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Abstract: This paper proposes a novel technique to estimate slips and velocities of an unmanned ground 

vehicle (UGV). A visual odometry sensor looking down the terrain surface is employed to measure the 

motion of the UGV, by tracking features selected from the terrain surface. The visual odometry sensor 

can provide motion information even when the terrain surface contains no distinctive features. A sliding 

mode observer (SMO) based-on a kinematic model is designed to deal with noise and uncertainty of the 

measurements from the visual odometry sensor, and simultaneously estimate the slip and velocity vectors 

of the UGV. The non-GPS slip and velocity estimation technique is independent of terrain parameters 

and robust to noise and uncertainty. Experimental results are given to show that the technique has good 

potential for vehicle slip and velocity estimation. 

 

1. INTRODUCTION 

Slip plays a vital role in an unmanned ground vehicle (UGV) 

traction control and stability control (Le 1999). Thus, 

accurate estimation of slip parameters, including linear slips 

and slip angle, are necessary for this purpose. 

Slip parameter estimation requires vehicle velocity and wheel 

angular velocities. Wheel angular velocities can normally be 

acquired from optical wheel encoders. Many existing 

techniques used for position measurements can be applied to 

obtain vehicle velocity, which is the derivative of position 

with respect to time. A low-cost Inertial Navigation System 

(INS) together with an Extended Kalman Filter (EKF) is used 

for position estimation of a mobile robot in (Barshan et al., 

1995); however, position provided by the INS is prone to 

cumulative errors. An optical encoder at the fifth wheel 

measures distance traveled by the vehicle, derivatives of 

which with respect to time give the vehicle velocities (Lee et 

al., 2004); however, the velocity errors are significant if the 

tracked vehicle moves over uneven ground. Global 

Positioning System (GPS)/Differential Global Positioning 

System (DGPS) is also widely used for position and velocity 

measurements. A civilian-based GPS is implemented for 

position measurements (Cooper et al., 1994). Despite 

integrating the GPS signal with inertial navigation 

information in an EKF, experimental results show that the 

position error still exists. GPS sometimes suffers from signal 

interference and signal loss, which may lead to inaccurate 

measurements of the position and velocity of the vehicle. 

Further, due to the low update frequency of GPS/DGPS, it 

can not be used as a stand-alone slip measurement system. 

Two Kalman Filters (KFs), a model based filter and a 

kinematic filter, integrating GPS with Inertial Measurement 

Unit (IMU) are used to give a high update rate of the vehicle 

states (Anderson et al., 2004); however, only slip angle is 

considered in this paper. 

Visual odometry has become an attractive alternative for 

motion estimation in recent years. A CCD camera integrated 

with odometry for motion estimation is presented in 

(Nagatani et al., 2000). An omnidirectional vision system is 

utilized to estimate the motion of an indoor mobile robot in 

(Bunschoten et al., 2003). A television camera mounted 

parallel to the road surface is used to estimate the motion of 

the vehicle using optical flow information (Giachetti et al., 

1998).  

A novel vision-based technique combined with a sliding 

mode observer (SMO) to estimate slips and velocities of an 

UGV is proposed in this paper. An on-board monocular 

camera looking down at the terrain surface is employed as a 

visual odometry sensor to provide measurements of pose and 

velocity of the UGV. However, since measurements obtained 

form the visual odometry sensor are susceptible to noise and 

uncertainty, a SMO based-on a kinematic model of the UGV 

is designed to deal with the noise and uncertainty and give 

accurate estimated slip and velocity vectors of the UGV. 

2. SYSTEM FLOWCHART  

Fig. 1 shows the flowchart of the slip and velocity estimation 

system. The visual odometry sensor selects features from the 

terrain surface and tracks them in a sequence of images. The 

vehicle pose vector [ , , ]X Y Φ and vehicle longitudinal 

velocity y�  are derived using the motion decomposition 

method in the visual odometry sensor. 

Since the measurements from visual odometry sensor are 

prone to noise and uncertainty when the UGV moves in real 

environments, the SMO based-on a kinematic model is 

designed for coping with noise and uncertainty and 
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estimating the slip and velocity vectors of the UGV. Two 

optical encoders attached to the driving wheels of the UGV 

provide angular velocity vector [ , ]
o i

ω ω . Receiving the 

angular velocity vector [ , ]
o i

ω ω , the vehicle pose vector 

[ , , ]X Y Φ and the vehicle longitudinal velocity y� , the SMO is 

driven to estimate the slip parameter vector [ , , ]
o i

i i α  and the 

velocity vector ˆˆ ˆ[ , , ]x y φ
�� � .  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Slip and velocity estimation algorithm framework 

For validating the slip and velocity estimation technique, the 

forward kinematics of the vehicle is used to calculate the 

pose vector ˆ ˆ ˆ[ , , ]X Y Φ , using the estimated vehicle slip vector 

[ , , ]
o i

i i α  from the SMO. If the estimated trajectory 

ˆ ˆ ˆ[ ( ), ( ), ( )]X t Y t tΦ  has good agreement with the real one, the 

slip vector and velocity vector estimated by the technique are 

validated to be accurate. 

