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Abstract: The design of excitation signals for Magnetic Resonance Imaging (MRI) is cast
as an optimal control problem. An appropriate cost criterion, the Signal Contrast Efficiency
(SCE), is developed. It is to be optimised subject to dynamics expressed by the Bloch
equation. The solution to the optimisation problem is potentially useful for all forms of MRI
including structural and functional imaging. Here, we demonstrate that signals other than pulse
excitations, which are ubiquitous in MRI, can provide adequate excitation, thus challenging
the optimality and ubiquity of pulsed signals. A class of on-resonance piece-wise continuous
amplitude modulated signals is introduced. It is shown that despite the bilinear nature of
the Bloch equations, the optimisation problem is largely analytically tractable for this class
of signals, using Galerkin approximation methods. Simulations demonstrate that this class of
signals may provide an attractive alternative to pulsed excitation signals for MRI.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is one of the major
tomographic imaging modalities. A Magnetic Resonance
(MR) signal is generated by recording the current induced
in a receive coil by fluctuations in nuclear magnetisation
produced by a time varying (Radio Frequency (RF)) ex-
ternally applied magnetic field. The behaviour of the spin
system at a classical level in the presence of an external
field is completely described by the Bloch equation,

Ṁ(t) = γM(t)×Bext(t)+
1

T1

(M0−Mz(t))ez−
1

T2

Mxy(t).

(1)

Here, γ is the gyromagnetic ratio, and ez is the unit
vector in the z direction. T1 and T2 are longitudinal and
transverse relaxation time constants, respectively. M is the
bulk magnetisation vector (to be measured), dependent on
both position and time. M0ez is the thermal equilibrium
created by an ideally-uniform static field oriented in the
z-direction (aligned with the static external field).

In the above equation the external field is the superpo-
sition of a static and uniform magnetic field in the z-
direction (with amplitude B0), and a time varying, spa-
tially dependent, excitation field, Bxy(t), expressed as

Bext(t) = Bxy(t) + B0ez. (2)

In order to identify and spatially localise the MR signal
from the induced current, which is a function only of time,
gradient fields are carefully designed to map spatial de-
pendency to frequency dependency in the received signal,

⋆ This work is supported by NICTA Lifesciences, the Victorian

Research Laboratory.

a property that is enabled by the fact that proton spin
frequency at a particular location scales linearly with the
magnitude of the external field at that location.

The first step in two dimensional MR imaging is typically
to excite a thin slice of the object by applying a selective
RF pulsed magnetic field. To reduce partial volume effects,
the design of a RF pulse with good frequency selectivity is
of crucial importance. Slice selection is based on the Bloch
equation, which is nonlinear in nature.

From the early days of MRI, several methods have been
proposed to solve the selective excitation problem [Gar-
roway et al., 1974]. These methods have been derived
through approximate solutions to the Bloch equation
[Conolly and Macovski, 1985], or are based on computer
simulations that predict the magnetisation response of the
spin system to various excitatory inputs [Loeffler et al.,
1983]. For small flip angles (the amount of perturbation of
the local thermal equilibrium magnetisation from its initial
orientation), the design of the selective pulse is based
on the Fourier analysis of the Bloch equation [Hinshaw
and Lent, 1983], valid for flip angles smaller than π/2.
The design of better pulses requires application of optimal
control theory [Pauly et al., 1991, Conolly et al., 1996,
Brockett and Khaneja, 2001, Ulloa et al., 2004].

Conolly et al. [1996] provide a mathematical basis for RF
pulse design and an algorithm to solve for the optimal
pulse, defined to be the pulse that steers the magnetisation
from the initial state closest to the desired final state. It
is shown that such an optimal control does exist.

The Shinner-Le Roux method is a recursive algorithm for
finding the optimal pulse for selective excitation [Pauly
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Fig. 1. A general block diagram of the MRI system.

et al., 1991]. This method is based on a discrete approxi-
mation to the Bloch equation which simplifies the solution
of the selective pulse to the design of two polynomials.

