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Abstract: It is well known that least-squares (LS) method gives biased parameter estimates
when the input and output measurements are corrupted by noise. One possible approach for
solving this bias problem is the bias-compensation based method such as the bias-compensated
least-squares (BCLS) method. In this paper, a new bias-compnesation based method is proposed
for identification of noisy input-output system. The proposed method is based on compensation
of asymptotic bias on the instrumental variables type (IV-type) estimates by making use of noise
covariances estimates. In order to obtain the noise covariances estimates, an overdetermined
system of equations is introduced, and the noise covariances estimation algorithm is derived
by solving this overdetermined system of equations. From the combination of the parameter
estimation algorithm and the noise covariances estimation algorithm, the proposed bias-
compensated instrumental variables type (BCIV-type) method can be established. The results
of a simulated example indicate that the proposed algorithm provides good estimates.
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1. INTRODUCTION

Recently, consistent estimation methods for identification
of linear discrete-time system in the presence of input
and output noises, which is usually called “errors-in-
variables” (EIV) model, have received much attention
because of its important applications in signal processing,
communications and control systems.

Several methods have been proposed to estimate unknown
parameters of EIV model. Joint Output (JO) method
(Söderström [1981]) and Koopmans-Levin (KL) method
(Fernando and Nicholson [1985]) require a priori knowl-
edge about the values of variances or the ratio to mea-
surements noises.

Bias-compensated least-squares (BCLS) method is pro-
posed by Sagara et al. (Sagara and Wada [1977]) and it has
been extended by Wada et al. (Wada et al. [1990]) to the
input-output noise case without any a priori knowledge
of noise variances. BCLS method based on compensation
of asymptotic bias on the least-squares (LS) estimates by
making use of noise variances estimates is very efficient
method for estimation of noisy input-output system pa-
rameters. In recent years, BCLS method has been de-
veloped to improve the estimation accuracy and several
recursive algorithms have been proposed (Jia et al. [2001],
Ikenoue et al. [2005]).

On the other hand, another method named bias-eliminated
least-squares (BELS) method has been proposed by Zheng

et al. (Zheng and Feng [1989]) in which the different
estimation method of asymptotic bias is used and further
developed to be the efficient method (Zheng [1999, 2002])
to treat bias problem in noisy input-output system iden-
tification.

In this paper, a new bias-compnesation based method
is proposed for identification of EIV model in the case
where the input and output measurements are corrupted
by colored noise. The proposed method is based on com-
pensation of asymptotic bias on the instrumental vari-
ables type (IV-type) estimates by making use of noise
covariances estimates. In order to obtain the noise covari-
ances estimates, an overdetermined system of equations
is introduced, and the noise covariances estimation algo-
rithm is derived by solving this overdetermined system
of equations. From the combination of the parameter es-
timation algorithm and the noise covariances estimation
algorithm, the proposed bias-compensated instrumental
variables type (BCIV-type) method can be established.
The results of a simulated example indicate that the pro-
posed algorithm provides good estimates.

This paper is organized as follows. In section 2, the prob-
lem statement is presented and the BCLS method is de-
scribed. In section 3, the IV-type estimator is introduced
and the BCIV-type estimator is derived for estimating un-
known parameters of EIV model and it can be learned that
the unknown noise covariances must be estimated in order
to obtain consistent estimates of parameters. In section 4,
the noise covariances estimation algorithm is derived by
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solving the overdetermined system of equations, and the
BCIV-type method is established. Moreover, the recursive
BCIV-type algorithm is described. The simulation results
are presented in section 5 and finally section 6 gives the
conclusion.

