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Abstract: In this paper, we present a formation control strategy for a group of agents modeled
as Euler-Lagrange systems. The formation is achieved by means of a desired kinematic model
generated by artificial potentials. The system uncertainties are compensated by binary adaptive
control which combines the good transient properties and robustness of Sliding Mode Control
with the desirable steady-state properties of parameter adaptive systems. Furthermore, an
important advantage with respect to sliding mode control is that the proposed controller
generates a continuous signal so that control chattering is avoided. A simplified version of
the controller is also proposed, which does not require the knowledge of the velocities of the
neighboring vehicles.
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1. INTRODUCTION

Formation control is an important field in multiagent co-
ordinated control. Basically, a group of autonomous agents
are required to accomplish desired tasks cooperatively,
maintaining a specific pattern. Multiagent systems have
several advantages over a single agent, such as, greater
flexibility, robustness, efficiency and redundancy (Chen
and Wang [2005]).

The formation control system should be able to perform
several functions, such as formation keeping, inter-agent
collision avoidance, navigation and obstacle avoidance. To
this end, different strategies have been proposed in the
literature, e.g., leader-follower (Desai et al. [1988], Das
et al. [2002] e Shao et al. [2007]), behavior-based (Balch
and Arkin [1998], Lawton et al. [2003]), virtual structure
(Tan [1996]) and artificial potentials (Leonard and Fiorelli
[2001]).

In control application, and in particular in formation con-
trol, it is important to achieve robustness and stability
in the presence of unknown disturbances and parameter
uncertainties. To address these issues, Gazi [2005] con-
sidered a control strategy based on artificial potentials
and sliding mode control (SMC). Other papers proposed
the utilization of adaptive control for group formation
(Hadaegh et al. [1998]), (Wong et al. [2001]), (Semsar and
Khorasani [2006]).

Adaptive control systems with conventional update law
may exhibit undesirable transient behavior. Moreover,
the basic adaptive systems is nonrobust with respect to
unmodeled dynamics or external disturbances (Rohrs et al.
[1990]) and modifications of the basic adaptation law may

⋆ This work was supported by the CNPq (Brazilian Research Coun-
cil) and FAPERJ (Rio de Janeiro Research Foundation).

be required (Ioannou and Sun [1996]). On the other hand,
SMC can generate undesirable high frequency switching of
the control signal known as control chattering.

In this paper, we try to circumvent the above men-
tioned drawbacks while preserving the advantages od
adaptive control and SMC. This is accomplished by utiliz-
ing an adaptive control scheme based on the binary model
reference adaptive control (B-MRAC) proposed by Hsu
and Costa [1990]. Basically, the B-MRAC consists of a
high gain gradient adaptive law with parameter projec-
tion to maintain the adaptive parameter vector within
some closed finite ball in the parameter space. Stemming
from the binary control theory introduced in (Emelyanov
[1987]), the B-MRAC combines the good transients of
Variable Structure (VS) adaptive control systems (Hsu
et al. [1994]) with the desirable steady-state properties
of parameters adaptive controllers. Essentially, this is
achieved by exploiting the good properties of a well known
adaptation scheme when the adaptation gain is sufficiently
high. As the gain is increased, the controller tends to
behave as a sliding mode controller.

Notation and Terminology : λM (·)(λm(·)) denotes the
largest (smallest) eigenvalue of a matrix. ISS (IOpS) means
Input-to-State-Stable (Input-to-Output-practically-Stable)
(Jiang et al. [1994]). The Euclidean norm of a vector v and
the corresponding induced norm of a matrix A are denoted
by |v| and |A|, respectively. For any measurable function
function u : IR+ → IRm, ‖u‖ denotes ess sup{|u(t)|, t ≥ 0}.
The paper is organized as follows. In Section II, we present
the dynamic model of the agents and a desired kinematic
model derived from a given potential function. In Section
III, we develop stable binary adaptive control schemes in
two possible scenarios. First, the velocities of the neighbors
are assumed available for each agent. Then, this is relaxed
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to the partially decentralized case when only the individual
velocities are available. In Section IV, simulations are
presented to illustrate the performance of the proposed
strategies. Finally, conclusions are presented in Section V.

2. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

Consider a multi-agent system consisting of N vehicles
fully actuated and modeled by the following dynamics

Hi(yi)ÿi + Ci(ẏi, yi)ẏi = τ i, i = 1, ..., N. (1)

where Hi ∈ IRn×n is the inertia matrix, Ci ∈ IRn×n

represent the centripetal and Coriolis forces and τ i ∈
IRn is a vector of independent control forces. The model
corresponds to a class of Euler-Lagrange system which has
the following properties: 1) for all i the inertia matrix Hi

is positive definite and satisfies hi
m‖x‖2 ≤ xT Hi(yi)x ≤

hi
M‖x‖2, with positive constant hi

m and hi
M ; 2) the inertia

matrix Hi is differentiable; 3)the matrix Ci is chosen

based on the Christoffel symbols so that Ḣi−2Ci is skew-
symmetric and thus,

vT
(

Ḣi − 2Ci
)

v = 0 ∀v ∈ IRn (2)

We consider the particular flocking problem which consists
in designing control laws so that all N agents stop at a
desired configuration defined by given relative positions of
the agents, i.e., ẏi(t) → 0 and

∣

∣yi(t) − yj(t)
∣

∣ → dij for

given constants dij ≥ 0, i, j = 1, ..., N .

In what follows, we assume that the model is uncertain,
i.e., the parameters of model (1) are known only nominally.

2.1 Artificial potential function approach

In this section we derive a kinematic model to be followed
by the agents based on an artificial potential function
(APF) which is specified by the designer to generate in-
teraction rules among the group members, and also the
environment, through attraction/repulsion forces. To this
end, the APF will be composed of two parts, one concern-
ing the interagent interactions and the other taking care of
the interactions with the environment. The former includes
functions of the distance between a pair of agents and
allows generating a desired geometric pattern with a pre-
scribed inter-vehicle distance between group components.
The latter can be used to define the navigation function
of the formation, e.g., virtual leaders tracking (Leonard
and Fiorelli [2001]), obstacle avoidance (Gazi and Pasino
[2004]) and target pursuing (Yao et al. [2006]).

Following the idea of potential function, the motion of each
agent is required to obey the following first order kinematic
model

ẏi = −∇yiJ(y) = −gi(y) (3)

where yi ∈ IRn is the position of the i-th agent, yT =
[y1T , . . . , yNT ] and J : IRn×N × IRn → IR is an artificial
potential function (APF), assumed twice differentiable.

2.2 The sliding function

Let us define the sliding function 1 si as

si = ẏi + gi(y) (4)

The control objective is to make si(t) → 0 as t → ∞, so
that each agent obeys the desirable kinematic model (3)
asymptotically. This could be achieved using discontinuous
control functions to reach the sliding manifold si = 0
in finite time. However, in order to avoid high frequency
control switching (chattering phenomena), we will design
continuous control laws in what follows.

3. BINARY ADAPTIVE CONTROL OF
MULTI-AGENT SYSTEMS

The next step consists in the design of the control signals
τ i such that the sliding functions tend to zero in spite of
the system uncertainties.

The derivative of (4) is given by

ṡi = ÿi + ġi(y, ẏ) (5)

Premultiplying (5) by Hi and considering (1), one gets

Hiṡi + Cisi = τ i + Hiġi + Cigi (6)

Assume that one can write the linear parametrization
Y iθ∗i = −(Hiġi + Cigi), where Y i is a regressor matrix
composed of known functions of y and ẏ and θi∗ ∈ IRm

parameter vector (m is number of matching parameters)
and substituting in (6) we obtain is a vector of constant
parameters. Such vector is assumed uncertain in the sense
that it is known only nominally. For simplicity, we will
assume that the nominal value is zero 2 . Now, equation
(6) can be written as

Hiṡi + Cisi = τ i − Y iθi∗ (7)

Then, the following control law is proposed

τ i = Y iθi − Ki
Dsi (8)

and introducing the parameter mismatch θ̃i = θi−θi∗, one
rewrite (7) as

Hiṡi + Cisi = Y iθ̃i − Ki
Dsi (9)

which is a well known form in the adaptive control theory
of robot manipulators (Slotine and Li [1991]).

