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Abstract :  We  consider state estimation for a class of jump Markov linear  discrete-time  systems. For this,  
we   present  an   algorithm employing  switches  among  two  interacting  multiple-model extended-Viterbi  
(IMM-EV) estimators.  The models  we adopt  for describing the systems can  be  used  in problems such as  
the  tracking  of   targets  capable of  abrupt  maneuvers  and  fault  detection  of  systems subject to possible 
component   failures. A  maneuver  detection scheme, and a method for detecting maneuver termination  are  
integrated  into  the  proposed  algorithm. Both  methods  determine when  switches  between  two IMM-EV  
algorithms  have  to  be   invoked.  A numerical  example illustrates  that  the  proposed algorithm can be an  
improvement  to several  known algorithms.  Copyright © 2008 IFAC 
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1.  INTRODUCTION 

This paper is concerned with state estimation for  a 

class of jump Markov linear systems shown in Tugnait 

(1982), Bar-Shalom and Li (1993). For dealing with the 

problem, the interacting multiple-model (IMM) algorithm 

of Blom and Bar-Shalom (1988) has been a popular scheme. 

Besides, the reweighed IMM (RIMM) algorithm of 

Johnston and Krishnamurthy (2001), and some of the 

interacting multiple-model extended-Viterbi (IMM-EV) 

algorithms of Ho (2003), Ho and Chen (2006) have been 

proposed. In contrast, we introduce an approach herein 

using switched IMM-EV algorithms as a viable  alternative 

(in terms of performance improvement) to the 

aforementioned  methods.    

      The novelty of the proposed approach is that it switches 

between two IMM-EV algorithms in an adaptive manner.  

Specifically,  the  proposed  approach  utilizes  an  IMM-EV  

algorithm for identifying the  most  likely  model   path   for 

state estimation if  no  abrupt  system changes  take place, 

and  employs an IMM-EV algorithm  otherwise  which  can  

 

 

yield    superior    performance   in  state  estimation  during  

change occurrences.  We use a constant-velocity model 

which is correct for no change occurrences, and acceleration 

models for covering the system dynamics. Like the models 

of Willsky and Jones (1976), the models employed  herein 

can be used to study fault detection and target tracking.  We 

adapt the detection scheme of Bar-Shalom and Birmiwal 

(1982) and then incorporate it into the proposed approach.  

Assuming no abrupt changes occur, an appropriate  window 

length is determined so that the fading memory average of 

innovations from the estimator based on the most probable 

model identified can approximately serve as a chi-square 

detector for maneuver detection.  When a maneuver is 

detected, we utilize the IMM-EV which can yield superior 

performance in state estimation during change occurrences  

from the maneuver estimated onset   time   to   the  

estimated   time  when  the maneuver is terminated.  During 

the stage of an assumed change  occurrence, a maneuver 

termination is  declared  if  the  constant  velocity  model    
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is  identified  as the most likely model for some consecutive 

time step. 

       This paper is  organized as   follows:  In  Section 2, we 

briefly describe a class of jump Markov models. In Section 

3, we present the approach. In Section 4, we illustrate that 

the proposed approach can achieve improvements to several 

schemes in the literature. We conclude this paper in  

Section 5. 

 
2.    MODEL  DESCRIPTION 

        We consider a class of  jump Markov linear systems, 

which  can   be   described  by   n  possible models at each  

sampling   with  state  and measurement  equations  given 

by   

     j
k

j
kk
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where  and  are independent zero-mean white 

Gaussian processes; the covariance matrices of process  

noises are and the covariance 

matrices of measurement noises are . 

The initial state  is assumed to be independent of   

and . Moreover, we describe the model transition 

process using a discrete-time and first-order n-state Markov 

chain with  fixed state transition probabilities  satisfying 
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The IMM-EV(m) algorithms are summarized in the 

Appendix A where m  denotes the number of most  probable 

model paths at  any  given  time  step.   

 
3.  THE  PROPOSED  APPROACH    

       In this section, we present an approach which switches 

between the IMM-EV( ) and the IMM-EV(1=m 2=m ).  

The reason for this is that as illustrated in earlier works by 

Ho (2003), Ho and Chen (2006), the IMM-EV( 1=m ) can 

identify the basic model efficiently and perform better 

during normal conditions while the IMM-EV( 2=m ) can 

yield superior performance in state estimation during 

change occurrences. We adapt the maneuver detection 

scheme given by Bar-Shalom and Birmiwal (1982) and 

devise a maneuver  termination method to determine 

switching conditions.  For ease of  reference, the IMM-EV 

algorithms are summarized in the Appendix A.        

