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Abstract: This paper addresses a characterization of a complementary sensitivity property in
feedback control using an information theoretic approach. We derive an integral-type constraint
of the complementary sensitivity function with respect to the unstable zeros of the open-loop
transfer function. It is an analogue of Bode’s integral formula for the sensitivity gain. To show
the constraint, we first present a conservation law of the entropy and mutual information of
signals in the feedback system. Then, we clarify the relation between the mutual information of
a control signal and the unstable zeros of the open-loop transfer function.
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1. INTRODUCTION

It has been known that control theory and information
theory share a common background as both theories
study signals and dynamical systems in general. One way
to describe their difference is that the focal point of
information theory is the signals involved in systems while
control theory focuses more on systems which represent
the relation between the input and output signals. Thus,
in a certain sense, we may expect that they have a
complementary relation. For this reason, studies on the
interactions of the two theories have recently attracted
a lot of attention. We briefly describe three research
directions in the following.

In networked control systems, there certainly are issues
related to both control and communication since com-
munication channels with data losses, time delays, and
quantization errors are employed between the plants and
controllers (Antsaklis and Baillieul [2007]). To guarantee
the overall control performance in such systems, it is im-
portant to evaluate the amount of information that the
channels can transfer. Thus, for the analyses of networked
control systems, information theoretic approaches are es-
pecially useful, and notions and results from this theory
can be applied. For example, to characterize the properties
of the channels, their capacity and rate of communication,
which represent the number of bits that can be transfered
at each time step, can be used. The results in Nair and
Evans [2004] and Tatikonda and Mitter [2004] show the
limitation in the communication rate for the existence of
controllers, encoders, and decoders to stabilize discrete-
time linear feedback systems.
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On the other hand, by considering the interaction of con-
trol and communication, a certain problem in informa-
tion theory can be dealt with as a control problem. The
work of Elia [2004] shows an equivalence between feedback
stabilization through an analog communication channel
and a communication scheme based on feedback. As a
consequence, the problem of finding optimal encoder and
decoder in the communication system is reduced to the
design of an optimal feedback controller.

While control theory, in many cases, considers systems
that are linear time invariant, information theory imposes
assumptions on the systems that are less stringent. This
is because the focus there is more on the signals and not
on their input-output relation. Thus, based on informa-
tion theoretic approaches, we may expect to extend prior
results in control theory. One such result can be found
in Martins et al. [2007], where a sensitivity property is
analyzed and Bode’s integral formula (Bode [1945]) is ex-
tended to a more general class of systems. A fundamental
limitation of sensitivity functions is presented in relation
to the poles of the plants.

In this paper, we follow the approach of Martins et
al. [2007] and characterize a complementary sensitivity
property in a feedback system by measuring the entropies
of the signals. In particular, we derive a limitation of the
complementary sensitivity function with respect to the
unstable zeros of the open-loop system. This limitation is
shown in two steps as follows: We first show a conservation
law of the entropy and mutual information of the signals
in the feedback system. Then, we clarify the relation
between the mutual information of a control signal and
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the unstable zeros of the open-loop transfer function. This
result corresponds to the Bode’s integral formula for the
complementary sensitivity by Sung and Hara [1988]. Since
this formula is derived from the viewpoint of information
theory, in future research, we expect to generalize this
result to the cases for nonlinear systems and networked
control systems.

This paper is organized as follows: We first introduce
Bode’s integral formula and related works, and some
notions and results in information theory in Section 2.
In Section 3, we present the problem setting and some
properties of the entropy and mutual information of the
signals in the system. In Section 4, we show the main result
of the paper. Finally, the conclusion is in Section 5.

2. PRELIMINARIES

In this section, first, we introduce prior works related
to the fundamental limitations on the sensitivity and
complementary sensitivity functions. Then, we describe
some notation and definitions used in the paper.

2.1 Bode’s integral formula and related works

It is well known that the sensitivity and complementary
sensitivity functions represent basic properties of feed-
back systems such as disturbance attenuation, sensor-
noise reduction, and robustness against uncertainties in
the plant model. One of the fundamental properties of
the sensitivity functions is the water-bed effect for linear
feedback systems. This was first shown in Bode [1945]. Al-
though Bode’s work deal with continuous-time systems, we
present the corresponding result in discrete-time systems
(Sung and Hara [1988]).