Brockett and Khaneja [2001] consider stochastic models
for constructing the optimal excitation, based on a con-
ditional entropy approach. In practice, due to field inho-
mogeneities, application of an on-resonance pulse cannot
simultaneously excite an ensemble of spins. Li and Khaneja
[2006] have formulated and solved this problem, finding a
procedure to design compensating pulses that are able to
simultaneously bring all the desired spins into the trans-
verse plane.

Improvements to the received MR signal may be achieved
via two principal approaches. First, it is possible to in-
crease the received signal strength through better hard-
ware design, including higher strength magnetic fields,
more homogeneous fields, and more sensitive coils. The
second approach is via design of a more efficient RF excita-
tion signal. In this paper we focus on the latter method. We
formulate the image contrast optimisation problem based
on the Bloch equation, and demonstrate the feasibility of
maintaining spin coherency for a novel continuous wave
excitation signal, thus providing a potential alternative to
the traditional pulsed MR excitation.

2. PROBLEM STATEMENT

A block diagram of the MRI system is depicted in Figure
1. The inputs to this system are the main static field and
the RF excitation signal. The result of the RF excitation
is an MR signal that, if encoded properly, retains spatial
information about the object. No rigorous mathematical
analyses exist in the MRI literature proving optimality
of pulse excitation for generation of image contrast. We
therefore formulate the optimisation problem in order to
determine whether pulses, or some other form of excitation
signal, generate the optimal contrast between tissue types
in the resultant images.

2.1 Problem Formulation

In the laboratory frame of reference, the Bloch equation
in the presence of the static, gradient and excitation fields
is written as





Ṁx

Ṁy

Ṁz



 =













− 1

T2

γBz(t) γBy(t)

−γBz(t) − 1

T2

γBx(t)

−γBy(t) −γBx(t) − 1

T1













[

Mx

My

Mz

]

+







0
0

M0

T1






,

(3)

in which the field in the z direction is given by

Bz = B0 + ∆B0(t) + Gr(t) · r, (4)

where ∆B0(t) represents field inhomogeneities, Gr(t) is
the gradient field, and r is position.

If B0, and consequently Bz, are permitted to change
considerably with time, then since both T1 and T2 are
functions of the field strength [Alster and Burdette, 2001],
the relaxation time constants become time dependent as
well. Thus, in the more general case, the Bloch equation
may be written as





Ṁx

Ṁy

Ṁz



=















− 1

T2(t)
ωz(t) ωy(t)

−ωz(t) − 1

T2(t)
ωx(t)

−ωy(t) −ωx(t) − 1

T1(t)















[

Mx

My

Mz

]

+







0
0

M0(t)

T1(t)






(5)

where the frequency terms are given by the Larmor rela-
tionship,

ωi(t) = γBi(t), i = x, y, z. (6)

In particular, ωz = γBz is referred to as the Larmor
frequency. The excitation field can be expressed as

Bxy(t) ≡ B1(t) =
1

γ

(

u(t) ex + v(t) ey

)

, (7)

where

u(t) = γBe
x(t) cos

(

ωrf (t) t + φx(t)
)

(8a)

v(t) = −γBe
y(t) sin

(

ωrf (t) t + φy(t)
)

. (8b)

We consider u(t) = [u(t), v(t)]T , for u, v ∈ U , where U
is the set of all admissible piecewise continuous bounded
functions. By appropriate selection of the parameters
in (8) it is possible to generate any desirable piecewise
continuous function.