2. PROBLEM STATEMENT

Consider the parameter estimation problem of single-
input single-output linear discrete-time system described
as follows:

A(q−1)yt = B(q−1)ut (1)

where ut and yt are the true input and output, q−1 is shift
operator, q−1ut = ut−1, and the polynomials A(q−1) and
B(q−1) are defined by

A(q−1) = 1 + a1q
−1 + · · ·+ anq−n (2)

B(q−1) = b1q
−1 + · · ·+ bnq−n . (3)

It is assumed that A(z) has all zeros outside the unit
circle and A(z) and B(z) have no common factors. Let
zt and wt be the noise-corrupted measurements of yt and
ut, respectively, i.e.

zt = yt + et, wt = ut + dt (4)
where et is the output measurement noise and dt is the
input measurement noise. The measurement noises et

and dt are assumed to be zero-mean colored noise with
unknown covariances

ree(k) = E[etet−k], (k = 0, ± 1, ± 2, · · · ) (5)
rdd(k) = E[dtdt−k], (k = 0, ± 1, ± 2, · · · ) (6)

and described as
et = He(q−1)ωe,t (7)
dt = Hd(q−1)ωd,t (8)

where E[·] stands for mathematical expectation, ωe,t and
ωd,t are zero-mean white noises with unknown variances
σ2

ωe
and σ2

ωd
, and He(q−1), Hd(q−1) take up any form

of rational function. The true input ut is a zero-mean
stationary random process with finite variance, and ut,
dt and et are assumed to be statistically independent of
each other.

Substituting (4) into (1) yields

A(q−1)zt = B(q−1)wt + vt (9)
where vt is a composite noise defined by

vt = A(q−1)et −B(q−1)dt . (10)
Define some vectors as

θT = [aT , bT ] = [a1 · · · an, b1 · · · bn] (11)
pT

t = [−zT
t , wT

t ]
= [−zt−1 · · · − zt−n, wt−1 · · ·wt−n] (12)

qT
t = [−yT

t , uT
t ]

= [−yt−1 · · · − yt−n, ut−1 · · ·ut−n] (13)

rT
t = [−eT

t , dT
t ]

= [−et−1 · · · − et−n, dt−1 · · · dt−n] (14)
then (4), (9) and (10) can be written as

pt = qt + rt (15)
zt = pT

t θ + vt (16)
vt = et − rT

t θ . (17)

Let the equation error ξt for an estimate θ̂ of θ be defined
as

ξt = Â(q−1)zt − B̂(q−1)wt = zt − pT
t θ̂ (18)

where the polynomials Â(q−1) and B̂(q−1) are defined by

Â(q−1) = 1 + â1q
−1 + · · ·+ ânq−n (19)

B̂(q−1) = b̂1q
−1 + · · ·+ b̂nq−n (20)

and

θ̂
T

= [âT , b̂
T
] = [â1 · · · ân, b̂1 · · · b̂n] . (21)

Minimizing the sum of squared equation error ξt yields the
least-squares (LS) estimate of θ

θ̂LS,N = R̂
−1

pp,N r̂pz,N (22)
where

R̂pp,N =
1
N

N∑
t=1

ptp
T
t (23)

r̂pz,N =
1
N

N∑
t=1

ptzt . (24)

From the assumption of et and dt, the composite noise vt

defined by (10) is not white. Hence the LS estimate θ̂LS,N

has a bias asymptotically. The asymptotic result of the LS
estimate θ̂LS,N is obtained as

θLS = θ −R−1
pp Qγ (25)

where
θLS = lim

N→∞
θ̂LS,N = R−1

pp rpz (26)

Rpp = lim
N→∞

R̂pp,N = E[ptp
T
t ] (27)

rpz = lim
N→∞

r̂pz,N = E[ptzt] (28)

Q =
[
Q1 + Q2

Q3

]
(29)

Q1 =aiT
1 +

n−1∑

j=1

[
(Sn)j +(ST

n )j
]
aiT

j+1 (30)

Q2 = [0n In On] (31)

Q3 =biT
n+2+

n−1∑

j=1

[
(Sn)j +(ST

n )j
]
biT

j+n+2 (32)

ij = I2n+1(:, j) (j = 1, · · · , 2n + 1) (33)

Sn =
[
0T

n−1 0
In−1 0n−1

]
(34)

γ = [ree(0), · · · , ree(n), rdd(0), · · · , rdd(n−1)]T (35)
In is an n×n identity matrix, On is an n×n zero matrix
and 0n is an n× 1 zero vector.

