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Abstract: A CPG based motion control approach is proposed for a biologically inspired underwater 
thruster with undulating long-fin. The characteristic of rhythmic motion patterns generated by CPG suits 
well to control the thruster, which has multiple fin rays coupled by membrane. Based on modified 
Matsuoka model, an artificial CPG controller consisting of ten neural oscillators with sensory information 
feedback is built. A novel method for phase control of the output signals is brought forward to make it 
possible to control and regulate the output of the coupled oscillators on-line. The experiment shows the 
CPG controller is valid to generate thrust by controlling the long fin. 

 

1. INTRODUCTION 

In the oceans which cover approximately 71% of Earth’s 
surface, fish is one kind of amazing creatures. Comparing to 
traditional artificial underwater vehicles, it has advantages of 
greater efficiency and better maneuverability. Therefore, a lot 
of studies have been conducted to the propulsive mechanisms 
of fish to design novel underwater vehicles. According to 
Webb’s classification (Sfakiotakis et al., 1999), the fish’s 
swimming type can be generally divided into two categories: 
BCF locomotion, which generates thrust by bending fish’s 
body into a backward-moving propulsive wave that extends 
to its caudal fin, and MPF locomotion, which develops 
alternative swimming mechanisms that involve the use of 
their median and pectoral fins. As the former locomotion can 
achieve greater thrust and accelerations, it has been employed 
in the majority researches of biomimetic underwater vehicles. 
However, MPF locomotion has the advantages of greater 
maneuverability and better propulsive efficiency, especially 
at slow speeds, and attracts more and more attention. This 
paper will introduce an underwater thruster with undulating 
long-fin which is inspired by gymnotiform (one form of MPF 
locomotion) fish and the experiment platform of the thruster. 

Central pattern generator (CPG) is a neural circuit that is 
capable of producing rhythmic motion patterns. The approach 
of implementing CPG for locomotion control arises from the 
research of animals’ rhythmic movements and has been 
successfully applied to several kinds of biomimetic robots   
(Delcomyn, 1980; Bradley et al., 1997; Hu et al., 1999; 
Ijspeert et al., 2007). As the swimming of gymnotiform fish 
depends on the rhythmic undulating movements of its rays, 
it’s a good choice to apply CPG model to the motion control 
of the thruster with undulating long-fin. There are many 
kinds of CPGs with different types of coupled oscillators 
(Izumi  et al., 2006). Among these, Matsuoka oscillator has 
been widely used because of its properties of simple 
mathematic expression and explicit biological significance 
(Kimura et al., 2005; Matsuoka, 1985). In this article, we 

adopt modified Matsuoka model to build a CPG controller 
comprising ten neural oscillators. The controller gets 
feedback signals from sensors to alter the locomotion mode 
of the thruster. 

The rest of the paper is organized as follows. In section 2, we 
introduce the underwater thruster and the experiment 
platform. In section 3, we first give the modified Matsuoka 
model, then present the CPG based controller and interpret 
the method of phase selection. In section 4, an experiment is 
carried out to switch the locomotion modes based on sensor’s 
feedback. In section 5, we summarize our work.  

2. THE UNDERWATER THRUSTER AND THE 
EXPERIMENT PLATFORM 

 

Fig. 1. Sketch of  the underwater thruster and the experiment 
platform: (a) The underwater thruster; (b) The experiment 
platform mounted with the thrusters. 

The underwater thruster is composed of ten servo motors 
which are fixed by supporting brackets and connecting blocks. 
The servo horn of every motor mounts a slender cylindrical 
copper vertical to the output axis of the motor. A piece of 
elastic membrane whose width is same with the length of the 
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copper connects all the coppers together. Through 
coordinated control of these motors, the thruster transfers 
momentum to the surrounding water by passing traveling 
waves, thus gets thrust for locomotion. The mechanical rate 
of working and the swimming speed can be modulated by 
changing the shape and speed of these traveling waves 
(Lighthill et al., 1990).  

The experiment platform is designed for fixing the thruster 
and serving as a test bench while be mounted with sensors. It 
consists of two parallel triangular tracks, a hanger and a fixed 
board. The thruster is connected to the fixed board by a ball 
bearing. This structure allows the thruster moves along the 
tracks and rotates around the mounting axis. The sketch map 
of the thruster and the experiment platform is shown in 
Figure 1. 

