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Abstract: Self-concordant functions are a special class of convex functions in Euclidean space
introduced by Nesterov. They are used in interior point methods, based on Newton iterations,
where they play an important role in solving efficiently certain constrained optimization
problems. The concept of self-concordant functions has been defined on Riemannian manifolds
by Jiang et al. and a damped Newton method developed for this context. As a further
development, this paper proposes a damped conjugate gradient method, which is an ordinary
conjugate gradient method but with a novel step-size selection rule which is proved to ensure the
algorithm converges to the global minimum. The advantage of the damped conjugate gradient
algorithm over the damped Newton method is that the former has a lower computational
complexity. To illustrate the advantages, the algorithm is applied to find the center of mass
of given points on a hyperboloid model, known as the Karcher mean.
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1. INTRODUCTION

Recently, algorithms for optimization on smooth manifolds
have been developed with application in such areas as
medicine Adler et al. [2002], signal processing Manton
[2002], machine learning Nishimori et al. [2005], computer
vision Ma et al. [2001], Helmke et al. [2004], and robotics
Helmke et al. [2002], Helmke, Hüper et al. [2002].

A typical approach to optimization on smooth manifolds is
to endow the manifold with a metric structure, to achieve
a Riemannian manifold, see Smith et al. [1994], Edelman
et al. [1998]. The simplest method for the optimization on
Riemannian manifolds is the steepest descent method and
although it has good convergence properties it has a slow
linear convergence rate. Using second-order information on
the cost function, the conjugate gradient method achieves
super-linear convergence and the Newton method local
quadratic convergence.

Self-concordant functions in Euclidean space were pro-
posed by Nesterov and Nemirovskii Nesterov [2004] and
used to construct the barrier function for the interior point
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method. A damped Newton method was developed for the
optimization of such functions. This method is an ordinary
Newton method with an explicit step-size choice which
guarantees convergence. Building on this work, Jiang et al.
[2007], develop and exploit the notion of self-concordance
for optimization on Riemannian manifolds. A correspond-
ing damped Newton method was proposed. As a result,
there is guidance for the construction of efficient interior-
point methods on smooth manifolds. For the Newton-
based method, on Riemannian manifolds as well as in Eu-
clidean space, the Newton descent direction is calculated
by solving a linear system at each iteration. At potentially
less computational cost, the conjugate gradient method
can converge to the solution super-linearly without solving
a linear system. In Smith et al. [1994], Smith generalized
the conjugate gradient method on Riemannian manifolds,
using a geodesic search method to find the step-size,
generalizing the line search approach in Euclidean space.
However, the geodesic search is often hard to compute in
practice. Our goal here is to exploit the nice properties of
self-concordant functions, and thereby develop a damped
conjugate gradient method for the optimization of such
functions on Riemannian manifolds. A key contribution is
to introduce a novel simply calculated step-size selection
to ensure convergence.
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We propose a conjugate gradient algorithm with an ex-
plicit step-size rule guaranteed to converge to the optimal
solution of a self-concordant function. The main advantage
of our approach is that it only uses the first and second
covariant derivatives of the cost function without the need
to compute a linear system, yet converges super-linearly. In
each step, the complexity of our method is O(n2) instead
of O(n3) for the damped Newton method, where n is the
dimension of the Riemannian manifold.

To illustrate the convergence properties of our method,
we apply it to find the Karcher mean of a set of given
data points on a hyperboloid model. That is, given some
points p1, . . . , pk on the hyperboloid model In, the
problem is to find the point on In which minimizes
the mean squared intrinsic distance to every point of
p1, . . . , pk. This Karcher mean was first introduced in
Karcher [1977] as the center of mass on a Riemannian
manifold. Methods to find this mean on Riemannian
manifolds have been well studied, see Manton [2006], Absil
et al. [2004]. However, the optimization tasks in Manton
[2006], Absil et al. [2004] are defined on Riemannian
manifolds with positive curvatures. Even though these
methods can still be used to find the Karcher mean
on Riemannian manifolds with negative curvatures, until
now, we are not aware of any particular method exploiting
the property of negative curvatures. In Karcher [1977],
it is shown that the Karcher mean cost function defined
on the Riemannian manifolds with negative curvatures is
convex. Using this result together with the property that
the hyperboloid model has constant negative curvature, it
is here proved that the Karcher mean cost function defined
on this model is self-concordant. Simulation results show
our method converges to the Karcher mean of given points
on the hyperboloid model super-linearly.