3. VISUAL ODOMETRY FOR MOTION 

MEASUREMENTS 

In this study, since the camera is rigidly mounted on the 

UGV facing down the terrain surface, the motion of the UGV 

can be derived from the camera motion. The linear motion 

measurements in (Song X. et al., 2007) are extended to 2-D 

in this paper. 

3.1 Camera Model 

A pinhole camera model, as shown in Fig. 2, is used to find 

the geometrical relationship between a small feature window 

on the terrain surface and its corresponding window on the 

image plane. To simplify, a normalized image plane is placed 

between the focal point of the camera and an object.  

Let ( , , )
R R R

P X Y Z  be the central point of a small feature 

window on the terrain surface. This window is projected onto 

the normalized image plane (with the focal length being 1) 

perpendicular to the optical axis ( Z axis). Let the 

corresponding window on the image plane be ( )' , ,p p pP x y z . 

R
Z  is the distance from the projection centre of the camera to 

the point ( ), ,
R

R 0 0 Z , which is the projection point from P  

to the optical axis. The  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A pinhole camera model  

 

location of the projection point 'P  on the image plane is 

given by 
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In (1) and (2), ( 1, 2, ,5)
n

k n = � represents distortion 

parameters of the camera, 
1 2
,c c are the coordinates of the 

principal point of the image plane, 
c

α is the skew coefficient 

and 
1 2
,f f are the focal lengths expressed in units of 

horizontal and vertical pixels. All these parameters can be 

obtained from camera calibration (Bouguet 2007). 

3.2  Camera Velocity and Image Velocity 

Based on the camera model, the camera motion can be 

obtained from the image velocity. For simplification, it is 

assumed that there is no distortion and skew coefficient of the 

camera. Thus, substituting 0
c

α =  and 0 ( 1,2, ,5)
n

k n= = �  

into (1) and (2) gives 

1 1

2 2
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Differentiating (4) with respect to time, the velocity of the 

camera is obtained by 

1 1

2 2

( ( ) ) /

( ( ) ) /

R p p RR

R p p RR

Z x x c Z fX

Z y y c Z fY

 + − 
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�� �

�� �
              (5) 

where [ , ]
R R

X Y� �  is the camera velocity vector and [ , ]
p p

x y� � is 

the image velocity vector. Assuming that the terrain surface 

is predominantly flat, (5) can be further reduced to 
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If the image velocity vector is known, the camera velocity 

can accordingly be obtained by (6).  

Good feature windows are selected according to Shi-Tomasi 

detector (Shi et al., 1994). The Lucas-Kanade image 

registration technique (Lucas et al., 1981) and the Newton-

Raphson method are employed in this study for tracking 

features. If feature windows are successfully tracked, the 

change of their locations on local image frames can be further 

used to calculate the instantaneous translation and rotation of 

the UGV.  

In order to ensure any mistracked feature windows are 

rejected, two schemes are used: consistency check and 

statistical check. Let 
1

I  and 
2

I  be two consecutive images. 

Consistency check tracks features both from
1

I  to
2

I and from 

2
I to

1
I . Statistical check wipes out those features which lead 

to large deviations from the median of measured pose and 

velocity (Milella et al., 2006). After these two outlier 

discrimination checks, the remaining feature windows are 

finally chosen for calculating the pose and velocities of the 

UGV. 

3.3 Motion Decomposition 

The motion of the camera can be decoupled into a 

translational motion in a plane and a rotational motion about 

the optical axis. Let Image 0 and Image 1 be two consecutive 

images captured by the camera. P0 is defined as a projected 

feature point on the image plane. Let the translation in 

horizontal and vertical directions be x∆  and y∆  respectively, 

and the rotational angle be θ .  