After transformation of the Bloch equation to the frame
rotating at ωrf (t), represented by the axes {x′, y′, z′} so
as to distinguish it from the laboratory frame of reference
[Tahayori et al., 2007], we obtain





Ṁx′

Ṁy′

Ṁz′



 = Ω′

(

u(t),Bz(t)
)

[

Mx′

My′

Mz′

]

+







0
0

M0(t)

T1(t)






, (9)

where

Ω′

(

u(t),Bz(t)
)

=















− 1

T2(t)
∆ω(t) vtr(t)

−∆ω(t) − 1

T2(t)
utr(t)

−vtr(t) −utr(t) − 1

T1(t)















, (10)

in which

utr(t) = u(t) cos
(

ωrf (t) t
)

+ v(t) sin
(

ωrf (t) t
)

, (11a)

vtr(t) = −u(t) sin
(

ωrf (t) t
)

+ v(t) cos
(

ωrf (t) t
)

, (11b)

∆ω(t) = ∆ωrf (r, t) + δω(t). (11c)

Here ∆ωrf (r, t) represents the difference between the
instantaneous Larmor frequency of the main magnet with
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superimposed gradients, and the instantaneous rotation
frequency of the RF field

∆ωrf (r, t) = γ
(

B0(t) + Gr(t) · r
)

− ωrf (t). (12)

Since we may have control over both the static field and the
RF field, ∆ωrf (r, t) can be considered a free parameter.
δω(t) represents all field inhomogeneities other than those
comprising ∆ωrf (r, t). These inhomogeneities include any
imperfections in the main magnet, chemical shifts, knight
shifts, and paramagnetic shift effects [Levitt, 2001]. Thus
δω(t) = γ ∆B0(t) represents all the stochastic fluctuations
in the spin system.

For two different tissue types, a and b, with the following
spin properties

θa(t) =

[

T1a(t)
T2a(t)
M0a(t)

]

, θb(t) =

[

T1b(t)
T2b(t)
M0b(t)

]

, (13)

the system parameters in (9) are tissue dependent,

Ω′

i

(

θi,u(t),Bz(t)
)

=















− 1

T2i(t)
∆ωi(t) vtr(t)

−∆ωi(t) − 1

T2i(t)
utr(t)

−vtr(t) −utr(t) − 1

T1i(t)















,

(14)

∆ωi(t) = ∆ωrf (r, t) + δωi(t), i = a, b, (15)

resulting in the Bloch equation dynamics,

Ṁ′

a(t) = Ω′

a

(

θa,u(t),Bz(t)
)

M′

a(t) +
M0a(t)

T1a(t)
, (16a)

Ṁ′

b(t) = Ω′

b

(

θb,u(t),Bz(t)
)

M′

b(t) +
M0b(t)

T1b(t)
, (16b)

with the following initial conditions

M′

a(0) =

[

0
0

M0a(0)

]

, M′

b(0) =

[

0
0

M0b(0)

]

. (17)

Since the induced voltage created by the transverse mag-
netisation generates the MR signal, the intensity of the
final image is proportional to the magnetisation in the
x′y′ plane. A scaling factor takes into account the coil
sensitivity and image reconstruction technique. The signal
intensity may therefore be expressed as

Signal Intensity ∝
∫ T

0

∣

∣

∣
Mx′y′(t)

∣

∣

∣
dt. (18)

The overall objective is to maximise the contrast to
noise ratio of the final image. It is reasonable to assume
that the noise distribution for imaging a given object is
approximately constant across different types of excitation
[Haacke et al., 1999]. The imaging procedure should be
completed in the shortest possible time, so as to minimise
exposure to the magnetic fields. We therefore define a
performance measure similar to the imaging efficiency
parameter [Haacke et al., 1999], and denote it by Signal
Contrast Efficiency (SCE). SCE is defined to be the
time normalised difference in signal from the two tissues,
integrated over time

Signal Contrast Efficiency = J
(

θa, θb,u,Bz

)

,
∫ T

0

∣

∣Mx′y′

a
(θa,u(t),Bz(t), t) − Mx′y′

b
(θb,u(t),Bz(t), t)

∣

∣dt
√

T
(19)

where T represents the duration of the excitation. As a
result, for two different tissues’ spin systems described
by (16), we seek the optimal excitation waveform, u∗, such
that

u∗ = argmax
u

J
(

θa, θb,u,Bz

)

(20)

while constraining the Specific Absorption Rate (SAR) to
be less than a predefined threshold,

∫ T

0

√

u(t)2 + v(t)2 dt ≤ Amax (21)

The quantity, Amax, depends on the strength of the main
magnet and properties of the object.