Consider the system in Fig. 1. Suppose that the open-
loop system L is single-input single-output, linear time
invariant, and strictly proper. If the open-loop system
L and the feedback loop are stable, then the sensitivity
function

1

S(z) = ———
G = 1T

must satisfy

1 (" :

— log |S(e')|dw = 0.

5 | lomIS()ds
This integral constraint on the sensitivity function is
known as Bode’s integral formula. Because of its impor-
tance, this formula has been generalized in many ways
(e.g., Freudenberg and Looze [1988], Seron et al. [1997],
Seron et al. [1999], Iglesias [2001]).

In particular, the work by Sung and Hara [1989] gives
an integral-type constraint of complementary sensitivity
functions corresponding to Bode’s integral formula. We
briefly introduce this result next.

Consider the system depicted in Fig. 1. Let a state-space
representation of L be given by
Ix(k+1)| | A B |x(k)
e = [ea] ]
where x(k) € R™ is the state, y(k) € R is the output,
and e(k) € R is the error signal. Suppose that the relative

_T L

Fig. 1. Discrete-time feedback control system.

degree of the open-loop transfer function L(z) is v > 1.
This implies that
CA"™'B #0, (2)
CAI"'B=0, j=1,---,v—1.
Here, let Dy := CAY~!B. This is the ratio of the leading

coefficients of L(z). Moreover, let UZ; be the set of
unstable zeros of L(z):

UZp ={z|L(z) =0, |z] > 1}, (3)
and let T'(z) be the complementary sensitivity function:
L(z)
T(z) := ———. 4
B =13 @

Then, the following proposition holds.

Proposition 1. (Sung and Hara [1989]). If the feedback
system is stable, then the complementary sensitivity func-
tion T'(z) satisfies

1 i :
or | loIT(E)ldw = > log|B]+1log|Dol.  (5)
BEUZ Y,

We write logy(-) simply as log(-). This notation is also
adopted in the following.

This relation has been shown by applying Jensen’s for-
mula, which is a well-known result in complex analysis.
In this paper, we derive a limitation similar to (5) by
evaluating the entropy and mutual information of signals
in the feedback system.

2.2 Entropy and mutual information

In this section, we introduce some notation and basic
results from information theory that we use in the paper
(see Cover and Thomas [2006]).

We adopt the following notation.

e We represent random variables using boldface letters,
such as x.

e Consider a discrete-time stochastic process {x(k)}22 .
We represent a sequence of random variables from
E=1ltok=m(m>1) asx" = {x(k)}}, In
particular, when | = 0, we write x;” simply as x"".

e We use x instead of {x(k)}2, when it is clear from
the context.

e The operation E[-] denotes the expectation of a ran-
dom variable.

Entropy is a notion widely used as a measure of uncer-
tainty of a random variable. It is defined as follows.

Definition 2. (Entropy and conditional entropy). The (dif-
ferential) entropy h(x) of a continuous random variable
x € R with the probability density px is defined as

h(x) == _/RPX(@ log px (§)d§.
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If x,y € R have a joint probability density function px y,
we can also define the conditional entropy h(x|y) of x
assuming y as

e

Next, we introduce mutual information, which is a measure
of the amount of information that one random variable
contains about another random variable.

Definition 3. (Mutual information). The mutual informa-
tion I(x;y) between x € R and y € R with the joint
probability density px,y is defined as

. = « 1 Md dn.
I(va) /Rzp ,y(fan) Og px<£)py(n) 5 77

Note that we assume the existence of the probability
density and the joint probability density functions in the
above definitions.

The following is a list of basic properties of entropy and
mutual information which are required in the paper. Their
proofs can be found in, e.g., Cover and Thomas [2006],
Papoulis and Pillai [2002], Pinsker [1964].

o Symmetry and nonnegative property:
I(x;y) = 1(y;x)
= h(x) = h(xly) = h(y) — h(y[x) =0 (6)
e FEntropy and conditional entropy: From the above
property, the following holds:

h(xly) < h(x). (7)
o Chain rule:
h(x,y) = h(x) + h(y|x) (8)
o Mazximum entropy: Consider a random vector x €
R™ with variance Vi € R™*™. The following holds:

h(x) < % log ((2me)™ det Vy) . (9)

We have equality if x is Gaussian.

e Data processing inequality: Suppose that f is a
measurable function on the appropriate space. Then
the following holds:

hixly) < h(x|f(y)).