3.1 Centralized binary adaptive control

In this section we assume that the position and velocity of
all neighbors of each agent are available for control. This
scenario corresponds to a centralized control system. The
following adaptation law based on binary model reference
adaptive control (B-MRAC), (Hsu and Costa [1987] - see
Appendix A) is proposed

θ̇i = −σθi − ΓiY iT

si (10)

1 which corresponds to the switching function in SMC.
2 If this was not the case, it would suffice to add to τ i a nominal
control of the form Y iθi

nom
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The σ-factor, also called projection factor (PF), is defined
as:

σ =

{

0 ; if
∣

∣θi
∣

∣ < M i
θ or σeq < 0

σeq ; if
∣

∣θi
∣

∣ ≥ M i
θ and σeq ≥ 0

(11)

where σeq = −θiT

ΓiY iT

s/|θi|2and M i
θ(> |θ∗|) is a con-

stant. Let Bi
θ = {θi : |θi| ≤ M i

θ}. Assuming that |θi(0)| ∈
Bi

θ, the projection factor acts as follows. If at any time θi(t)

is on the sphere |θi| = M i
θ and the term −ΓiY iT

si points
outwards such sphere, the update vector is projected onto
the tangent plane of the sphere; alternatively, if it points
inwards, the σ-factor is equal zero and θi(t) moves to the
interior of the sphere. Then, it is easy to prove that the
closed ball Bi

θ is invariant (Hsu and Costa [1987]), i.e.,
∀t ≥ 0, |θi(t)| ∈ Bi

θ .

For stability analysis, consider system (9), (10), (11), and
assume θi(0) ∈ Bi

θ with constant M i
θ ≤

∣

∣θi∗
∣

∣. We can show

that si → 0 as t → ∞. To this end, consider the following
candidate Lyapunov function

V i =
1

2
siT

Hisi + θ̃iT

Γi−1

θ̃i (12)

For simplicity of analysis and without loss of generality,
we define Γi = γI. Using the skew-symmetry property, (2)
holds and the time-derivative of (12) is thus given by

V̇ = −siT

Ki
Dsi − σ

γ
(θ̃i + θi∗)T θ̃i (13)

The last term of (13) is nonpositive (see Hsu and Costa
[1987] or Ioannou and Sun [1996]) and therefore

V̇ i ≤ −siT

Ki
Dsi ≤ 0 (14)

One can show using Barbalat’s lemma that si → 0 as
t → ∞. Therefore, each agent obeys the desired dynamics
asymptotically.

3.2 Decentralized binary adaptive control

We now consider a partially decentralized control system
scenario where the velocities of the neighbors are not
available for each agent.

We first define wi = Hiġi, where wi ∈ IRn, and assume
that

∣

∣wi
∣

∣ ≤ w̄, where w̄ is a positive constant. The stability
analysis of the closed loop system will show that for each
w̄, there exists a ball of initial conditions for which the
bound w̄ holds. Moreover, the radius of the ball can be
made arbitrarily large for increasing w̄. As mentioned,
we consider the term Hiġi as a disturbance that is to
be rejected by the control action. In this way, we define
Y iθi∗ = −

[

Cigi
]

and from (6), we obtain

Hiṡi + Cisi = τ i − Y iθi∗ + wi (15)

The control law for this case is proposed as

τ i = Y iθi − w̄sat(γwsi) − Ki
Dsi (16)

where for v ∈ IRn, sat(v) = [sat(v1), ..., sat(vn)]T and
γw is a positive constant. Substituting this control law in
(15), we have

Hiṡi + Cisi = Y iθ̃i − Ki
Dsi + wi − w̄sat(γwsi) (17)