In Section 2, we will provide some preliminaries associ-
ated with self-concordant functions defined on Rieman-
nian manifolds. Then in Section 3, the damped conjugate
gradient method is proposed for the optimization of such
functions and it is proved that this method converges to
the minimum of the self-concordant function. In Section
4, an example is included to illustrate the convergence
properties of our method.

2. SELF-CONCORDANT FUNCTIONS ON
RIEMANNIAN MANIFOLDS

In this section, we review properties of self-concordant
functions on Riemannian manifolds set out in Jiang et al.
[2007], and provide motivation for introducing our pro-
posed damped conjugate gradient method.

2.1 Notation for Riemannian manifolds

Let M denote a smooth n-dimensional geodesically com-
plete Riemannian manifold. Recall that Ck smooth means
derivatives of the order k exist and are continuous. For
convenience, by smooth, we mean C∞, that is, derivatives
of all orders exist. Let TpM denote the tangent space at
the point p ∈ M . Since M is a Riemannian manifold, it
comes with an inner product 〈·, ·〉p on TpM for each p ∈M .

This induces the norm ‖ · ‖p given by ‖X‖p = 〈X,X〉
1
2
p for

X ∈ TpM .

There is a natural way (precisely, the Levi-Civita connec-
tion) of defining acceleration on a Riemannian manifold
which is consistent with the metric structure.

A curve with zero acceleration at every point is called a
geodesic. Since M is geodesically complete, given a point
p ∈ M and a tangent vector X ∈ TpM , there exists
a unique geodesic γX : R → M such that γX(0) = p
and γ̇X(0) = X . We therefore define an exponential
map Expp : TpM → M by Expp(X) = γX(1) for all
X ∈ TpM . Note that ExpptX is the geodesic emanating
from p in the directionX . Another consequence ofM being
geodesically complete is that any two points on M can be
joined by a geodesic of shortest length. The distance d(p, q)
between two points p, q ∈ M is defined to be the length
of this minimizing geodesic. Since the length of the curve
γ : [0, 1] → M, γ(t) = ExpptX , is ‖X‖p, it follows that if
q = ExppX then d(p, q) ≤ ‖X‖p, where the inequality is
possible if there exists a shorter geodesic connecting p and
q.

If γ : [0, 1] → M is a smooth curve from p = γ(0)
to q = γ(1), there is an associated linear isomorphism
τpq : TpM → TqM called parallel transport. One of its
properties is that lengths of vectors and angles between
vectors are preserved, i.e. ∀X,Y ∈ TpM , 〈τpqX, τpqY 〉q =
〈X,Y 〉p.
Let N be an open subset of M . Consider the function
f : N → R. Given p ∈ N and X ∈ TpN , the first, second
and third covariant derivatives of f are defined as follows:

∇Xf(p) =
d

dt

∣
∣
∣
∣
t=0

{f(ExpptX)}, (1)

∇2
Xf(p) =

d2

dt2

∣
∣
∣
∣
t=0

{f(ExpptX)}, (2)

∇3
Xf(p) =

d3

dt3

∣
∣
∣
∣
t=0

{f(ExpptX)}. (3)

The gradient of f at p ∈ N , denoted by gradpf , is
defined as the unique tangent vector in TpN such that
∇Xf(p) = 〈gradpf,X〉 for all X ∈ TpN .

The Hessian of f at p ∈ N is the unique symmetric bilinear
form Hesspf defined by the property

Hesspf(X,X) = ∇2
Xf(p), X ∈ TpN. (4)

We say a subset N of M is convex if for any p, q ∈ N , out
of all the geodesics connecting p and q, there is precisely
one which is contained in N . Note that this is a weaker
condition than that used extensively in Udriste [1994]. A
function f : N ⊂ M → R is said to be convex if N is
a convex set and for any geodesic γ : [0, 1] → N , the
function f ◦ γ : [0, 1] → R satisfies the usual definition of
convexity, namely

f(γ(t)) ≤ (1 − t)f(γ(0)) + tf(γ(1)), t ∈ [0, 1]. (5)

If f : N → R is C∞-smooth and N is convex, then f
is convex if and only if ∇2

Xf(p) ≥ 0 for all p ∈ N and
X ∈ TpN .