One possible approach for solving this bias problem is
the bias-compensation principle based method such as the
bias-compensated least-squares (BCLS) method (Wada
et al. [1990], Jia et al. [2001], Ikenoue et al. [2005]) and
the bias-eliminated least-squares (BELS) method (Zheng
and Feng [1989], Zheng [1999, 2002]). From (25), it can be
expected that a consistent estimate of θ can be obtained by
compensating for the asymptotic bias in the LS estimate
θ̂LS,N . Hence the BCLS estimate θ̂BCLS,N is given by
following equation.

θ̂BCLS,N = θ̂LS,N + R̂
−1

pp,NQ̂BCLS,N−1γ̂N (36)
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where γ̂N denotes the estimate of γ at time instant N ,
and Q̂BCLS,N denotes the estimate of Q whose elements
are composed of the BCLS estimate θ̂BCLS,N .

If the noise covariance vector γ is known, the consistent
estimate for noisy input-output system can be obtained via
(36) simply. But in more general case, the noise covariances
are unknown, it is necessary to estimate them firstly. The
noise covariances estimation algorithm has been proposed
for the case where the input noise is white noise and the
output noise is colored noise (Zheng [2002]), and several
algorithms have been proposed for the case where the
input and output measurements are corrupted by white
noise (Wada et al. [1990], Jia et al. [2001], Zheng and Feng
[1989], Zheng [1999], Ikenoue et al. [2005]).

3. INSTRUMENTAL VARIABLES TYPE ESTIMATOR

In this section, a new bias-compensation principle based
method is considered by using the instrumental variables
type estimator. Introduce a vector ηt of dimention m ≥
2n. Now, let us consider the instrumental variables type
(IV-type) estimate θ̂IV t,N defined by the following equa-
tion

1
N

N∑
t=1

ηt

(
zt − pT

t θ̂IV t,N

)
= 0m . (37)

In general, the IV-type vector ηt has higher dimention
than 2n, (37) gives an overdetermined system and has no
exact solution. Solving (37) in a least-squares sense yields

θ̂IV t,N =
(
R̂

T

ηp,NWR̂ηp,N

)−1

R̂
T

ηp,NWr̂ηz,N (38)

where

R̂ηp,N =
1
N

N∑
t=1

ηtp
T
t (39)

r̂ηz,N =
1
N

N∑
t=1

ηtzt (40)

and W is a positive definite weighting matrix (no weight-
ing, that is W = Im, is one possible choice). θ̂IV t,N exists
if R̂ηp,N is full rank. The elements of the IV-type vector
ηt can be chosen in various ways. Choosing all elements
of the IV-type vector ηt as signals uncorrelated with a
composite noise vt, then θ̂IV t,N becomes the well-known
extended instrumental variable estimate of θ (Söderström
and Mahata [2002]). The matrix Φ̂N

Φ̂N = R̂
T

ηp,NWR̂ηp,N (41)
may often become ill-conditioned in the case where all
elements of the IV-type vector ηt are chosen as signals
uncorrelated with a composite noise vt, so it is necessary
to choose an IV-type vector ηt so that at least one element
of the vector ηt is correlated with vt and hence the matrix
Φ̂N becomes well-conditioned. However, choosing at least
one element of the vector ηt correlated with vt, then the
IV-type estimate θ̂IV t,N has a bias asymptotically.

Substituting (16) into (38) yields

θ̂IV t,N =θ+
(
R̂

T

ηp,NWR̂ηp,N

)−1

R̂
T

ηp,NWr̂ηv,N (42)

where

r̂ηv,N =
1
N

N∑
t=1

ηtvt . (43)

Taking limit of (42) yields
θIV t = θ + hIV t (44)

where

θIV t = lim
N→∞

θ̂IV t,N =
(
RT

ηpWRηp

)−1

RT
ηpWrηz (45)

Rηp = lim
N→∞

R̂ηp,N =E[ηtp
T
t ] (46)

rηz = lim
N→∞

r̂ηz,N =E[ηtzt] (47)

and hIV t is the asymptotic bias of the IV-type estimate
θ̂IV t,N defined as

hIV t =
(
RT

ηpWRηp

)−1

RT
ηpWrηv (48)

where
rηv = lim

N→∞
r̂ηv,N = E[ηtvt] . (49)