Theoretically, it is possible to have full control over the
free parameters of the system, u, ∆ωrf (t), and Bz. We
will allow Bz to change according to a predefined pattern.
The parameters, T1 and T2, are known to change with
Bz(t) and we may have some control over them, however
they are not free parameters of the system.

If instead we wish to determine the maximum contrast
during a fixed period of time, then the objective function
reduces to finding u∗ such that

u∗ = argmax
u

∫ T

0

∣

∣

∣
Mx′y′

a
(θa,u(t),Bz(t), t)

− Mx′y′

b
(θb,u(t),Bz(t), t)

∣

∣

∣
dt (22)

To maximise the image intensity, the signal intensity for
one type of tissue must be maximised. Thus in this case
the objective is to find a control such that

u∗ = argmax
u

∫ T

0

∣

∣

∣
Mx′y′

a

(

θa,u(t),Bz(t), t
)

∣

∣

∣
dt

√
T

. (23)

2.2 Problem Simplification

The spin systems for two tissue types written in their most
general form, as in (16), evolve according to sets of time-
varying parameters. The resultant optimisation problem
is therefore very difficult to solve in this most general
case. For simplification of the problem, we assume that
Bz, and as a result T1i, and T2i, do not vary with time.
Furthermore, we assume that the excitation is applied on-
resonance, ωrf (r, t) = γ

(

B0(t) + Gr(t) · r
)

, and Be
x(t) =

Be
y(t) = Be

1(t), φx(t) = φy(t) = 0 for all t and time-
independent field inhomogeneities, resulting in

Ṁ
′

i(t) =
(

Ai+γBe
1(t)B

)

M′

i(t)+
M0i

T1i

, i = a, b, (24)

where
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Ai =













− 1

T2i

δω 0

−δω − 1

T2i

0

0 0 − 1

T1i













, B =

[

0 0 0
0 0 1
0 −1 0

]

. (25)

The objective is to find the control Be
1(t) that maximises

the Signal Contrast Efficiency, as defined in (19).

3. SIMULATION RESULTS

Most excitation waveforms, when applied for a long period
of time, will cause the spins to dephase, resulting in a weak
signal available for measurement. Based on the laser candle
idea in photonics [Coffer et al., 2002], we have applied
an on-resonance continuous wave excitation, modulated at
the Rabi frequency (ω1 = γB1), to the Bloch equation

Bxy(t) ≡ B1(t) = Be
1(t) cos(ω0t)ex − Be

1(t) sin(ω0t)ey,
(26)

where ω0 is the Larmor frequency of the main static field
(for simplicity we have ignored the gradient fields), and

Be
1(t) = B1 (1 + α cos(γB1t)) (27)

in which α is a constant modulation factor, γ is the
gyromagnetic ratio, and B1 is a constant representing the
amplitude of the rotating field when modulation factor is
zero. After transforming the Bloch equation to the rotating
frame of reference, the Rabi frequency of precession will be
about the x′-direction and is given by

ωx′(t) = γB1[1 + α cos(γB1t)] = ω1[1 + α cos(ω1t)], (28)

which clearly indicates that the Rabi frequency is time
dependent. The Bloch equation for this excitation in the
rotating frame of reference is

Ṁ′(t) = Ω′(t)M′(t) +
M0

T1

, (29)

where

Ω′(t) =













− 1

T2

δω 0

−δω − 1

T2

ω1[1 + α cos(ω1t)]

0 −ω1[1 + α cos(ω1t)] − 1

T1













,

(30)

and

M(t = 0) = M0 =

[

0
0

M0

]

. (31)

We have simulated the Bloch equation with this excitation
both with and without considering field inhomogeneities.
Figure 2 shows the result of four second simulation for such
an excitation with α =

√
3, and B1 = 100nT. The spins

system has T1 = 1s, and T2 = 0.5s in a 1.5T field.