Stability analysis The model of the overall multiagent
system can be regarded as being composed of the agent
subsystems (17) interconnected by the dynamic subsys-
tems corresponding to

wi = Hiġi(y, ẏ) (18)

Figure 1 represents this in terms of a block diagram. For

Fig. 1. Block diagram for the i-th agent

the upper block, the Lyapunov function is chosen as

V i =
1

2
siT

Hisi +
1

2
θ̃iT

Γi−1

θ̃i (19)

For simplicity of analysis and without loss of generality,
we define Γi = γI. Then, we can write the inequality

V i ≤ hi
M

∣

∣si
∣

∣

2
+

1

2γ

∣

∣

∣
(θi − θi∗)

∣

∣

∣

2

(20)

Since
∣

∣θi(t)
∣

∣ ≤ M i
θ, we obtain

V i ≤ hi
M

∣

∣si
∣

∣

2
+

2M i2

θ

γ
(21)

The time-derivative of (19) is given by

V̇ i = −siT

Ki
Dsi − σ

γ
θiT

θ̃i + siT

wi(t) − siT

w̄sat(γwsi)(22)

Since the second term is nonpositive, we can write

V̇ i ≤ −λm(Ki
D)
∣

∣si
∣

∣

2
+
∣

∣si
r

∣

∣

∣

∣wi
∣

∣− γw

∣

∣si
r

∣

∣

2
(23)

where si
r is a reduced vector composed of non saturated

elements. The last two terms have a maximum value at
wi2

4γw
. Thus, we have

V̇ i ≤ −λm(Ki
D)
∣

∣si
∣

∣

2
+

wi2

4γw

(24)

Manipulating (21) and substituting in (24)

V̇ i ≤ −λ1V
i + λ1

2M i2

θ

γ
+

wi2

4γw

(25)

where λ1 = λm(Ki
D)/hi

M . By using a comparison lemma,
one can show that

Vi ≤ c1e
−λ1tV (0) +

∫

e−λ1(t−ξ)udξ (26)

where u = λ1
2Mi2

θ

γ
+ wi2

4γw
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Using the inequality (21) and upper bounding the integral
term of (26) in terms of ||wi|| we get, after some algebraic
manipulations,

∣

∣si(t)
∣

∣

2 ≤ c1e−λ1t
∣

∣si(0)
∣

∣

2
+ k1

M i2

θ

γ
+ k2

‖wi‖2

γw
(27)

∀t ≥ 0, where c1, k1, k2 are positive constants. This results
in the following bound

|s(t)| ≤ β1(|s(0)| , t) + γ
−1/2
w k3‖w‖ + γ−1d1. (28)

where sT (t) = [s1T (t), . . . , sNT (t)], wT = [w1T , . . . , wNT ],
k3 and d1 are positive constants and β1 is a class KL
function (Jiang et al. [1994]). Now, concatenating the
equations (18) for i = 1, ..., N , we have

w = Hġ = H
∂g(y)

∂y
ẏ (29)

ẏ = −g(y) + s. (30)

Equations (29) and (30) can be interpreted as a nonlinear
dynamic system with input s and output w. Assuming that
this subsystem is ISS, one has

|w(t)| ≤ β2(|y(0)| , t) + η2 ‖s(t)‖ (31)

where β2 is class KL and η2 is a positive constant. From
a small gain theorem for ISS systems (Jiang et al. [1994]),
equations (28) and (31) impliy that system (17)(29-30)
is (locally) IOpS with null inputs, i.e., practically asymp-
totically stable, with residual set of size O(1/

√
γ). As a

consequence
∣

∣yi − yj
∣

∣− dij → O(1/
√

γ).

Noting that the bounds in (28) and (31) are independent of
w̄, we can further conclude that the system is semi-globally
stable with respect to the parameter w̄.

This result holds under the ISS assumption for system (29-
30). It is possible to show that for the class of quadratic
potential function this assumption is valid. Moreover,
based on the results of simulations, we conjecture that
this assumption could be shown to hold for more general
class of potential functions.