The epigraph epi(f) of f is defined by
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epi(f) = {(p, t) ∈ N × R|f(p) ≤ t}. (6)

A function f is said to be closed if its epigraph epi(f) is
closed in M × R.

2.2 Self-Concordant Functions

The definition of self-concordance was generalized to man-
ifolds in Jiang et al. [2007] and is repeated below.

Definition 1. Let M be a smooth n-dimensional geodesi-
cally complete Riemannian manifold. Let f : N ⊂M → R

be a C3-smooth closed function. Then f is self-concordant
if

(1) N is an open convex subset of M ;
(2) f is convex on N ;
(3) there exists a constant Mf > 0 such that the inequal-

ity

|∇3
X(f(p))| ≤Mf(∇2

Xf(p))3/2 (7)

holds for all p ∈ N and X ∈ TpN .

The reason why f is required to be closed in Definition 1
is to ensure that f behaves nicely on the boundary of N ;
this is shown in the following proposition.

Proposition 2. Let f : N → R be self-concordant. Let
∂(N) denote the boundary of N . Then for any p̄ ∈ ∂(N)
and any sequence of points pk ∈ N converging to p̄ we
have f(pk) → ∞.

Self concordant functions have interesting properties which
facilitate our further analysis. For details, see Jiang et al.
[2007]. Let f : N → R be self-concordant. Since second
order covariant derivatives of self-concordant functions are
always nonnegative, they can be used to define a Dikin-
type ellipsoid W (p; r) ⊂ TpN : for any p ∈ N, and r > 0,

W (p; r) := {Xp ∈ TpN | [∇2
Xp
f(p)]1/2 < r}. (8)

Mapping all the elements in W (p; r) by the exponential
map Expp yields a subset Q(p; r) of M where

Q(p; r) = {q ∈M | q = ExppXp, Xp ∈ W (p; r)}. (9)

Then the following interesting properties hold.

(1) For any p ∈ N ⊆M ,

Q(p; 1) ⊆ N. (10)

(2) For any p ∈ N and Xp ∈ TpN, such that for
t ∈ [0, 1] the geodesic ExpptXp is contained in N.
Let q = ExppXp. Then we have

f(q) ≥ f(p) + ∇Xp
f(p) + ω([∇2

Xp
f(p)]1/2) (11)

where ω(t) = t − ln(1 + t). Note that if p 6= q, then
ω([∇2

Xp
f(p)]1/2) > 0, hence (11) gives a useful lower

bound on f(q).
(3) For any p ∈ N and Xp ∈ W (p; 1), let q = ExppXp.

Then we have

(1 − [∇2
Xp
f(p)]1/2)2∇2

Xp
f(p) ≤ ∇2

τpqXp
f(q)

≤
∇2

Xp
f(p)

(1 − [∇2
Xp
f(p)]1/2)2

, (12)

f(q) ≤ f(p) + ∇Xp
f(p) + ω∗([∇2

Xp
f(p)]1/2) (13)

where ω∗(t) = −t− ln(1− t). Similarly, if p 6= q, then
ω∗([∇2

Xp
f(p)]1/2) is also strictly positive, hence (13)

gives a useful upper bound on f(q).

In Jiang et al. [2007], a damped Newton method is pro-
posed for optimization of self-concordant functions on Rie-
mannian manifolds based on its properties. This method
is shown to quadratically converge to the minimum of
a self-concordant function. However, since the damped
Newton method is a Newton-based method, each of its
step requires solving a linear system. Consequently, it
increases the computational complexity. Therefore, we are
motivated to find the gradient-based method for optimiza-
tion of self-concordant functions on Riemannian manifolds.
Before we give our damped conjugate gradient method in
the next section, we need the following properties of self-
concordance on Riemannian manifolds.

Proposition 3. Let fi : N → R be self-concordant with
constants Mfi

, i = 1, 2 and let α, β > 0. Then the
function f(x) = αf1(x) + βf2(x) is self-concordant with
the constant

Mf = max

{
1√
α
Mf1

,
1√
β
Mf2

}

. (14)

Proposition 4. For any p ∈ N, and Xp ∈ TpN , if r =
√

∇2
Xp
f(p) < 1 we have

(1 − r +
r2

3
)∇2

Xp
f(p) ≤

∫ 1

0

∇2
τpExpptXp Xp

f(ExpptXp)dt

≤
∇2

Xp
f(p)

1 − r
. (15)

3. DAMPED CONJUGATE GRADIENT METHOD

In this section, a damped conjugate gradient method is
presented for optimization of self-concordant functions.