The location of P0 changes on the local image plane, after a 

movement of the camera within a short time interval. Let 

0 0
( , )

j j

P Px y  be the location of P0 on Image j ( 0, 1j = ). The 

resultant motion of point P0 can be expressed as 

0 0 0 0

0 0 0 0

0 1 1 1

0 1 1 1

P P P P

P P P P

x x cos y sin x x
R T

y x sin y cos y y

θ θ ∆

θ θ ∆

     − +
= = +     

+ +          

         (7) 

where, T is defined as a translation matrix and R is defined as 

a rotation matrix, then (7) is rewritten as 

F RS T= +                                     (8) 

where 
0 0

0 0
[ , ]

T

p pF x y=  and 
0 0

1 1
[ , ]

T

p pS x y= . 

Actually, at least a pair of feature points is successfully 

tracked from one image to the next, then the unknown 

elements ( , , )x y∆ ∆ θ  in matrices R and T can be obtained. In 

order to enhance the accuracy of calculated translation and 

rotation, normally hundreds of features are selected. A set of 

equations including the error items are given by 

i i i
F RS T E= + +                                   (9) 

To find matrices R and T, the aim is to minimize the 

weighted sum of squares. wi are the weights in (10). 

1 1

( ) ( )
n n

T T

i i i i i i i i i
i i

w E E w F RS T F RS T
= =

= − − − −∑ ∑          (10) 

The rotation R makes the optimization nonlinear, thus, the 

method in (Schonemann, 1970) is used to compute R and T. 

This method applies Lagrange multipliers to force R to be 

orthogonal and takes the singular value decomposition of  R. 

Given the translation and rotation of the images, the camera 

motion can be easily derived using coordinates 

transformation. The pose [ , , ]X Y Φ and instantaneous 

velocity [ , , ]x y φ�� �  of the UGV can be accordingly calculated.  

4. SLIDING MODE OBSERVER FOR SLIP AND 

VELOCITY ESTIMATION 

 

 

 

 

 

 

 

 

   Fig. 3. Free body diagram of a skid-steered mobile robot 

The UGV considered in this paper is a skid-steered mobile 

robot. Theoretically, the slip parameters of the skid-steered 

mobile robot in Fig. 3 are given by 

1

1 ( ) /( )
2

1 ( ) /( )
2

tan ( / )

o o

i i

B
i y r

B
i y r

x y

Φ ω

Φ ω

α −

= − + ⋅

= − − ⋅

=

��

��

� �

                        (11) 

where 
o

i , 
i
i  are the linear slips of outer and inner wheels and 

α  is the slip angle of the vehicle, B  is the tread of the 

vehicle, r  is the effective radius of the wheel, 
o

ω , 
i

ω  are the 

angular velocities of outer and inner wheels, y�  is the 

longitudinal velocity of the vehicle along y  direction and Φ�  

is the yaw rate of the vehicle. y�  and Φ�  measured by the 

visual odometry sensor, are prone to random noise and 

uncertainty. Thus, a sliding mode observer (SMO) based on a 

kinematic model of the skid-steered mobile robot is 

developed to cope with the noise and uncertainty, and 

estimate slip and velocity vectors of the vehicle. 

4.1 Kinematic Model of Skid-Steered Mobile Robot 

The kinematic equations for the skid-steered mobile robot 

shown in Fig. 3 are given by  
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[cos sin tan ]X y Φ Φ α= +� �                          (12) 

[sin cos tan ]Y y Φ Φ α= −� �                          (13) 

2 2
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(1 )

o o

i i

y r
i

B B
y r

i
B B

Φ ω

ω

= − + −

= − −

�
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�
                            (14) 

where [ , , ]X Y Φ� � �  is the velocity vector of the vehicle relative 

to the global frame, and y�  is given by 

[ ](1 ) (1 )
2

o o i i

r
y i iω ω= − + −�                     (15) 

Equations (12), (13) and (14) include the three slip 

parameters , ,
o i

i i α  to be estimated by the SMO. 

4.2 Sliding Mode Observer for Slip and Velocity Estimation 

In (Le 1999), an EKF is used to estimate slip parameters of 

an excavator based on its kinematic model and simulation 

results are given. However, the errors in estimated slip 

parameters increase rapidly as the EKF is a linear estimator 

used for a nonlinear system. Thus, a nonlinear SMO based on 

a kinematic model is proposed in this study for slip and 

velocity estimation (Song, Z. et al., 2006). The SMO 

minimizes the error between the estimated and measured 

states, converging the estimated states to the real ones, and 

then the slip and velocity can be estimated. 