The simulation results clearly shows that the magnetisa-
tion becomes very small after a period of time (in this case
around 1 second) and both the transverse and longitudinal
magnetisation are reborn. As can be seen after a period of
time the system reaches its steady state response that is no
more a constant value, but has a periodic pattern and its
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Fig. 2. Simulation result without considering field inho-
mogeneities under a continuous wave excitation rep-
resented by (26) with α =

√
3, and B1 = 100nT for

a spin system with T1 = 1s, and T2 = 0.5s in a 1.5T
field.

peak (0.4M0) is comparable to the initial value which is the
thermal equilibrium. The rotation frequency of the steady
state response only depends on the excitation magnitude
and is equal to the Rabi frequency. But the peak value of
the steady state response is a function of T1, T2, and α.

It is possible to generate signals which do not go to zero
during the transient response, as shown in Figure 3. In this
case, the envelope of the applied excitation pattern is

Be
1(t) = B1 (1 + α sin(γB1t)) (32)

For comparison with the traditional MR excitation, we
simulate a nonselective RF pulse for the same spin system,
the results of which are shown in Figure 4. The pulse is
a box-car RF field of amplitude 59µT, rotating at the
Larmor frequency, for a period of 100µs. While the energy
of the pulse used to generate the magnetisation shown in
Figure 4 is 3.48 times of the energy of the continuous wave
excitation (32), the signal intensity as measured by (18)
that the continuous wave generates is twice that generated
by the pulse excitation.

In the simulations to this point, we have not taken field
inhomogeneities into account. Under the continuous wave
excitation applied above, field inhomogeneities cause the
magnetisation to die out in steady state. If, however, a
stronger excitation field applied such that γB1 >> δω, we
observe from simulations that the response of the system
in the presence of field inhomogeneities becomes similar
to the case without the inhomogeneities considered. It
can therefore be concluded that a strong excitation field
compensates for the effect of field inhomogeneities. Note
that a ’strong’ excitation field does not need to exceed the
amplitudes generated by pulse excitation, to achieve the
desired suppression of field inhomogeneities.

3.1 Periodic Solution

Since the applied modulated excitation has a periodic
waveform (26), it is possible to find a periodic solution for
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Fig. 3. Simulation result without considering field inho-
mogeneities under a continuous wave excitation rep-
resented by (32) with α =

√
3, and B1 = 100nT for

the same spin system in Figure 2.
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Fig. 4. Magnetisation evolution without considering field
inhomogeneities under a pulse excitation for the same
spin system in Figure 2.

the steady state response of the system using Galerkin’s
procedure for nonlinear periodic systems [Urabe, 1965,
Donescu and Virgin, 1996]. When there are no field in-
homogeneities, or alternatively when the excitation field
is strong enough, Ω′(t) in (29) becomes

Ω′(t) =













− 1

T2

0 0

0 − 1

T2

ω1[1 + α cos(ω1t)]

0 −ω1[1 + α cos(ω1t)] − 1

T1













.

(33)
It is clear that the steady state response of the x′ compo-
nent will be zero. Thus, we only have to find the solutions
of the y′, and z′ components. As a result the reduced
version of the Bloch equation may be written as

Ṁ′

r(t) = Ω′

r(t)M
′

r(t) +
M0r(t)

T1

, (34)

where

Ṁ′

r =

[

Ṁy′

Ṁz′

]

, M′

r =

[

My′

Mz′

]

, M0r =

[

0
M0

]

, (35)

and

Ω′

r(t) =







− 1

T2

ω1[1 + α cos(ω1t)]

−ω1[1 + α cos(ω1t)] − 1

T1






.