We have equality if f is invertible.

o Transformations of random wvariables and their en-
tropy: Suppose that f is a piecewise C''-class function
and x and y = f(x) take continuous values. Then the
following holds:

h(y) = h(x) + E[log | Jx[] , (11)
where Jy is the Jacobian of the transformation f.

e Suppose that f is any given function on the appro-
priate space. Then the following holds:

h(x — f(y)ly) = h(x]y).

Now we would like to introduce some notions for stochastic
processes. The entropy rate is a time average of the entropy
of a process and plays an important role in our analysis.

(10)

(12)

Definition 4. (Entropy rate). The entropy rate hoo(x) of a
stochastic process x is defined as

h k—1
hoo(X) := lilrcnsup (Xk )

Definition 5. (Asymptotically stationary process). A zero
mean stochastic process x (x(k) € R) is asymptotically
stationary if the following limit exists for every v € Z:

Rx(v) := Jim Ex(k)x(k +7)].

For an asymptotically stationary process x, we can define

the asymptotic power spectral density Sx using Ry as
o]

> Ry(y)e .

y=—o0

The following lemma, which is shown in Martins et al.
[2007], gives the relation between the entropy rate and the
asymptotic power spectral density.

Lemma 6. (Martins et al. [2007]). If x is an asymptot-
ically stationary process, then the following inequality
holds:

heo(x) < % /Tr log(27 e Sy (w))dw,

—T

(13)

where the equality holds if, in addition, x is a Gaussian
process.

3. PROBLEM SETTING AND SOME PROPERTIES

In this section, we formulate our problem and present two
key properties which are required to derive our main result.
The first one shows a conservation law of the entropy,
and the second one shows the relation between the mutual
information and the zeros of the open-loop system.

8.1 Problem setting

Consider the system depicted in Fig. 1. Suppose that the
state-space representation of L(z) is given by (1), and
x(k) e R", d(k) € R, e(k) € R, and y(k) € R are random
variables. We characterize the complementary sensitivity
function T'(z) in (4) by evaluating the entropy of signals.
Here, it is assumed that the feedback system is stable in
the mean-square sense, i.e.,

sip E[x(k) x(k)] < oc. (14)

To deal with asymptotically stationary processes, we now
define a complementary sensitivity-like function 7' by

using the asymptotic power spectral densities of the input
and output signals of T'.

Definition 7. (Complementary sensitivity-like function). If
the stochastic processes d and y are asymptotically sta-
tionary, then the complementary sensitivity-like function
is given by

— Sy (w
T(w) := 73'( ) .
Sa(w)
Remark 8. If a stochastic process is stationary, its asymp-
totic power spectral density is equal to the ordinary power

spectral density. Thus, for the special case that d and y
are stationary and x(0) is fixed as zero, we have that

T(w) = |T(ej“’)| .
This can be shown by the well-known relation between a
linear time-invariant system with a stable transfer function
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and the power spectral densities of its input and output
signals (Papoulis and Pillai [2002]).

We consider the property of T instead of 7', and derive
a constraint similar to (5). We note that because of the
relation given by Lemma 6, the ratio of the power spectral
density in T can be expressed as the difference in the
entropy rates of the input d and output y of 7. Hence,
in the following, we first analyze the difference in the
entropy rates of d and y in Section 3.2. Next, we show the
relation between the difference in the entropy rates and
the unstable zeros of the open-loop transfer function L(z)
in Section 3.3. Finally, we show an integral-type constraint
on the complementary sensitivity property with respect to
the unstable zeros in Section 4.

We assume that d* and x(0) are independent for every
k € Z4, and |h(x(0))| < ool.

3.2 The difference of the entropy rates

Here, we analyze the difference in the entropy rates ho(d)
and hoo(y)-

The following proposition holds.

Proposition 9. Consider the system depicted in Fig. 1. The
following inequality holds:
I k+v.

hoo(y) — heo(d) > Tim inf 102 3%(0)

m in 3 +log |Dy|. (15)

This relation is due to a conservation law of entropy
between d and y. We describe this in the following as
a lemma.

Lemma 10. Consider the system depicted in Fig. 1. The
following relation holds:

h(y ™) = h(@") + I(y;*";x(0)) + (k + 1) log | Dol. (16)

To derive this lemma, we have to consider how the entropy
of d at time k, h(d(k)), affects h(y(k)). However, since the
open-loop transfer function L(z) is strictly proper, there is
time delay of v steps due to the relative degree of L, that
is, d(k) has an influence on the output y only after time
k+v.

