k) , P (k)− P 0(0), k ≥ 1 satisfies

sup
1≤k≤s

‖ ∆P (k) ‖

≤ sup
1≤k≤s

‖ P (k)− P 0(k) ‖ + sup
1≤k≤s

‖ P 0(k)− P 0(0) ‖ .

Now, we estimate sup1≤k≤s ∆P (k). By definition (25), the
first term of the right-hand in the above inequality is
exactly ε1(s). We now proceed to show that the second
term is bounded by ε2. By the proof of Corollary 1 in
Tang and Guo (2007), we can see that it is still applicable.
Hence, by Lemma 3.1 and Remark 3.1, the second term
satisfies

‖P 0(s)− P 0(0)‖ ≤ 1 + β

1− α
· Rmax

dmin(0)
(1 + o(1))

≤ 16r2
[
1 + max( 64

π , 4
πr2 )

]

3min
(

1
64 , r2

4

) η, a.s., 1 ≤ s ≤ t. (39)

So we can take the constant η small enough, such that

‖P 0(s)− P 0(0)‖

≤ min(
√

π/64,
√

πr2/4)πr2

3 · 512(r +
√

6)4
, a.s., 1 ≤ s ≤ t. (40)

By this, Lemma 3.1, Remark 3.1 and the induction as-
sumption (36), we have

λ(0) +
√

β sup
1≤s≤t

‖ ∆P (s) ‖

≤ λ(0) +
√

β

(
sup

1≤s≤t
ε1(s) + ε2

)

≤ 1− πr2

3 · 512(r +
√

6)4
(1 + o(1)), a.s. (41)

Now, we are in a position to estimate v
∑t+1

j=1 δ(j). Set
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s0 , min{s :
√

2β(λ′)s−1 ‖ tan θ(1) ‖≤ δ(1)},
where λ′ = 1− πr2

3·512(r+√6)4
(1 + o(1)), then we have

s0 =
⌈ log δ(1)√

2β‖tan θ(1)‖
log(λ′)

+ 1
⌉
≤

log δ(1)√
2β‖tan θ(1)‖

log(λ′)
+ 2.

Hence, by (28), (29), (38)and (41), we have for large n

v
t+1∑
s=1

δ(s) = v

(
s0−1∑
s=1

δ(s) +
t+1∑
s=s0

δ(s)

)

≤ v(s0 − 1)δ(1) + v
√

2β(λ′)s0−1 ‖ tan θ(1) ‖
t+1∑
s=s0

(λ′)s−s0

≤ vδ(1)




log δ(1)√
2β‖tan θ(1)‖
log λ′

+ 1 +
1

1− λ′




≤ vδ(1)
1− λ′

(
2 + log

√
2β ‖ tan θ(1) ‖

δ(1)

)

= O

(√
log n

n
log n

)
≤ ηr, a.s., (42)

where the following facts are used in the above inequality:

log
δ(1)√

β ‖ tan θ(1) ‖ < 0 and log x ≤ x − 1, ∀ 0 < x < 1.

So (23) holds for s = t + 1 by (37) and (42).

Finally, we prove that (24) holds at time t + 1. since (23)
holds at t + 1, we see that the number of each agent’s
neighbors changed at time t + 1 in comparison with its
neighbors at the initial time does not exceed Rmax defined
via (8). Similar to the analysis of (34), we can deduce that

‖∆P1(t + 1)‖ ≤ min(
√

π/64,
√

πr2/4)πr2

3 · 512(r +
√

6)4
, a.s.

Combining this with our induction assumption (36), we
can see that (24) holds at time t + 1. Therefore, by
induction, (23) and (24) hold almost surely for all t ≥ 1.
This completes the proof of the proposition. ¥
Proof of Theorem 2.1.

By Proposition 3.1, it is easy to prove that the neighbor
graphs are connected for any t. So by Theorem 2 in
Liu and Guo (2006), we can see that the Vicsek model
will synchronize almost surely for large n. Due to space
limitations, we omit the details. ¥

4. CONCLUDING REMARKS

In this paper, we have shown that for any given model pa-
rameters r and v, the multi-agent system described by the
Vicsek model will synchronize as long as the population
size n is large enough, which provides an analysis for the
emergent phenomenon observed by Vicsek et al., without
resorting to the connectivity condition imposed on the
system dynamics in almost all of the existing studies. Of
course, many challenging problems still remain unsolved,
for example, the rigorous theoretical analysis for the noise
case, nontrivial necessary conditions for synchronization,

and the investigation of more complicated models and
emergent phenomena, etc.
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