Using (17), rηv can be expressed as follows:
rηv = E[ηtvt]

= E[ηt(et − rT
t θ)]

= d̃− D̃θ

= −Q̃γ̃ (50)

where d̃ = E[ηtet], D̃ = E[ηtr
T
t ], Q̃ is an m × p matrix

whose elements are composed of the parameter θ, and γ̃
is a p× 1 noise covariace vector. From (44), (48) and (50),
the asymptotic bias hIV t can be expressed as follows:

hIV t =θIV t−θ=−
(
RT

ηpWRηp

)−1

RT
ηpWQ̃γ̃ . (51)

From (44), it can be expected that a consistent estimate of
θ can be obtained by compensating for the asymptotic bias
hIV t in the IV-type estimate θ̂IV t,N . From (51), estimate
of the asymptotic bias hIV t at time instant N becomes

ĥIV t,N =−
(
R̂

T

ηp,NWR̂ηp,N

)−1

R̂
T

ηp,NW
̂̃
QN−1

̂̃γN (52)

where ̂̃
QN and ̂̃γN denote the estimates of Q̃ and γ̃ at time

instant N , respectively. Hence the bias compensated in-
strumental variables type (BCIV-type) estimate θ̂BCIV t,N

is given by

θ̂BCIV t,N = θ̂IV t,N−ĥIV t,N

= θ̂IV t,N+
(
R̂

T

ηp,NWR̂ηp,N

)−1

R̂
T

ηp,NW
̂̃
QBCIV t,N−1

̂̃γN (53)

where ̂̃
QBCLS,N denotes the estimate of Q̃ whose ele-

ments are composed of the BCIV-type estimate θ̂BCIV t,N .
Practically the noise covariance vector γ̃ is unknown, it is
necessary to estimate γ̃.

It is possible to write the structures of d̃, D̃ and Q̃. For
example, assumed that the IV-type vector ηt is given by

ηt = [wT
l,t+n+l, wT

t , wT
l,t]

T (54)
where

wl,t = [wt−n−1 · · · wt−n−l]T (55)
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and m = n + 2l. Then, using the assumption of et, dt, it
is easily shown that d̃ and D̃ become as follows:

d̃ = E[ηtet] =

[
E[wl,t+n+let]
E[wtet]
E[wl,tet]

]

=

[
E[dl,t+n+let]
E[dtet]
E[dl,tet]

]
=

[ 0l

0n

0l

]
= 0n+2l (56)

D̃ = E[ηtr
T
t ]

=



−E[wl,t+n+le

T
t ] E[wl,t+n+ld

T
t ]

−E[wte
T
t ] E[wtd

T
t ]

−E[wl,te
T
t ] E[wl,td

T
t ]




=




Ol×n E[dl,t+n+ld
T
t ]

On×n E[dtd
T
t ]

Ol×n E[dl,td
T
t ]




=
[
O(n+2l)×n Rd̃d

]
(57)

where
dl,t = [dt−n−1 · · · dt−n−l]T (58)

Rd̃d =




E[dl,t+n+ld
T
t ]

E[dtd
T
t ]

E[dl,td
T
t ]




=




rdd(l) rdd(l + 1) · · · rdd(n+l−1)
...

...
. . .

...
rdd(1) rdd(2) · · · rdd(n)
rdd(0) rdd(1) · · · rdd(n−1)
rdd(1) rdd(0) · · · rdd(n−2)

...
...

. . .
...

rdd(n−1) rdd(n−2) · · · rdd(0)
rdd(n) rdd(n−1) · · · rdd(1)

...
...

. . .
...

rdd(n+l−1) rdd(n+l−2) · · · rdd(l)




.