The observer takes the form of 

1
ˆ ˆcos ( )X y L sign X XΦ= + −
�
�                         (16) 

     2

2ˆ ˆ( )
y

L sign
B

Φ Φ Φ= − + −
��

                            (17) 

1 3 1

2ˆ ˆ( )
y

L sign
B

Φ Φ Φ= + −
��

                              (18) 

where 
1

L  ,
2

L and 
3

L are the sliding mode gains, X̂
�

and X̂ are 

the estimated velocity and position of the robot in X  

direction, Φ̂
�

 and Φ̂  are the estimated yaw rate and heading 

angle of the robot, 
1

Φ̂
�

 and 
1

Φ̂  are dummy variables used for 

designing an appropriate sliding surface. The error dynamics 

of the SMO can be obtained by subtracting (16) from (12), 

(17) from (14) and (18) from (14) 

1
ˆsin tan ( )X y L sign X XΦ α= − −

�
�                     (19) 

 2

2 ˆ(1 ) ( )o o

r
i L sign

B
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�
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1 3 1

2 ˆ(1 ) ( )i i

r
i L sign

B
Φ ω Φ Φ= − − − −
�

               (21) 

The error dynamics of the SMO will converge after a finite 

time interval, provided that the sliding gains are selected to 

satisfy the derived stability conditions. In (Song Z. et al., 

2006), Lyapunov stability theory is used to show that if 

1 2 3

2 2
| sin tan |, | (1 ) |, | (1 ) |o o i i

r r
L y L i L i

B B
Φ α ω ω> > − > −� ,                        

then the SMO is guaranteed to converge within a finite time 

interval. In other words, 0X ≈
�

, 0Φ ≈�  and 
1

0Φ ≈� . 

Given the angular velocities 
o

ω and
1

ω , the vehicle 

position X , the longitudinal velocity y�  and sliding gains
1

L , 

2
L , 

3
L , the slip parameters can be calculated as follows 
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 where ( · )eq denotes a low pass filter. Substituting (22) into 

(14), (15) and using the relationship: tanx y α=� � , the 

estimated velocity vector is given as 

ˆ ( (1 ) (1 )) tan
2

ˆ ( (1 ) (1 ))
2

ˆ ( (1 ) (1 ))

o o i i

o o i i

o o i i
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               (23) 

For validating the slip vector and velocity vector estimated 

by the SMO, the forward kinematics of the mobile robot is 

used to calculate the pose vector ˆ ˆ ˆ[ , , ]X Y Φ  using the slip 

vector [ , , ]
o i

i i α  estimated by the SMO. If the trajectory 

ˆ ˆ ˆ[ ( ), ( ), ( )]X t Y t tΦ ) has good agreement with the real one, it is 

indirectly proved that the estimated slip vector and velocity 

vector can be accurate.  

5. EXPERIMENTAL RESULTS 

5.1 Experimental Setup 

A skid-steered mobile robot, PIONEER3-AT, is used to 

experimentally validate the slip and velocity estimation 

algorithm. The test bed in Fig. 4 (a), is filled with a variety of 

terrain and allows the mobile robot to move along an 

arbitrary trajectory. The two driving wheels are equipped 

with optical encoders with a sampling frequency of 10 Hz for 

providing wheel angular velocities. A monocular CMOS 

camera Silicon Video
®
 1281 is fixed on the robot in Fig. 4 (b) 

as a visual odometry sensor. The camera has a resolution of 

640 × 512 pixel
2
 with a field of view of 40.4º × 30.8º. A 

frame rate of 30 fps (frame per second) is set to capture 

images.  

For validating the slip and velocity estimation algorithm, a 

stand-alone overhead vision system, as shown in Fig. 4 (c), is 

used to provide real trajectory of the robot (Song Z., et al,. 

2006). The overhead camera with a resolution of 1280 × 

1024 pixel
2
 measures the motion of the robot by tracking two 

white round tags pasted on the top surface of the robot. The 

overhead camera has a high accuracy of 2×10
-3

 m for position 

and 7×10
-3

 rad for orientation. 

In the experiments, the mobile robot is commanded to follow 

two different trajectories over coarse and fine sands 

respectively. The robot is driven at speeds ranging from 0.02 

m/s to 0.06 m/s. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9218



 

 

     

 

2 4 6 8 10 12 14 16 18

-0.028

-0.008

0.012

0.032

Time (s)

Y
a
w

 r
a
te

 (
ra

d
/s

)

2 4 6 8 10 12 14 16 18
0

1.5

3

4.5

6

x 10
-6

V
e
lo

c
it

y
 (

m
/s

)

2 4 6 8 10 12 14 16 18
0

0.015

0.03

0.045

0.06

V
e
lo

c
it
y
 (

m
/s

)

Lateral velocity

Longitudinal velocity

Yaw rate

4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

Time (s)

S
lip

 a
n
g
le

 (
ra

d
)

4 6 8 10 12 14 16 18
-0.4

-0.2

0

0.2

0.4

L
in

e
a
r 

s
lip

i
o
, outer track

i
i
, inner track

α , slip angle

 

 

 

 

 

                                                

                                                                    (b) 

 

 

 

 

 

 

                       (a)                                         (c) 

Fig. 4 (a) Skid-Steered mobile robot in the test bed; (b) On-

board camera on mobile robot; (c) Overhead vision system. 