To detect a maneuver, we utilize a fading memory 

average of the innovations  from the estimator based on the  

model whose model index is determined  by   eqn.  (A6) of   

of  the IMM-EV( 1=m ) as  follows:   

                                  (3)                     ∑=
−=

−−k
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where ckdk >− +1 with     denoting   the   most   recent    

past    time  step   at  which  a  switch   from  the  IMM-

EV(

ck

2=m ) to  the  IMM-EV( ) occurs  and  with  d   

standing   for  the  window length ;  0

1=m

1< α < ;  the  

superscript   indicates   the  model  index  obtained  from 

eqn. (A4) of  the  IMM-EV( );  denotes the 

innovation from  the  Kalman filter based on the  model 

at the time step i  and   stands  for  the corresponding 

covariance matrix. Under the Gaussian assumption, we 

have  (  which denotes that 

  has  the chi-square distribution with 

the dimension of the measurement  as the degree of  

freedom. 
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       In the following, we determine the window length  d

 in (3) so that (3) can approximately serve as a chi-square 

measurement  residual  detector  for  maneuver  detection.  

    
Proposition 1.    For  eqn. (3),   if   the time step k  satisfies  

1+≥ dk   and   the window length    satisfies    d

                        ln(1 ) ln 1
ln

nzd INT α
α

− −⎡ ⎤= −⎢ ⎥⎣ ⎦
                     (4)                   

where INT a⎡ ⎤⎣ ⎦  returns the smallest positive integer not less 

than , then approximately a 2

)1(
~

α
χε

−
znk  by  matching  
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the  first  moment  of a  chi-square random variable to 

][ kE ε .                                                                           

Proof:  It is clear z
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result given by Bar-Shalom, Y. and K. Birmiwal (1982), we  

get that  matching  the  first  moment of a chi-square 

random variable to ][ kE ε  can be approximated as  

matching  the first moment of a chi-square random variable 

to  )1( α−
zn . Hence, 2

)1(
~

α
χε

−
znk .                                                                                                                                                            

Based on Proposition 1,  we accept  the hypothesis  

that a maneuver  is  present  if  the value of  eqn. (4)  

exceeds  a  threshold  )1(2

)1(
λχ

α
−

−
zn   which  corresponds  

to the value   of  )1(100 λ−  percent    confidence   region  

for  2

)1( α
χ

−
zn with  a   given   small  tail  probability λ .           

       Suppose  a  maneuver is declared at  time step k .  

Then  the maneuver onset time is estimated as the time step 

. Accordingly, we outline the proposed scheme in 

Table I.     

1−− dk

       
Table I.    

________________________________________________                                                                                                                      
if      
                                                                      (5)                          1++> dkk c                                                                                                    

    and     

          )1(2

)1(
λχε

α
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−
znk                                                 (6)                                                                                                                              

then  a  maneuver  is declared  at   time step  .    k

if  a maneuver is declared at  time step  ,  k

then    

                                                   (7)                          1nsetmaneuver_o −−= dk                                                                             

________________________________________________ 

   A  maneuver termination is declared  at  the time step 

  if  the most likely model index obtained from  eqn.  (7)  

of  the IMM-EV(

k

2=m

1

)  reverts  to the quiescent model 

index  at  the time step −k ,  and   the non-maneuvering 

model index is  retained as the most probable model index 

of the IMM-EV(m=2)  at the time  step k .  The  proposed  

scheme  is  outlined  in  Table II.     

 
Table II.   

________________________________________________ 
if  eqn. (7)  in Step 5  of  the  IMM-EV( ) satisfies    2=m

                            (8)                  
1 if  4

arg{ max [ ( )]}1 1 if 3,...,1

i k
ji i k kj n

μ
≠ = −⎧
⎨= = −⎩≤ ≤

where  the model  index  1 corresponds to the quiescent  

model index,   

then the termination of  a  maneuver  is  declared  at  the 

time step  . k

________________________________________________ 
        

  An  operational cycle  of  the  approach  is described 

as follows.  The IMM-EV( ) is employed and at the 

same time the maneuver detection is performed.   When a  

maneuver is declared at the time step k ,  a switch from the 

IMM-EV(

1=m

1=m ) to the IMM-EV( ) is invoked at  the 

estimated maneuver onset time. And the IMM-EV(

2=m

2=m ) 

subsequently updates the state estimates from the estimated 

maneuver onset time to the time step k . From the time step 

1+k  on, the IMM-EV( ) is employed and the 

detection of the maneuver termination is performed 

simultaneously.  A switch from the IMM-EV(

2=m

2=m ) to the 

IMM-EV( 1=m ) takes place when the termination of the 

maneuver is declared.  The  operational cycle is  repeated.  