(59)

Additionally, D̃θ − d̃ can be expressed as follows:

D̃θ − d̃ =
[
O(n+2l)×n Rd̃d

] [
a
b

]
− 0n+2l

= Rd̃db

= Q̃γ̃ (60)

thus Q̃ and γ̃ becomes as follows:

Q̃ = b̃ĩ
T

1 +
n+l−1∑

j=1

[
(Sn+2l)j + (ST

n+2l)
j
]
b̃ĩ

T

j+1 (61)

b̃ = [0T
l , bT , 0T

l ]T (62)

ĩj = In+l(:, j) (j = 1, · · · , n + l) (63)
γ̃ = [rdd(0), · · · , rdd(n + l − 1)]T (64)

Since the dimention of the noise covariance vector γ̃ is
p = n + l in the case where the input noise dt is colored
noise, n + l noise covariances must be estimated for the
BCIV-type estimate. However, using the IV-type vector
ηt given by (54), there can be avoided the necessity to
estimate the output noise covariances. Thus only the input
noise covariances are to be determined. Moreover, if the
input noise dt is white noise with unknown variance σ2

d,

the structures of (59), (61) and (64) can be written more
simply.

Rd̃d =

[
Ol×n

σdIn

Ol×n

]
(65)

Q̃ = b̃ = [0T
l , bT , 0T

l ]T (66)
γ̃ = σ2

d . (67)
If the input and output measurements are corrupted by
white noise, it is necessary to estimate the input and
output noise variances in the BCLS method (Wada et al.
[1990], Jia et al. [2001], Zheng and Feng [1989], Zheng
[1999], Ikenoue et al. [2005]). Moreover, if the input noise
is white noise and the output noise is colored noise, it
is necessary to estimate the input noise variance and
n + 1 output noise covariances in Zheng’s method (Zheng
[2002]). On the contrary, it can be learned from (67) that
if the input noise is white noise, the BCIV-type estimate
requires only the input noise variance estimate.

Since the IV-type vector ηt defined by (54) has no causal-
ity, it is necessary to set t = t− l +1 and use the following
equations instead of ηt, pt and zt in the real applications.

ηt → ηt−l+1 (68)
pt → pt−l+1 (69)
zt → zt−l+1 . (70)

4. BIAS-COMPENSATION METHOD FOR IV-TYPE
ESTIMATOR

In this section, the estimation algorithm of the noise co-
variances vector γ̃ is proposed for the BCIV-type estimate,
and the BCIV-type method is derived. Multiplying (16) by
the IV-type vector ηt, and taking expectation yield

E[ηtzt] = E[ηt(p
T
t θ + vt)] = E[ηtp

T
t ]θ + E[ηtvt]

= E[ηtp
T
t ]θ − Q̃γ̃ . (71)

Thus, we can obtain the following overdetermined system
of equations

rηz = Rηpθ − Q̃γ̃ . (72)

Solving (72) for θ in a least-squares sense yields

θ =
(
RT

ηpWRηp

)−1

RT
ηpW

(
rηz + Q̃γ̃

)

= θIV t +
(
RT

ηpWRηp

)−1

RT
ηpWQ̃γ̃ . (73)

Equation (73) implies that, for a given γ̃, the parameter
vector θ can be obtained by solution of overdetermined
system of equations (72), and replacing (73) by the esti-
mates at time instant N yields the BCIV-type estimate
θ̂BCIV t,N in (53).

Moreover, solving (72) for γ̃ in a least-squares sense yields

γ̃ =
(
Q̃

T
XQ̃

)−1

Q̃
T
X (Rηpθ − rηz) (74)

where X is an m ×m positive definite weighting matrix.
Equation (74) implies that, for a given θ, the noise covari-
ances vector γ̃ can be obtained by solution of overdeter-
mined system of equations (72). Thus, by replacing (74)
by the estimate at time instant N , the estimate of noise
covariances vector γ̃ at time instant N can be obtained by
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̂̃γN =
(

̂̃
Q

T

BCIV t,N−1X
̂̃
QBCIV t,N−1

)−1

×

̂̃
Q

T

BCIV t,N−1X
(
R̂ηp,N θ̂BCIV t,N−1−r̂ηz,N

)
. (75)

Based on the above discussion, the bias-compensation
method for the IV-type estimator can be established from
the combination of the BCIV-type parameter estimation
algorithm (53) and the noise covariances estimation al-
gorithm (75). To perform adaptive identification of noisy
input-output system, the following recursive BCIV-type
algorithm may be applied.

The recursive BCIV-type algorithm

Step 0: Set the initial values of the algorithm. Choose the
weighting matrices W and X, the IV-type vector ηt.

