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Abstract: In this paper, a novel classifiers combination approach based on evidence theory is 
proposed. In classifiers combination, the diversity among member classifiers is known to be a 
necessary condition for improving classification performance. In our implementation of classifiers 
combination, we generate the diversity by utilizing different feature spaces to implement member 
classifiers. And by using different types of classifiers selectively and dynamically according to their 
expert environments, the diversity can be further enlarged. Thus better combined classification 
performance can be achieved. In the experiments, the approach proposed shows its efficacy and 
rationality. 

 

1. INTRODUCTION 

Individual classification methods are recently challenged by 
the approaches of multiple classifiers combination. The 
combination of several complementary classifiers can 
improve the performance of individual classifiers (Kittler et 
al., 1998). The multiple classifiers combination has shown 
wonderful performance in handwriting recognition (Xu et al, 
1992) and text categorization (Bi et al, 2004), etc.  

Classifiers combination methods contain two major types: 
classifiers selection and classifiers fusion (Kuncheva, 2002). 
The selection algorithms are based on a proposition that each 
classifier is the expert or the dominator (Kuncheva, 2002) 
over various local area of the total dataset or various feature 
sub-spaces of total dataset. Selection algorithms mainly 
include static selection and dynamic selection. Classifiers 
fusion supposes that different classifiers are not only 
competitive but also complementary or cooperative. The 
fusion algorithms mainly include "Sum" rule, "Product" rule 
(Kittler et al, 1998), majority voting (Franke et al, 1992), 
behavior knowledge space (BKS) (Huang et al, 1993), fuzzy 
integral (Cho et al, 1995), decision template (DT) algorithm  
(Kuncheva, 2002), maximum entropy method based on 
Bayes frame (Saerens et al, 2004), Dempster-Shafer theory 
(Shafer, 1976) and the methods such as boosting (Schapire, 
1999) and bagging (Breiman, 1996).  

It is intuitively clear that the combination of identical 
classifiers will be no better than a single member classifier 
thereof. If there exists “the best” or “the perfect” member 
classifier, then no combination is needed (Kuncheva, 2005). 
Creating diversity among classifiers, i.e., generating 
complementary member classifiers is one of the keys to 
success in multiple classifiers combination. But it is hard to 
create diversity. And the understanding of diversity is still 
incomplete. How to create and enlarge the diversity relies on 
specific applications.  

In this paper, we implement member classifiers based on 
different feature spaces of the same dataset. The information 
provided by different feature spaces may always be 
complementary. Then the diversity can be created. Different 
types of classifiers have their own expert application 
environment. For the classifiers such as neural network and 
Support Vector Machine (SVM), they are accomplished in 
constructing the complicated decision planes or boundaries in 
training set. And they focus on the global information but 
might always be weak near the decision plane or boundaries, 
i.e., in the ambiguous area. For the classifiers such as nearest 
neighbor and k-nearest neighbors (k-NN), they are adept in 
discovering the class distribution near the given test sample. 
And they focus on local area information while do not think 
much of the global information. Thus, the two different types 
of classifiers both have their advantages and drawbacks. If 
we utilize the two types of classifiers selectively and 
dynamically according to specific environments to implement 
classifiers combination, their drawbacks may be counteracted 
and their advantages may be reinforced. Then the diversity 
can be enlarged further and better classification accuracy can 
be expected. Based on such ideas and according to Dempster 
rule of combination, we implement the classifiers 
combination. Two types of individual classifiers are used 
including Generalized Regression Neural Network (GRNN) 
and k-NN. The two types of classifiers are chosen 
dynamically according to their expert environment. In the use 
of Dempster rule of combination, mass functions are needed, 
which represent the evidences provided by different 
information sources. But the generation of mass functions is 
always difficult. Given a test sample, for the GRNN classifier, 
we generate mass functions based on the measurement values 
of the GRNN classifier’s output; for the k-NN classifier, the 
mass functions are generated based on class distribution on 
given test sample’s k nearest neighbors. Experimental results 
provided show the novel multi-source classification approach 
proposed is reasonable and effective. 
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2. MULTIPLE CLASSIFIERS COMBINATION 

Multiple classifiers combination has created a lot of 
excitement in the machine learning and pattern classification 
accuracy (Banfield et al, 2005). The model of multiple 
classifiers combination is shown in Fig. 1. 