Accordingly,  the  proposed  tracking  algorithm  is  given  

in  Table III. 

 
Table  III.   

________________________________________________ 
.0=k    .0=k    Choice=1.      Given  .1=ck α  with 

10 << α , a  probability λ  with 1.0<λ ,  and  ,  compute  zn

the   threshold  )1(2

)1(
λχ

α
−

−
zn   and  the  window  length    d

using (4).    

1+= kk .  
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Flag=1.   

if  Choice=1 &  Flag=1, then 

       {Flag=2; 

  the IMM-EV( ) is employed  for  tracking;  1=m

  the scheme in  Table 1 is  activated;     

  if  a  maneuver  is  declared  at  time step k , 

then  

   {the IMM-EV( )  is initialized by the parameter 2=m

values  from  the IMM-EV( ) at the estimated  1=m

maneuver onset obtained  from Table 1, and  is  

employed for modifying the state estimates from   

the estimated maneuver onset  time   to  time step  ;   k

    Choice=2}  }.        

if  Choice=2  &  Flag=1,  then  

{Flag=2; 

   the  IMM-EV( )  is  employed  for tracking;  2=m

   the scheme  in  Table 2 is activated;    

   if  the termination of target maneuver is declared,  

then   

Choice=1  and   }.     1+= kkc

________________________________________________ 
 

4.    SIMULATIONS 

      In this section, we show the performance comparison of  

the proposed algorithm, the IMM-EV( ),  the IMM and 

the RIMM.         

1=m

      We consider the  tracking a maneuvering target 

example given by Bar-Shalom, Y. and X. R. Li  (1993). 

The example involves tracking a slow  turn  carried out  

in  20 sampling periods and a fast 90  turn  completed in 5 

sampling periods, where the target position is sampled 

every . Before and after the turns, the target 

moves with constant speed and course. The target state 

vector is  

90

sec01=sT

[ ]( ) ( ) ( ) ( ) T
k x k x k y k y k=x  

with the initial conditions  in 

meters and .  The  target’s  slow 

turn has accelerations 

)10000,2000())0(),0(( =yx

)15,0())0(),0(( −=yx sec/m

( ( ), ( )) (0.075,0.075)x k y k =  2secm   

 for    40 60k≤ ≤     and    the    fast  turn  has   

accelerations ( ( ), ( )) (0.075,0.075)x k y k = .                                            

      The non-maneuvering dynamics is modeled by a 

constant velocity model with small process noise that 

accounts for slight changes in velocity. Maneuvers are 

modeled by a constant velocity model with adequate 

process noise that  accounts  for  slow and fast variations of  

accelerations.  In  eqn. (1), ,   2n =

1 2

1 0 0
0 1 0 0
0 0 1
0 0 0 1

s

k k
s

T

A
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⎡ ⎤
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⎢ ⎥
⎣ ⎦
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Γ Γ ;   

in  eqn. (2)  

1 0 0 0
0 0 1 0

j
k

⎡ ⎤
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⎣ ⎦

H .    

Moreover,  1
2k =Q 0 ;    where  2 2*

T
k kq= Γ ΓQ 2

k 10q =  is 

chosen because 3q ≈ corresponds to the maximum change 

in velocity per sampling period during the fast maneuver; 

and  

1 2 4 1 0
10

0 1k k
⎡ ⎤

= = × ⎢ ⎥
⎣ ⎦

R R . 

It is apparent that the constant velocity model should be  

employed for tracking quiescent motions. Thus in the 

proposed algorithm, we enforce the eqn. (A4)  of the IMM-

EV(m=1) to be 1 throughout during target’s  quiescent 

motions.   

The following parameter values are adopted: 8.0=α  

for  (3), the  dimension of the measurement  2=zn , 

05.0=λ  for  (6), and  the window length 10=d  obtained 

from (4).  The threshold in (6) is . With 

those parameter values, the  proposed algorithm employs 

both the IMM-EV(

3.18)95.0(2
10 =χ

1=m ) with the and  the IMM-EV( 2=m ) 

which is exactly the IMM in this example.    