Let N ⊂ M be a convex open set. Then we consider
optimization problems of the form

min
x∈N

f : N ⊂M → R. (16)

In general, it is hard to solve (16) since N is an open
subset of a Riemannian manifold. In Jiang et al. [2007], the
case when f is self-concordant on Riemannian manifolds
is considered.

This paper will concentrate on the special case of the
optimization problem (16) when f satisfies the following
assumption.

Assumption 1. The function f in (16) is self-concordant,
has a minimum and ∇2

Xf(p) > 0, ∀p ∈ N , X ∈ TpN .
By scaling f if necessary, it is assumed without loss of
generality that f satisfies (7) with Mf = 2.

Assumption 1 guarantees that f has a unique minimum

on N . Let K = {p ∈ N

∣
∣
∣
∣
f(p) ≤ f(p1), p1 ∈ N}. Then

∀p ∈ K, Assumption 1 implies that there exist α, θ > 0
such that Smith et al. [1994]
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θ‖X‖2
p ≤ ∇2

Xf(p) ≤ α‖X‖2
p X ∈ TpN. (17)

Since self-concordant functions on Riemannian manifolds
have nice properties, it is possible to define a damped
conjugate gradient method to solve (16) when f in (16)
satisfies Assumption 1.

Suppose we are at a point pk at time k. Given an appropri-
ate step-size tk and conjugate gradient direction Hk, the
conjugate gradient method sets pk+1 = Exppk

tkHk.

From (13), provided pk+1 ∈W 0(pk; 1), we have

f(pk) − f(pk+1) ≥ −∇tkHk
f(pk) + [∇2

tkHk
f(pk)]1/2

+ ln(1 − [∇2
tkHk

f(pk)]1/2). (18)

We propose choosing tk to maximize the right side hand
in (18). Later in Theorem 5, it is proved that such a
strategy guarantees convergence to the minimum of the
cost function. Initially, we assume that ∇Hk

f(pk) < 0.
Later, in Lemma 1, it is proved that this assumption is
correct. Hence, tk is required to be positive.

The right side of (18) is of the form ψ(tk) where ψ(t) =

αt + ln(1 − βt) with α = −∇Hk
f(pk) +

√

∇2
Hk
f(pk) and

β =
√

∇2
Hk
f(pk). Note that β will be strictly positive if

we are not at the minimum of f . Therefore, ψ is defined
on the interval [0, 1/β). If tk ∈ [0, 1/β), pk+1 ∈W 0(pk) as
required for (18) to be a valid bound.

Differentiating ψ(t) yields

ψ′(t) = α− β

1 − βt
, (19)

ψ′′(t) =− β2

(1 − βt)2
< 0, (20)

showing that ψ(t) is concave on its domain [0, 1/β). It
achieves its maximum at

t =
α− β

αβ
. (21)

Let λk =
−∇Hk

f(pk)
√

∇2
Hk

f(pk)
. Substituting α and β into t, we

obtain

tk =
λk

(1 + λk)
√

∇2
Hk
f(pk)

. (22)

Therefore, the proposed damped conjugate gradient algo-
rithm for (16) is as follows.

Algorithm 1: Damped Conjugate Gradient Algo-
rithm

step 0: Select an initial point p0 ∈ N , compute H0 = G0 =
−gradp0

f , and set k = 0.

step k: If gradpk
f = 0, then terminate. Otherwise, com-

pute

λk =
−∇Hk

f(pk)
√

∇2
Hk
f(pk)

, (23)

tk =
λk

(1 + λk)
√

∇2
Hk
f(pk)

, (24)

pk+1 = Exppk
tkHk, (25)

Gk+1 = −gradpk+1
f, (26)

γk+1 =
〈Gk+1, Gk+1〉pk+1

〈Gk, Hk〉pk

, (27)

Hk+1 =Gk+1 + γk+1τpkpk+1
Hk, (28)

where τpkpk+1
is the parallel translation with respect to

the geodesic from pk to pk+1. If k + 1 mod n− 1 = 0, set
Hk+1 = Gk+1. Increment k and repeat until convergence.