Step 1: Calculate the IV-type estimate.

θ̂IV t,N = θ̂IV t,N−1+KN

(
gT

N−ΨT
N θ̂IV t,N−1

)

where
gN =

[
(N−1)r̂T

ηz,N−1WηN zN

]

ΨN =
[

(N−1)R̂
T

ηp,N−1WηN pN

]

KN = MN−1ΨN

(
ΛN +ΨT

NMN−1ΨN

)−1

ΛN =
[

0 1
1 ηT

NWηN

]−1

=
[
−ηT

NWηN 1
1 0

]

MN = MN−1−KNΨT
NMN−1 .

Step 2: Calculate the covariance matrix and the covari-
ance vector.

R̂ηp,N = R̂ηp,N−1 +
1
N

(
ηNpT

N − R̂ηp,N−1

)

r̂ηz,N = r̂ηz,N−1 +
1
N

(ηNzN − r̂ηz,N−1) .

Step 3: Calculate the noise covariances estimates.

̂̃γN =
(

̂̃
Q

T

BCIV t,N−1X
̂̃
QBCIV t,N−1

)−1

×

̂̃
Q

T

BCIV t,N−1X
(
R̂ηp,N θ̂BCIV t,N−1−r̂ηz,N

)
.

Step 4: Calculate the BCIV-type estimate.

θ̂BCIV t,N = θ̂IV t,N+

N2MNR̂
T

ηp,NW
̂̃
QBCIV t,N−1

̂̃γN .

Step 5: Set N = N + 1 and repeat from step 1 until the
chosen stop criterion is satisfied.

Initial value selection: Initial values at N = 0 are given
as θ̂IV t,0 = 02n, M0 = ρI2n (ρ is a large number),
R̂ηp,0 = Om×2n, r̂ηz,0 = 0m. Initial value of the BCIV-
type estimate is given as θ̂BCIV t,T = θ̂IV t,T , (0 < T <
L: L is a number for idling).

5. SIMULATION RESULTS

5.1 The case where the input noise and the output noise
are colored noise

Computer simulation which compares the proposed BCIV-
type algorithm with the LS algorithm has been carried out.
Consider the following second-order system:
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Fig. 1. RMSE of parameter estimates (section 5.1).

Table 1. Mean values, standard deviations of
estimates for N = 10000 (section 5.1).

True value
LS

algorithm
BCIV-type

(l = 3)
BCIV-type

(l = 4)
BCIV-type

(l = 5)

a1 = −1.5
−0.7046
±0.0162

−1.5130
±0.0934

−1.5004
±0.0159

−1.5000
±0.0122

a2 = 0.7
0.0567

±0.0133
0.7121

±0.0860
0.7004

±0.0120
0.7001

±0.0085

b1 = 1.0
0.9997

±0.0326
0.9936

±0.0734
0.9950

±0.0285
0.9971

±0.0313

b2 = 0.5
1.9223

±0.0421
0.4726

±0.1575
0.4952

±0.0548
0.4969

±0.0518

B(q−1)
A(q−1)

=
1.0q−1 + 0.5q−2

1− 1.5q−1 + 0.7q−2
. (76)

The noise free input ut is assumed to be generated as
ut = 0.9ut−1 + εt where εt is a zero-mean white noise with
unit variance. The colored output noise et is assumed to be
generated as et = −0.8et−1 + ωe,t + 0.3ωe,t−1 where ωe,t

is a zero-mean white noise with variance σ2
ω,e = 1.8898,

which yields SNR = 10 log10(E[y2
t ]/E[e2

t ]) = 20 [dB].
The colored input noise dt is assumed to be generated
as dt = 0.6dt−1 + ωd,t + 0.2ωd,t−1 where ωd,t is a zero-
mean white noise with variance σ2

ω,d = 0.0263, which
yields SNR = 10 log10(E[u2

t ]/E[d2
t ]) = 20 [dB]. The IV-

type vector ηt is chosen as in (54). In particular, the cases
of l = 3, 4, 5, which yield m = 8, 10, 12 respectively, are
examined. Weighting matrices are chosen as W = Im and
X = Im. Computer simulation for comparison is carried
out through M = 100 independent runs with a data length
of 10000. Fig. 1 gives a plot of the root mean squared error
(RMSE) which is defined by

RMSE = 20 log10

√√√√ 1
M

M∑

k=1

‖θ̂k,t − θ‖2
‖θ‖2 [dB] (77)

where θ̂k,t denotes the estimate of θ at time step t in the
kth independent run. Table 1 provides the mean values,
the standard deviations of estimates for N = 10000.