4. SIMULATIONS

4.1 Illustration example

We consider the control of a group of three vehicles
modeled as point masses moving on a plane. The objective
is to achieve an ultimate triangular pattern. The dynamics
of each agent is described by

M iÿi + Diẏi = τ i (32)

where yi ∈ IR2 is the position of the vehicles, M i and Di

represent scalar mass and damping constants, respectively.
Substituting (4) and (5) in (32) we obtain

M iṡi + Disi = τ i + M iġi + Digi (33)

For the centralized control (Sec. 3.1), the control law is
given by (8), where Y i = −[ġi gi] and θi∗ = [M i Di]T .
In the partially decentralized case (Sec. 3.2), the control
is given by (16), where Y i = −[gi], θi = Di and wi(t) =
M iġi.

We have used the potential function given in Gazi [2005]

J(y) =

N−1
∑

i=1

N
∑

j=i+1

[

aij

2

∣

∣yi − yj
∣

∣

2
+

bijcij

2
exp

(

−

∣

∣yi − yj
∣

∣

2

cij

)]

where aij is an attraction constant and bij is a repulsion
constant. The parameter cij is defined by the following

cij =
dij2

log
(

bij

aij

) . (34)

The constants dij give the desired inter-vehicular dis-
tances. The agent parameters are identical and given by
, ∀i, M i = 50 and Di = 5. The initial velocities were set
equal to zero. For the APF parameters, we have chosen
∀i, j, aij = 0.5, bij = 50, dij = 10 and thus cij = 14.4765.
For the centralized control case, the performance of three
controllers were compared: a controller with fixed nominal
parameters (τ i = Y iθi

nom−Ki
Dsi), the adaptive controller

with the conventional update law, and the binary adaptive
controller. The parameters for the first controller were
chosen as θi

nom = [10 1]T , Ki
D = 1. For the second

and third controllers, θi(0) = [10 1]T (initialized at
nominal values), Ki

D = 1 and Γi = 20I2. In particular,
for the binary adaptive controller, Mθ = 1.1

∣

∣θi∗
∣

∣. Figure 2

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120
Agents trajectories

Fig. 2. Trajectories of the agents forming a triangle

shows the trajectories of the three agents moving towards
their prescribed interagent distances and the desired for-
mation pattern. The initial positions are represented by
circles. From Figure 3, we can see that the formation error
(Ef =

∑

(|yi − yj | − dij) and the magnitude of the sliding
functions, represented by

∑ |si|, tend to zero faster in the
adaptive cases. In Figure 4, we can note that the binary
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Fig. 4. θ3(t) and u3(t)
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∣ui
∣

∣

adaptation leads to smoother adaptive parameters (only
shown for i = 3) compared to the conventional adaptation.
Since the adaptive parameters are kept within prescribed
limits by (

∣

∣θi(t)
∣

∣ ≤ M i
θ), significantly less control action

is required for binary adaptive control. In the second
set of simulations, two binary adaptive controllers were
compared: controller B1 (centralized) and controller B2
(decentralized). For controller B1, the system parameters
and initial conditions were set as in the previous case.
For controller B2, the parameters were set to: Ki

D = 1,
γi = γi

w = 20, Mθ = 1.1
∣

∣θi∗
∣

∣, w̄ = 10. In this case

θi (scalar) was initialized at a nominal value θi(0) = 1.
According to Figure 5, the error formation response for
both controllers B1 and B2 are close and the control
actions are of similar magnitude.

4.2 Obstacle avoidance and other formation shapes

The obstacle avoidance problem is addressed here by
considering the obstacles as fixed vehicles. The potential
function for the obstacles consists only of the repulsion
part. For different shapes of formation, it is sufficient to
set different values for dij . As an example, for a regular
hexagonal pattern (Figure 6), Dij = {dij} can be defined
as

Dij =













0 1 1
√

3 2
√

3

1 0
√

3 1
√

3 2

1
√

3 0 2
√

3 1√
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√
3

2
√

3
√

3 1 0 1√
3 2 1

√
3 1 0













∗ d (35)

Figure 7 shows the vehicles forming a regular hexagon with
obstacle avoidance. A triangular formation for six agents
is shown in Figure 8.