5.2 Experimental Results on Coarse Sand 

Due to the limitation of the test bed, the mobile robot 

traverses over coarse sand (Garside 60 Sand) along a straight 

line for 0.19m and then turns along an arc for 0.54m before 

coming to a halt. Based on the information provided by the 

visual odometry sensor and the optical encoders, the SMO is 

driven to estimate the slip vector and velocity vector of the 

mobile robot. The estimated slip vector and velocity vector in 

this test are shown in Figs. 5 and 6 respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Estimated slip vector on coarse sand 

 

The mean linear slip of the outer wheel is 34.00% while the 

mean linear slip of the inner wheel is -21.00%, and the slip 

angle variably oscilates around 0.05 rad. 

 

 

 

 

 

 

 

 

 

Fig. 6. Estimated velocity vector on coarse sand 

The estimated trajectory using the estimate slip parameters 

from the SMO is compared to the real trajectory constructed 

from the overhead vision system. In Fig. 7, the trajectory 

calculated from the forward kinematic equations by using 

estimated slips are plotted and labelled as Estimated 

trajectory, and the Trajectory benchmark is provided by the 

overhead camera. It is seen the estimated trajectory has good 

agreement with the benchmark.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Estimated trajectory vs. real trajectory 

The estimated trajectory has accumulative errors due to once 

integration and the accumulative trajectory error in this test is 

3×10
-3

 m over the range of 0.73 m, less than 1% of the total 

traveled distance. Comparing the trajectory calculated by the 

slip and velocity estimation algorithm to the one provided by 

the overhead camera, we can assure that the slip parameters 

and velocities estimated by the algorithm are accurate. 

Additionally, although the estimated trajectory is prone to 

accumulative errors because of once integration, the 

estimated slips and velocities are not involved with 

accumulative errors. 

5.3 Experimental Results on Fine Sand 

In this test, the coarse sand in the test bed is replaced by fine 

sand (Garside 14/25 Sand). The mobile robot moves along an 

arc for 0.65 m. Similar with the experiment carried on the 

coarse sand, the SMO estimates the slip vector and velocity 

vector of the mobile robot by using the pose and longitudinal 

velocity information from the visual odometry sensor and 

wheel angular velocities from the optical encoders. The 

estimated slip vector and velocity vector are shown in Figs. 8 

and 9 respectively. 

The forward kinematics of the robot is used to generate the 

trajectory of the mobile robot using the estimated slip vectors, 

which are plotted in Fig. 8. As shown in Fig. 10, it is seen 

that the estimated trajectory has good agreement with the real 

one provided by the overhead camera. The total accumulative 

trajectory error is 4×10
-3

 m over the range of 0.65 m, less 

than 1% of the total traveled distance. Therefore, it can be 

concluded that the estimated slip and velocity vector by the 

technique are accurate. 
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                Fig. 8. Estimated slip vector on fine sand 

 

 

 

 

 

 

 

 

 

Fig. 9. Estimated velocity vector on fine sand 

 

 

 

 

 

 

 

 

     

 

 

Fig. 10. Estimated trajectory vs. real trajectory  

6. CONCLUSIONS 

In this paper, we propose a novel vision-based technique for 

slip and velocity estimation of an UGV. A visual odometry 

sensor is used to measure the motion of the UGV and provide 

the inputs for a SMO. The SMO, based-on a kinematic model 

of the vehicle, is designed to cope with measurement noise 

and uncertainty and estimate slip and velocity vectors. This 

slip and velocity estimation technique has been validated on a 

skid-steered mobile robot over variable terrains with different 

trajectories. The experimental results show that the technique 

delivers good performance in slip and velocity estimation 

when the vehicle moves over terrain at low speeds. 

Additionally, the estimated slips and velocities are not 

involved with accumulative errors. Thus, the proposed 

technique has promising potential applications. 

More complex trajectories and longer traveled distance will 

be attempted in the future work to validate and improve the 

technique. An IMU is considered to integrate with the visual 

odometry sensor so that the reliable measured speed ranges of 

the UGV can be expanded. 
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