The convergence of Algorithm 1 is demonstrated in Theo-
rem 5 with the help of Lemma 1, 2 and 3.

Lemma 1. Let the cost function f : N → R in (16)
satisfy Assumption 1. Assume p0 is such that gradp0

f 6=
0. Then either 1) Algorithm 1 terminates after a finite
number iterations if gradpk

f = 0 at a certain k, or
2) Algorithm 1 generates an infinite sequence {pk} of
points (That is, there are no divisions by zeros) if zero
gradient never encountered in the iteration and moreover,
∀k, ∇Hk

f(pk) = 〈gradpk
f,Hk〉pk

< 0.

Lemma 2. Let {pk} be an infinite sequence of points
generated by Algorithm 1 where the cost function f : N →
R satisfies Assumption 1. Then:

(1) ∀k, pk ∈ N .
(2) If gradpk+1

f 6= 0, then λk > 0.

(3) If gradpk+1
f 6= 0, then f(pk+1) ≤ f(pk) + ω(λk) <

f(pk) where ω(t) = t− ln(1 + t).

Lemma 3. Let {pk} and {Hk} be infinite sequences gen-
erated by Algorithm 1 where the cost function f : N → R
satisfies Assumption 1. If gradfpk

6= 0, then for all k

‖Hk+1‖2
pk+1

‖gradpk+1
f‖4

pk+1

≤
‖Hk‖2

pk

‖gradpk
f‖4

pk

+
3

‖gradpk
f‖2

pk

. (29)

Theorem 5. Consider the optimization problem in (16). If
the cost function f : N → R in (16) satisfies Assumption
1, then Algorithm 1 converges to the unique minimum of
f .

Proofs of Lemma 1, 2, 3 and Theorem 5 are omitted to save
space. Interested readers may ask the authors for details.

4. ILLUSTRATIVE EXAMPLE

In this section, we consider the problem of computing
the center of mass of a set of given points defined on
the hyperboloid model. Before defining this problem, we
first introduce the geometric properties of the hyperboloid
model. In R

n+1, consider the following quadratic form Q,

Q(x) = −
n∑

i=1

x2
i + x2

n+1. (30)
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Let A = diag(−1,−1, . . . ,−1
︸ ︷︷ ︸

n

, 1). Then Q can be repre-

sented in terms of A by

Q(x) = xTAx. (31)

Given this quadratic form, the upper fold In of the
hyperboloid is determined by the formula

In = {x ∈ R
n+1|Q(x) = 1, xn+1 > 0}. (32)

The set In can be regarded as a differentiable hypersurface
in R

n+1 since it is an open subset of the pre-image of a
regular value of a differentiable function. In particular, it
inherits from R

n+1 a differentiable structure of dimension
n. For any x ∈ In, the tangent space TxIn is

TxIn = {X ∈ R
n+1|xTAX = 0}. (33)

For any x ∈ In, we define a Riemannian metric on the
tangent space of x by

〈X,Y 〉 = XT (−A)Y, X, Y ∈ TxIn. (34)

Given a point x ∈ In and a non-zero tangent vector
X ∈ TxIn, the geodesic emanating from x in the direction
X is given by Benedetti et al. [1992]

ExpxtX = xcosh(θt) +
1

θ
Xsinh(θt) (35)

where θ =
√

XT (−A)X .

The intrinsic distance between x and y on this hyperboloid
model is given by William [1993]

d(x, y) = arccosh(xTAy). (36)

Recall that arccosh(t) = ln(t +
√
t2 − 1) for t > 1. Since

d(x, y) ≥ 0, we can expect that xTAy ≥ 1 holds for all
x, y ∈ In.

Consider the following optimization problem

arg min
p∈In

f(p) =
1

2

n∑

i=1

d2(p, pi) =
1

2

n∑

i=1

arccosh2(pTApi)

(37)

where pi ∈ In, i = 1, . . . ,m. The solution of (37) is
called the Karcher mean Karcher [1977] of the given points
p1, . . . , pm.