To deal with this problem, we define the auxiliary system
Lo and the signal y* as
Lo(z) := 2" L(z2), (17)
vyt (k) =y(k+v), (18)
where v is the relative degree of the open-loop transfer
function L(z). The state-space representation of Lg(z) is

given by:
| A B x(k)
T |cA” cAYIB | | e(k)
.| 4o Bo | | x(k)
| Co Do | | e(k) |-
It is clear that Dy # 0 because of (2), and hence Ly is a

biproper system. The system in Fig. 1 can be expressed as
Fig. 2 by using Lg and yT.

1 Actually, this assumption can be replaced with |h(x4(0))| < oo
(see Section 3.3).

Fig. 2. Equivalent system with the biproper system L.

We now consider a conservation law of the entropy between
d and y* instead of y. The proof of Lemma 10 is provided
in the following.

Proof. Tt follows that

hy T @Iy ) ™)

= h(y*O)I(y*)" ™1 x(0)) + I(y™ (1): x(0)|(y "))

= h(y™ (1)|d"™",x(0)) + I(y™ (1);x(0)|(y )",
where the first equality follows by (6), and the second one

follows by (10). Moreover, using the property (11), we have
that

My ()I(y*) ) |
= h(d(i)|d"™", x(0)) +log | Do| + I(y ™ (); x(0)|(y "))
Since x(0) and d() are independent, x(0) vanishes in the

first term of the right-hand side of this equation. Thus, we
have that
My @)y ) |
= h(d(2)[d"™") +log | Do| + I(y™*(i); x(0)|(y *)"™1).
(19)
Now, by summing both sides of (19) fori =0,1,--- , k, we
obtain
h((y*)*) = h(d*) + (k + 1) log [ Do| + I((y*)*; x(0)).
(20)
Here, we have used the chain rules:

k
h(@*) =) h(a(i)la™"),
=0

k
I(a*b) =Y I(a(i);bla’ "),
=0

which follow directly from (8). Finally, by the definition of
y T, the relation (20) is equivalent to (16). O

Remark 11. Lemma 10 shows that a conservation law
of entropy holds between d and y. Intuitively, one can
understand that log | Dy| reflects the scaling caused by the
system L (see (11)), and I(y**%;x(0)) shows the effect of
the initial state x(0), which can be viewed as an external
input between d and y, on y.

In Proposition 9, the relation (15) can be shown by the
following procedure: We first divide (16) by k and then
take the limsup as k — oo on both sides. Then, we divide
the limsup term into limsup and liminf on the right-hand
side. Note that this leads us to the inequality in (15).

3.8 Mutual information and unstable zeros

The relation between ho(d) and heo(y) has been clarified
by Proposition 9. We next consider the relation between
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_T Pl Lo
Fig. 3. Equivalent system with the inverse system Lo of
Lyg.

the mutual information term in (15) and the unstable zeros
of the open-loop transfer function L(z).

The mutual information is a quantity in the time domain.
In general, however, it is difficult to deal with the zeros
of transfer functions in this domain. Thus, we view the
zeros of L as the poles of the inverse system of L. The
poles are more convenient for our analysis because they
can be expressed as the eigenvalues of the state matrix
of the system. Moreover, this enables us to apply results
in Martins et al. [2007], where, for an unstable system,
the mutual information between the initial state and the
output of the system is related to its unstable poles.

One problem of this approach is that since L is strictly
proper, the inverse system of L is improper. For this
reason, we consider the inverse system of the biproper
system Lg defined by (17).

Let ﬁo denote the inverse system of Lg. The state-space
representation of Lg is given by

Lo {X(S(Z)l)]
_ [4o - BoD; ' Co ByDg x(k)
[ —~Dy'By Dyt ] [y+(k)]

= [é f;} kAL (21)

The system in Fig. 2 can be equivalently expressed as
Fig. 3 by using Ly.

Now, without loss of generality, A can be divided into
the stable part A; € R™*™s and the unstable part Ag €

R™« X"« guch as
- [A, 0
A= N
koAt

where all eigenvalues of A, lie inside the unit circle,

and those of Au lie outside or on the unit circle. Let
xs(k) € R™ and x,(k) € R™ be the parts of the state

variable x(k) corresponding to A, and A, respectively.
We similarly define By and B,, as the parts of B.

We have the following proposition.

Proposition 12. Consider the system depicted in Fig. 3. If
the system is stable in the mean-square sense (14), then
the following inequality holdS'

> > logld,

I (y’ﬁ”,
BeUZ],

where UZ, is the set of unstable zeros of L(z) given in

(3).