3. CPG BASED CONTROLLER 

3.1 Neural Oscillator and CPG Model 

The oscillator adopted here is modified from the Matsuoka 
model. It has a minor difference with Kimura’s improved 
model in that the output is not obtained from sigmoid 
function but directly from the status variables. Thus it has 
smooth output signal. 

Figure 2 describes the neural oscillator (NO). It consists of 
two mutually inhibiting neurons, which is represented by the 
following nonlinear equations: 
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where 1,2, ,i n= denotes the ith oscillator, the superscript  
,e f denote an extensor neuron and a flexor neuron of 

oscillator. ,e f
i iu u denote the inner state of an extensor and a 

flexor neuron of the ith oscillator respectively. ,e f
i iv v are 

variables representing the degree of the self-inhibition effect 
of the neuron. ,e f

i iy y are the outputs of extensor and flexor 

neurons. The quantities rT and aT  are time constants of 
,e f

iu and ,e f
iv . a  is a connecting weight between flexor and 

extensor neurons. b is a constant representing the degree of 
the self-inhibition influence on the inner state. ic  and id  are 

external inputs with constant values. ijw  is a connecting 

weight between neurons of the ith and jth NO. iy  denotes the 
output signal of the ith oscillator. 

 

Fig. 2. Neural oscillator. 

The CPG model we built includes ten neural oscillators. Each 
oscillator corresponds to a motor. These oscillators are 
coupled with each other via connecting weight matrix W , as 
illustrated in Figure 3, and produce stable oscillating signals 
for the control of the motors.  

 

Fig. 3. CPG model with ten neural oscillators. 

The output of the CPG model is get from the numerical 
solution of equation (1). In discrete time series, the solution 
of one interval is set as the initial data of the next interval. In 
this way, discrete output series can be obtained. 

As the CPG model uses sigmoid function to form feedback 
item, it has a characteristic of strong nonlinearity. The 
relations between the parameters and the output are not 
explicit and can only be determined by experiments. (Zhang , 
2004) gives some characteristics:  

 1) Frequency of output signals is mainly determined by 
parameters ,r aT T . For the purpose of keeping the amplitudes 
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of output signals of CPG during changing parameters rT  and 

aT ,  rT  and aT must be in certain proportion.  

2) The magnitudes of CPG output signals are mainly 
determined by parameter ic .  

3) The parameter id  affects the bias of the output to  x  axis. 
And when the ith  id  alters to a larger scale, the state of 
output will be changed from oscillation to stabilization.  

3.2 A Method for Phase Control 

The characteristics introduced above can be used to generate 
proper waves for the control of the motors. However, there is 
still an important issue to be solved, that is, the problem of 
output signals’ phase control.   

In CPG model, the phase of the output signal is mainly 
affected by the initial data of oscillators’ state variables. 
Previous work  (Hu et al., 1999; Ijspeert et al., 2007; Zhang, 
2004) adopt random methods for the selection of the initial 
data, that is, choosing random values in a small region around 
the origin o for the initial data. However, this method can not 
determine the phase of the output signals. When the 
oscillators reach the stable state, the phase relations of the 
output signals are non-determinate. They have to be judged 
offline to be used for the control of objects. It may not be a 
big problem for the control of biped or quadruped robots, 
which just have two or four neural oscillators. But for the 
thruster presented in this paper, as it adopts ten oscillators, 
the judgment is considerably difficult. As a result, an online 
method should be developed. 

 

Fig. 4. Limit cycle of the state variables with random initial 
data. 

The phase relations among the neuron oscillators are 
considered firstly. In the state variable space of the neuron 
oscillators, the distribution of the initial data used in random 
methods is stochastic. As illustrated in Figure 4, the state 
variables, thus the oscillators, converge to a limit cycle, but 
the phase relations among each other are turbid. Therefore, 

selection of the initial data should contain the information of 
phase relations to make these data distribute regularly.  