By computation, we obtain the first, second and third
covariant derivatives of the cost function at p ∈ In in the
direction H ∈ TpIn by

∇Hf(p) = θ

m∑

i=1

arccosh(pTApi)
XTApi

√

(pT (−A)pi)2 − 1
,

∇2
Hf(p) = θ2

m∑

i=1

[
(XTApi)

2

(pTAPi)2 − 1

+ arccosh(pTApi)
pTApi[(p

TApi)
2 − (XTApi)

2 − 1]

(pTAPi)2 − 1)
3
2

]

,

∇3
Hf(p) = θ3

m∑

i=1

[
XTApi

((pTAPi)2 − 1)
3
2

− (XTApi)
3

((pTAPi)2 − 1)
5
2

]

(3pTApi(p
TAp2

i − 1)
1
2 − arccosh(pTApi)(2p

TAp2
i + 1)),

where θ =
√

HT (−A)H and X = H/θ.

In view of Theorem 2.1 in Page 111 in Udriste [1994], since
In is simply connected, complete with negative sectional
curvature, the function f(p) in (37) is strictly convex.
Hence, this implies that for all p ∈ In and non-zero tangent
vector H ∈ TpIn

∇2
Hf(p) > 0. (38)

For any p ∈ In, the gradient gradpf of f is given by

gradpf = (kTAp)p− k (39)

where k =
∑m

i=1
arccos(pT Api)pi√
(pT (−A)pi)2−1

.

The following lemma shows that the function f in (37) is
self-concordant.

Lemma 4. The function f in (37) is a self-concordant
function defined on the n-dimensional hyperboloid model

with the constant Mf =
√

16
27 .

Since the function f in (37) is self-concordant, we are able
to apply our damped conjugate gradient algorithms to find
the minimum of f on In. The proposed damped conjugate
gradient method for solving (37) is given as follows.

Algorithm 2: Damped Conjugate Gradient Algo-
rithm for (37)

step 0: Select an initial point p0 ∈ In, compute H0 = G0 =
−gradp0

f by (43), and set k = 0.

step k: If gradpk
f = 0, then terminate. Otherwise, com-

pute

λk =
−∇Hk

f(pk)
√

∇2
Hk
f(pk)

, (40)

tk =
λk

(1 + λk)
√

∇2
Hk
f(pk)

, (41)

pk+1 = pk cosh

(
√

Hk(−A)Hktk

)

+
Hk

√

Hk(−A)Hk

sinh

(
√

Hk(−A)Hktk

)

, (42)

Gk+1 =−gradpk+1
f, (43)

γk+1 =
〈Gk+1, Gk+1〉pk+1

〈Gk, Hk〉pk

, (44)

Hk+1 =Gk+1 + γk+1τpkpk+1
Hk, (45)

where τpkpk+1
is the parallel transport with respect to the

geodesic from pk to pk+1. If k + 1 mod n − 1 = 0, set
Hk+1 = Gk+1. Increment k and repeat until convergence.

We applied the above algorithm to task (37) and compared
its performance against the damped Newton method Jiang
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et al. [2007]. In particular, we take n = 19. All the simu-
lations were implemented in MATLAB 7.0 and all results
were obtained using a 3.06 GHZ Pentium 4 machine, with
1Gb of memory, running Windows XP Professional.

Figure 1 illustrates the result of the damped Newton
method and conjugate gradient method on function f
in (37). Table 1 shows the simulation time and accu-
racy using the damped conjugate gradient and Newton
methods. From Figure 1, it can be see that the damped
Newton method converges to the minimum quadratically,
whereas the damped conjugate gradient method converges
super-linearly. Although the damped conjugate gradient
method requires more steps, since it avoids computing a
linear system, it takes less time than the damped Newton
method, seen from Table 1.
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Fig. 1. The result of damped conjugate gradient method
for (37)

algorithm time(second) accuracy

damped conjugate gradient method 0.062 10−5

damped Newton method 0.313 10−5

Table 1. Simulation time and accuracy

5. CONCLUSIONS

In this paper, we propose a damped conjugate gradient
method for optimization of self-concordant functions on
Riemannian manifolds. Such a method is a conjugate gra-
dient method with a novel step-size selection rule, which
ensures that this algorithm converges to the global min-
imum. The advantage of the damped conjugate gradient
method over the quadratically damped Newton method
is that the former has a lower computational complexity
yet converges super-linearly. Both methods are applied to
examples and shown to converge to the minimum of a self-
concordant function.
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