Simulation results indicate that the LS method gives
biased results. On the contrary, the proposed BCIV-
type method can give consistent estimate. Especially, the
resulting BCIV-type estimates in the cases of l = 4, 5 are
more accurate than those obtained with l = 3.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1364



0 2000 4000 6000 8000 10000
10

-30

10
-20

10
-10

10
0

N

RMSE of parameter estimate: section 5.2

R
M
S
E
 
(
d
B
)

LS algorithm 

Zheng's algorithm 

BCIV-type algorithm 

Fig. 2. RMSE of parameter estimates (section 5.2).

Table 2. Mean values, standard deviations of
estimates for N = 10000 (section 5.2).

True value
LS

algorithm
Zheng’s

algorithm
BCIV-type
algorithm

a1 = −1.5752
−0.5332
±0.0080

−1.5369
±0.0622

−1.5518
±0.0572

a2 = 0.6065
−0.4009
±0.0080

0.5658
±0.0651

0.5791
±0.0674

b1 = 0.1699
0.1806

±0.0059
0.1601

±0.0401
0.1645

±0.0315

b2 = 0.1438
0.2163

±0.0059
0.1391

±0.0395
0.1411

±0.0286

5.2 The case where the input noise is white noise and the
output noise is colored noise

By computer simulation, the proposed BCIV-type algo-
rithm is compared with the LS algorithm and Zheng’s
algorithm (Zheng [2002]). Consider the folowing second-
order system:

B(q−1)
A(q−1)

=
0.169901q−1 + 0.143831q−2

1− 1.575157q−1 + 0.606531q−2
. (78)

The noise free input ut is assumed to be generated as
ut = εt − 0.3εt−1 + 0.5εt−2 − 0.7εt−3 + 0.9εt−4 where εt

is a zero-mean white noise with variance 1/(1 + 0.32 +
0.52 + 0.72 + 0.92) = 0.3788. The colored output noise et

is assumed to be generated as et = et−1− 0.4et−1 + ωe,t−
0.87ωe,t−1 + 0.57ωe,t−2 where ωe,t is a zero-mean white
noise with variance σ2

ω,e = 0.2264, which yields SNR =
10 log10(E[y2

t ]/E[e2
t ]) = 10 [dB]. The noise variance of

white input noise dt is set as σ2
d = 0.1 which yields

SNR = 10 log10(E[u2
t ]/E[d2

t ]) = 10 [dB]. The IV-type
vector ηt is chosen as in (54), where l = 4 which yields
m = 10. Weighting matrices are chosen as W = Im and
X = Im. Computer simulation for comparison is carried
out through M = 100 independent runs with a data length
of 10000. Fig. 2 gives a plot of the RMSE which is defined
by (77). Table 2 provides the mean values, the standard
deviations of estimates for N = 10000.

Simulation results indicate that the LS method gives bi-
ased results. On the contrary, the Zheng’s method and the
proposed BCIV-type method can give consistent estimate.
Though the BCIV-type method requires only the input
noise variance estimate, the resulting parameter estimates

obtained by the BCIV-type method is more accurate than
those obtained by the Zheng’s method.

6. CONCLUSIONS

In this paper, the method of consistent estimation of
noisy input-output system has been studied. A new bias-
compensation based method has been proposed for EIV
model identification. The proposed BCIV-type method
consists of the parameter estimation algorithm which is
based on compensation of asymptotic bias on the IV-type
estimates, and the noise covariances estimation algorithm
which is based on an overdetermined system of equations.
The proposed method can treat not only the white input-
output noise case but also the colored input-output noise
case. It is demonstrated that the proposed method can
give consistent parameter estimate via simulation results.
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