The relations among the state variables within an oscillator 
can not be neglected, too. It’s hard to get explicit relations 
from the equations of the neural oscillator. So we turn to 
observe the state variables map. Figure 5 shows the state 
variables , , ,e e f fu v u v of an oscillator arriving at stable 
state which comes from a random method. From the map, we 
can see that eu and fu have an excursion of about / 2T  on 
phase, and ev and fv have approximate / 8T phase lead 
respectively corresponding to eu and fu , where T is the 
oscillating period. On amplitude, ev and fv are about one-
fourth of eu and fu . 

 

Fig. 5. The oscillating waves of the state variables. 

By employing a periodic function similar to the oscillating 
wave in shape, formalized equations can be obtained for the 
choosing of the initial data. The form of the equations is as 
follows:  
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where 1,2, ,i n=  denotes the ith oscillator,  n  is the total 
number of the oscillators, Φ  denotes the periodic function, 

1 2 1 2, , ,a a b b  are parameters corresponding to the bias and 
the amplitude of the oscillating waves, T is the period of the 
function and 1 2,θ θ are the phase difference.  
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In our studies, sine function is taken as Φ and T is set to 
2π without loss of generality. Other parameters need not be 
precisely valued. They can be changed in a certain arrange 
and will eventually converged to stable values. With new 
initial data, the convergence of the stable variables is shown 
in Figure 6, and the output signals of the CPG model are 
shown in Figure 7. 

 

Fig. 6. Limit cycle of the state variables with tuned initial 
data. 

Figure. 7. The output signals of  the CPG model. 

3.3 CPG Based Controller 

Based on the CPG model, a controller has been developed. It 
consists of three parts: a decision layer, the CPG model and a 
PWM generator. The decision layer gets feedback signals 
from the sensors and receives commands from the external, 
then tunes the parameters of the CPG model to generate 
different locomotion modes. The CPG model produces 
signals for the oscillating angles of the motors. And the 
PWM generator transforms the angle signals to pulse-width 
modulation (PWM) signals for the control of the motors. 
Then the controller sends PWM signals to the motors to drive 
the thruster. Sensors are mounted on the experiment platform 
to send back the sensing information, such as the distance of 
the obstacles or the velocity of the thrusters, to the controller. 

The controller, the thruster and the sensors make up a close-
loop control system. The sketch map of the system is shown 
in Figure 8. 

 

Fig. 8. The sketch of the CPG based control system 

4．THE EXPERIMENT 

4.1 introduction of the experiment 

 
 

Fig. 9. The thruster mounted with a distance laser sensor and 
two infrared sensors 

In order to validate the effectiveness of the CPG controller, 
an experiment is carried out to switch the locomotion modes 
of the thruster based on the feedback signals of two infrared 
sensors and a distance laser sensor. The experiment is done in 
a water tank with a length of 1.8 meters and a width of 1 
meter. The infrared sensors are fixed on the front side and 
back side of thruster, along the direction of the thruster’s 
movement. The effective detecting range of the infrared 
sensor is from 5 centimeters to 30 centimeters. The distance 
laser sensor is mounted at the bottom of the hanger, just 
being on top of the thruster. Real time distance information 
from the platform to the sidewall of tank is get with an 
interval of 0.4s. The thruster mounted with sensors is shown 
in Figure 9. 

The experiment is designed like this: the thruster starts to 
move from a rest state in the middle of the tank. When it 
comes near to the sidewall of the tank, the infrared sensor 
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detects obstacle and the thruster switches from forward 
swimming mode to braking mode. When the velocity of the 
thruster reduces to 0, the thruster switches to backward 
swimming mode. While in the process of the movement to 
the other side of the tank, the thruster changes its undulating 
frequency and amplitude. Same as the situation mentioned 
above, the thruster brakes near the sidewall, then switches to 
the forward swimming mode. When the thruster moves to the 
middle of the tank, it switches to rotational mode.          

4.2 Generation and switch of locomotion modes 

As it is mentioned in section 3.1, the frequency, amplitude 
and bias of output oscillating wave of the CPG model can be 
tuned by changing the parameters of the model. The relations 
between the parameters of the CPG model and the 
characteristics of the output oscillating waves are illustrated 
in Figure 10. By varying the values of rT , ic and id , the 
characteristics of the output wave change and different 
locomotion modes can be obtained. 