       For all algorithms illustrated herein, the model 

transition probability matrix is  ;   the    initial  
0.95 0.05
0.05 0.95
⎡ ⎤
⎢
⎣ ⎦

⎥

model  probabilities are 0 ( ) 1/ 2jμ = ; the  initial   state and   
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state error   covariance matrices are  

     ˆ [2000 0 10000 15]0
j T= −x

4 410 10 0 0
4 4 210 2 10 ( ) 0 0ˆ

0 4 40 0 10 10
4 40 0 10 2 10 (

Ts

T Tj s s

Ts

T Ts s

⎡
⎢
⎢ ×⎢=
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⎢
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P

2)

⎤
⎥
⎥
⎥

⎥

⎦

 . 

 Simulations  are  carried out  based on 100 Monte 

Carlo runs. Figs. 1 and 2 show that the proposed algorithm 

and the IMM yield comparable performance and 

outperform the IMM-EV( ) substantially during the  

tracking of maneuvers.  The IMM-EV( ) performs 

slightly better than the proposed algorithm during the 34

1=m

1=m
th-

40th time steps because the proposed algorithm modifies the 

estimates using the IMM in accordance with  the estimated 

maneuver onset time. The performance of the proposed 

algorithm is superior to that of the IMM before and after 

maneuvers. It is apparent that  the proposed approach  and 

the IMM yield comparable performance when a switch 

from the IMM-EV( ) to  the IMM takes place during 

the tracking of maneuvers.  This is due to the appropriate 

selection of the window length  d  for eqn. (3). Moreover, 

because the detection scheme for  maneuver termination is 

adequate, the proposed algorithm and the IMM perform 

similarly when a switch from the IMM to the IMM-

EV( ) occurs. Accordingly, the proposed algorithm 

can switch adequately between the IMM-EV( ) and the 

IMM to achieve desirable performance. The proposed 

approach can outperform the IMM and the RIMM. We also 

show that the RIMM may not be an improvement to the 

IMM. The proposed algorithm and the IMM have similar 

execution time and  perform much faster than  the RIMM.    

1=m

1=m

1=m

       Accordingly, the proposed approach is viable in terms 

of  tracking performance and computational cost.     

 
5.   CONCLUSIONS 

        For state estimation of jump Markov  systems 

described by  (1)-(2), we have introduced an algorithm: the 

combination of  the IMM-EV( ) and the IMM-

EV( ). The proposed algorithm exploits the combined 

advantages of two IMM-EV algorithms based on some  pre-

determined switching rules. To invoke a switch from the 

IMM-EV(

1=m

2=m

1=m ) to the IMM-EV( ),  we  have 

develop a scheme for maneuver detection and onset 

estimation. Furthermore, we have proposed a method  for 

detecting maneuver termination to invoke a switch from the 

IMM-EV(

2=m

2=m ) to the IMM-EV( ). Simulation 

results have shown that the proposed algorithm is a good 

alternative to several popular schemes in the literature.   

1=m

 
Appendix A.   The  IMM-EV(m)  Algorithms  

   Given  models and an integer m  with n nm ≤≤1 , given 

probabilities , ijp ,...1, nji =  model probabilities )(0 jμ  

with ,  initial state   and  initial   state  error  

covariance 
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c).  For ,...1 nj =    and   are  the inputs to  the 

 model-based  Kalman  filtering  to yield  , , the 

innovation   with  zero  mean and covariance  , and  

the model likelihood function .   
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e).  The   re-weighted  ‘m’  largest   model  probabilities of  

)( jkμ  are                                                                                                           
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Willsky, A.S. and H. L. Jones (1976). A generalized 

likelihood ratio approach to the detection and 

estimation of jumps in linear systems. IEEE Trans. on 

Automatic Control, Vol. 21, no.2, pp. 108-112. 
f).   The  resultant  state estimate  is   

                                                            (A7)  ∑
=

=
m

s

l
kslkk s
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Figure 1. RMS position performance comparison of IMM, 

RIMM, IMM-EV(m=1) and the proposed algorithm  
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Figure 2. RMS velocity performance comparison of IMM, 

RIMM, IMM-EV(m=1) and the proposed algorithm  
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