Proof. From (21), we have that

liminf —%——+~~
k—oo

(22)

k—1

xu(k) = Afx, (0) + > A By TG (23)
=0
= AFx(k),
where X is given as
k—1 o R
(k) == xu(0) + Y _ A Buy ™ (i) (24)
=0

Let Vx(k) denote the variance of x(k). From the above
equation, we have that

Ve (8) = (45) Vi) (48)

Thus, it follows that

log det (Vi (k)) = (k).
From this and the property (9), we have that
h(x(k))
k
< log {(27 €)™ det Vx(k)}
- 2k
_ log(2me)™  logdet Vi, (k)
2k 2k

We have supy, Vi, (k) < oo because of the stability of the

feedback system. Hence, we have
h(x(k

o )

sup (25)

k—oo

Here, note the left-hand side of (22). It follows that
I((y")5x(0)) = I((y™)"5%u(0))
= h(xu(0)) = h(xu(0)|(y")").
The inequality is due to changing the variables from x(0)
to x,(0). Since, in (24), x(k) is denoted by x(0) and
(yT)*=1, we have
h(x4(0)) = h(x,(0)|(y*)")
= h(xu(0)) — A(x(k)|(y*)")
> h(xu(0)) = h(x(k))

by using (12). The inequality follows from (7). Then, we

have
I((y")*;%(0)) > h(x4(0)) — h(x(k)).

Finally, from (25) and (26), we obtain

(26)

k. .
lim inf M > log ’det Au’
k—oo kj
= > loglA,
XeUP

where UP; is the set of the unstable poles of Lo(z). We
have (22) by expressing this equation in terms of y, and
using the fact that the set of the unstable poles of Lg(2)
is equal to the set of unstable zeros of L(z). O

Remark 13. In general, from the viewpoint of the open-
loop system, when the system is unstable, the system
amplifies the initial state at a level depending on the
size of the unstable poles (see, e.g., (23)). Hence, we
can say that in systems having more unstable dynamics,
the signals contain more information about the initial
state. Therefore, in Fig. 3, we can expect the mutual
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information between the input y and x(0) to be a function
of the unstable poles. Proposition 12 corresponds to this
observation.

4. MAIN RESULT

We are now in a position to present the main result of
the paper. The following theorem provides an integral-type
constraint on the complementary sensitivity-like function
T. This is obtained by the results of Proposition 9 and
Proposition 12.

Theorem 1. Consider the system depicted in Fig. 1. If the
system is stable in the mean-square sense (14), then the
following holds:

hoo(y) = hoo(d) > > log|B| + log | Dy|.
BeUZ

(27)

Additionally, if d is an asymptotically stationary Gaussian
process, then

1 (7 — .
E[Wlog‘T(Jw)‘de 3" log|s| +log Dol (28)
BeUZL,

Proof. The relation (27) follows immediately by substi-
tuting (22) in Proposition 12 into (15) in Proposition 9.

Under the assumption that the input d is asymptotically
stationary, the output process y is asymptotically station-
ary as well since the feedback system is stable and linear
time-invariant. Thus, we have

hoo(d) = — /7T log (27Te§d(w)) dw,

heo(y) < E/—w log (27re§y(w)) dw,

by using (13) and the assumption that d is Gaussian.
Then, the following holds by (15):

i/ log 2 g, — i/ log ’T(jw)’ dw
4m -7 Sd(w) 2m -
k+v.
k—oo k

We obtain (28) from this and (22). O

+10g|D0|.

Remark 15. The relation (28) is similar to (5) in Propo-
sition 1, and has been shown independently of the result
in Sung and Hara [1989]. We consider a complementary
sensitivity property from the viewpoint of entropy and
mutual information. We note that the entropy rate of a
signal is a notion in the time domain and thus is well de-
fined even for systems which do not have transfer function
forms. This generalization is an important consequence of
the information theoretic approach here. Moreover, this
result will be useful for further extensions to networked
control systems, nonlinear systems, and so on. See also

Okano et al. [2008].

Note that (28) is an inequality constraint. From our
analysis, it is unclear when the equality holds here and
moreover whether we can show a condition for the equality
to hold by the information theoretic approach. This is left
for future research.

5. CONCLUSION

This paper has addressed a characterization of a com-
plementary sensitivity property by evaluating the entropy
of signals in the feedback system. In particular, we have
shown a constraint similar to Bode’s integral formula (5).
We would like to apply this result to networked control
systems and nonlinear systems in future research (Okano
et al. [2008]).
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