 

Fig.10. Relations between the parameters of the CPG model 
and the characteristics of the output oscillating waves: (a) 
relation of parameter rT  and frequency of the output wave; 

(b) relation of parameter ic  and amplitude of the output wave; 

(c) relation of parameter id and bias of the output wave. 

The locomotion modes can be generally divided into three 
categories: regular swimming mode, braking mode and 
rotational mode. And the regular swimming mode can be 
delicately divided into forward swimming mode and 
backward swimming mode.  

The regular swimming mode requires a stable forward or 
backward propagating traveling wave, with steady frequency 
and amplitude. The phase differences among the rays should 
be fixed. The connecting weight matrix { }ijw  is chosen as: 

1,
0,ij

i j
w

i j
− ≠⎧

= ⎨ =⎩
                      (3) 

It denotes that all the neuron oscillators are inhibitory with 
each other. The oscillating frequency of the rays is tuned by 

rT  and the oscillating amplitudes of the rays are tuned by ic . 
The initial data of the CPG model is selected according to the 
method introduced in section 3.2. 

In the braking mode, the thruster generates resistance by 
reversing the propagating orientation of the traveling wave. 
The characteristics of the oscillating wave in the braking 
mode are tuned similarly to them in the regular swimming 
mode. And the oscillating frequency should be higher than it 
in the regular swimming mode to produce a greater force. 

In the rotational mode, the phases of the left five rays are 
same. The oscillating amplitudes gradually decrease from 
ray1 to ray5 and offset to one side of the centre of the thruster. 
The phases of the right five rays are also same and are 
opposite to them of the left five ones. The oscillating 
amplitudes gradually increase from ray6 to ray10 and offset 
to the other side. The sketch map of the movement of the rays 
is shown in Figure 11. With the relation of the phases and the 
bias of the amplitudes, the thruster can generate a stable 
clockwise or anti-clockwise torque. And with the variation of 
the amplitudes, the oscillating amplitude difference between 
adjacent rays will not be too big to destroy the motors. The 
connecting weight matrix { }ijw  values as: 

1,| | 5,
1,| | 5,

0,
ij

i j i j
w i j i j

i j

− ≤ ≠⎧
⎪= − − > ≠⎨
⎪ =⎩

                      (4) 

The bias of the oscillating amplitude is tuned by id . Other 
characteristics are tuned similarly to the regular swimming 
mode.  

 

Fig. 11. The sketch of the movement of the rays. 

The switch between two locomotion modes with reversed 
traveling waves should be done by tuning both of the 
parameters and the stable variables of the CPG model. Other 
cases of switch only need tuning the parameters. 
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4.3 Result of the experiment 

 

Fig.12.Experiment results: (a) Oscillating waves of ray1; (b) 
Oscillating waves of ray5; (c) Oscillating waves of ray6; (d) 
Oscillating waves of ray10; (e) distance information sent 
back from the laser sensor. 

Because of the constraint in space, only the oscillating waves 
of ray1, ray5, ray6, ray10 are shown in Figure 12(a), (b), (c), 
and (d). Other rays have similar wave shapes. Distance 
information from the thruster to the sidewall of the tank, 
which is detected by the distance laser sensor, is shown in 
Figure 12(e). In interval i1, the thruster which is at rest in the 
middle of the tank starts to move toward one sidewall of the 
tank. When it moves 30 centimeters away from the sidewall, 
the infrared sensor detects the wall and the thruster switches 
to braking mode. In interval i2, the thruster decelerates to 0. 
And from interval i3 on, the thruster moves to the other 
sidewall of the tank. In interval i4 and i5, the thruster varies 
its oscillating frequency and amplitude. In interval i6, the 
thruster comes near to sidewall and brakes again. In interval 
i7, the thruster moves toward the middle of the tank. In the 
last interval, the thruster switches to rotational mode. 

5. CONCLUSION 

In this paper, we introduce a CPG based motion control 
approach for a biologically inspired underwater thruster with 
undulating long-fin. A method for phase control is proposed 
to adjust the oscillating phase of the motors which is used to 
drive the thruster. A CPG based controller is built to control 
the thruster. Different locomotion modes are obtained by 
tuning the parameters of the CPG model. And the switch 
between different modes is realized by the feedback of the 
sensors. The experiment at the end of this paper shows that 
the CPG based controller is valid to control the thruster. 
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