Fig. 6. Regular hexagonal pattern

−20 −10 0 10 20 30 40 50 60 70 80

−10

0

10

20

30

40

50

60

Agents trajectories

1 

2 3 

4 5 

6 

OBSTACLE 

Fig. 7. Agents forming a regular hexagon
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Fig. 8. Trajectories of the six agents forming a triangle

It should be noticed however that potential functions may
have local minima problems and, depending on the initial
conditions, the desired pattern may not be reached. This
is an issue for further research.

5. CONCLUSIONS

We have proposed a framework to design formation con-
trol for a group of Euler-Lagrange agents. The system
uncertainties are dealt with using binary adaptive control,
which can guarantee robustness and chattering avoidance
since it delivers continuous control signals. Artificial po-
tential functions (APF) were used to generate a desired a
convergent geometric pattern with a prescribed interagent
distance. A simplified version of the controller, which does
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not require the knowledge of the velocities of the neighbors
for each agent, was shown to be possible with semiglobal
stability property. Simulations confirm satisfactory results.
Future work include the stability analysis for general po-
tential functions and extension to nonholonomic agents.
Other issues include responses to typical real-world situ-
ations such as range measurement dropouts, communica-
tion delays etc.
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Appendix A. BINARY MODEL REFERENCE ADAPTIVE
CONTROL

The well known error equation of MRAC is of the form

ė = Ae − b̄(u + θ∗
T

ω) (A.1)

eo = y − ym = hT e

u = θT ω

where e ∈ IR3n−2 is the state error vector, n is the order of the plant,
u is the input, θ ∈ IR2n is the adjustable parameter vector, θ∗ is the
model matching parameter vector, ω ∈ IR2n is the regressor vector,
y is the plant output, ym is the model output, eo is the output or
tracking error, b̄ = (θ∗

2n)−1b, (A, b, h) is an appropriate nonminimal
realization of the reference model transfer function assumed SPR.

The gradient adaptation law with a σ-modification (Ioannou and
Kokotovic [1984]) is given by

θ̇ = −σθ − γeoω, σ > 0, (A.2)

In VS adaptive control, according to Hsu et al. [1994] the input u
can be

u = −f(ω)sgn(eo), f(ω) >

∣

∣

∣

θ∗
T

ω

∣

∣

∣

(A.3)

For instance, u = −Mθ |ω| sgn(eo), Mθ > |θ∗|

A binary version of (A.3) is given by Emelyanov [1987] as follows

u = Mθ |ω|µ(t), (A.4)

µ̇(t) =

{ −αsgn(eo) ; for |µ(t)| ≤ 1,
−βµ(t) ; for |µ(t)| > 1, |µ(to)| ≤ 1, t > to

(A.5)

where α and β are positive constants and to is the initial time.
It can be shown that all such solutions satisfy |µ(t)| ≤ 1, ∀t > to
and, moreover, when α → ∞, (A.5) becomes the bang-bang law
µ = −sgn(eo). Thus, the binary controller (A.4) and (A.5) tends to
the VS law (A.3) as α → ∞, in some sense.

It was proved in Hsu and Costa [1990] that a B-MRAC with
predictable and uniform transient behavior can be derived from
the M-RAC by using a projection factor (PF) and by (essentially)
increasing the speed of adaptation, while keeping the adjustable
parameter vector θ inside some finite ball of appropriate radius. The
PF is given by (11) where σeq = −γeoθT ω/ |θ|2.

The B-MRAC has excellent adaptation properties for large enough
γ. This results from the fact if Mθ > |θ∗|, then |e(t)|2 tends
exponentially fast to some residual value of order O(1/γ). The
foregoing properties were proved in Hsu and Costa [1990].
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