(36)
We can rewrite Ω′

r(t) as

Ω′

r(t) = A + Dejω1t + De−jω1t, (37)

where

A =







− 1

T2

ω1

−ω1 − 1

T1






, D =





0
αω1

2
−αω1

2
0



. (38)

The steady state reduced magnetisation and its derivative
can be written as a summation of their harmonics,

M′

r =
∞
∑

k=−∞

Ckejkω1t, Ṁ′

r =
∞
∑

k=−∞

jkω1Ckejkω1t,

(39)

where Ck represents the Fourier series coefficient vector
and is given by

Ck =
[

Cky′
Ckz′

]T
. (40)

Substituting the harmonic expansions into (34) leads to

∞
∑

k=−∞

jkω1Ckejkω1t

= A

∞
∑

k=−∞

Ckejkω1t + Dejω1t

∞
∑

k=−∞

jkω1Ckejkω1t

+ De−jω1t

∞
∑

k=−∞

jkω1Ckejkω1t +
M0r

T1

. (41)

By balancing the harmonics and rearranging the terms,

∞
∑

k=−∞

(

ACk−jkω1Ck+DCk−1+DCk+1

)

ejkω1t = −M0r

T1

.

(42)

Expanding the above equation and writing it in matrix
form yields PC = Q where P is a block tri-diagonal matrix
as follows

P =























. . .
A + j2ω1I D 0 0 0

D A + jω1I D 0 0
0 D A D 0
0 0 D A − jω1I D
0 0 0 D A − j2ω1I

. . .























,

(43)
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and

C =























...
C−2

C−1

C0

C1

C2

...























, Q =



























...
0
0

−M0r

T1

0
0
...



























. (44)

Through inversion of P it is possible to calculate the
coefficients of the Fourier series. P is an infinite matrix
however, and to approximate the coefficients this matrix
must be truncated. The convergence rate of the coefficients
must be found, to ensure a desired accuracy is achieved
when truncating the series solution. By decomposing P
into a product of lower and upper triangular matrices,
we have proven that the convergence rate of the peri-
odic solution is (α

2
)N/N !, where N indicates the order

of truncation [Tahayori et al., 2007]. The Fourier series
coefficients therefore converge to zero at a surprisingly fast
rate. Simulation results support this analytic convergence
rate. When the modulation factor (see (27)) α ≤ 2, five
terms are enough to ensure less than 1% relative error.

4. CONCLUSION

In this paper we have formulated the problem of designing
the optimal excitation pattern for Magnetic Resonance
Imaging based on a Signal Contrast Efficiency performance
measure. An excitation pattern was represented that main-
tains the coherency of the spins in the steady state. More-
over, it was shown that this continuous wave excitation can
generate an improved signal intensity for a single tissue
type, relative to the traditional pulse excitation.

It is important to note that obtaining a better MR Signal
Contrast Efficiency, through design of a better excitation
pattern, does not necessarily lead to a superior image; lo-
calisation of the signal plays a key role in image formation.
Nonetheless, it is always possible to make an image from
the received MR signal, for example using the backprojec-
tion technique [Prince, 1996], regardless of the excitation
waveform. There is no guarantee that this method of
image reconstruction is as efficient as the Fourier method.
However the first step towards the generation of MR im-
ages with higher quality is the acquisition of the optimal
system response to input excitation of a given amount of
energy. Signal localisation forms the second step in the
procedure. Eventually both aspects of the problem must
be taken into consideration, however we advocate solution
of the optimisation in two separate steps, given the difficult
nature of formulating and then solving the problem that
fuses the both steps.

If in future work it is found that the answer to the
MR excitation problem, as posed in this paper, is pulse
excitation, then we will have provided a proof of optimality
of the pulse excitation, and the result may be used to
design better pulse sequences. If, on the other hand, the
solution to the problem is a class of waveforms other
than pulse excitation, then horizons in MRI research will
have been broadened, with the potential to affect all

forms of MR imaging, including structural MRI, functional
MRI (fMRI), Diffusion Tensor Imaging (DTI), perfusion
imaging, and Magnetic Resonance Angiography (MRA).
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