 
Fig. 1. Model of Multiple Classifiers Combination 

In Fig. 1, each ke  is a member classifier, where 1,2,...,k K= , 
and K is the total number of member classifiers. 

1 2, ,..., KX X X   are the different feature vectors extracted 
from input sample for each member classifiers. Based on 
preliminary decision results and output information of 
member classifiers, the combined decision can be derived by 
using different fusion algorithms in the decision combination 
center. 

For the member classifiers, given a test sample dR⊆x , there 
are totally M kinds of possible classes in the class space: 

1 i MC C C∪ ∪ ∪… … , where iC i∀ ∈ Λ , {1, , }MΛ = … . 
Based on the output types of member classifiers, the basic 
output types can be summarized into three categories (Xu et 
al, 1992): 

1) Abstract Level: where the classifier only produces a unique 
class label. Given K  classifiers ke , 1, 2,...,k K= , each 
classifier assigns a class label kj  to sample x , i.e., 

( )k ke j=x .  

2) Ranked Level: where classifiers rank all possible labels in 
the mutually exclusive set in a sequence kR ⊆ Λ  with the 
label at top being the first choice.  

3) Measurement Level: where the classifier attributes to each 
label a measurement value (such as a posterior probability or 
membership function value) which represents the degree to 
which a sample x belongs to that class. For sample x , each 
member classifier brings out an output 
vector 1 2( ) [ ( ), ( ),..., ( )]MMe k C C Cω ω ω= . 

There are lots of combination algorithms, which can be 
utilized in combination center. Dempster rule of combination 
is one of the most effective approaches. In Dempster-Shafer 
theory (Shafer, 1976; Duan, 1991), elements in the frame of 
discernment Θ are mutually exclusive. Define : 2 [0,1]m Θ →  
as the basic probability assignment (BPA, also called mass 
function), which satisfies: 

 

{ ( ) | } 1, ( ) 0m A A m⊆ Θ = ∅ =∑                  (1) 
 
Define the belief function and plausibility function as follows: 
 

 ( ) ( )B ABel A m B⊆= ∑                                 (2) 

 
( ) ( )A Bpl A m B≠∅= ∑ ∩                               (3) 

 

Let 1 2, ,..., nm m m be n mass functions, the new combined 
evidence can be derived based on Dempster rule of 
combination as follows ( ⊕ denotes the orthogonal sum):  
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3. MEMBER CLASSIFIERS 

Besides the combination algorithms, the type of the member 
classifier is also important to the multiple classifiers 
combination. In our research, we adopt two types of 
classifiers: the GRNN classifier and the k-NN classifier.  

The GRNN is able to approximate complex nonlinear 
mappings directly from the input-output data with a simple 
topological structure. Unlike the BP neural network, which 
requires a large number of iterations in training to converge 
to a desired solution, GRNN needs only a single pass of 
learning (Bhatti et al., 2004). It has advantages such as 
simplicity, robustness, fast computing speed and optimal 
approximation. It can approximate any arbitrary function 
with linear or non-linear relationships between input and 
output variables. It is widely used in pattern classification, 
nonlinear curve fitting, etc. The output of the GRNN for an 
input vector 1 2[ , ,..., ]T d

dx x x X= ∈ ⊆x R  is given by: 
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where d is the dimension of input observation space 
dX ⊆ R ; T represents the transpose operation of vectors; 

σ is the kernel width; kx  and kY are inputs and outputs of 
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training samples. The larger σ  is, the smoother the function 
approximation will be. Too large σ  means a lot of neurons 
will be required to fit a fast changing function. Too small σ  
means many neurons will be required to fit a smooth function 
and the network may not generalize well. To fit data very 
closely, use σ  smaller than the typical distance between 
input vectors (Wasserman, 1993). 

For the application of classification, 1 2{ , ,..., }MC C C C= is a 
pattern space, which consists of M mutually exclusive and 
exhaustive sets of specified patterns (classes). We set M  
output nodes of GRNN. For training the GRNN classifier, we 
set the target output of input samples according to their class 
labels. If a training sample belongs to class jC , where 

1,...,j M= , then its target output will be the vector of 

target 1[ ( ),..., ( ),..., ( )]i MY Y C Y C Y C= , where ( ) 0,iY C i j= ≠  

and ( ) 1,iY C i j= = . For a given test sample, the output of 
GRNN classifier will be out 1[ ( ),... ( ),..., ( )]i MY C C Cω ω ω= , 
where ( ) [0,1]iCω ∈ , which can be considered to be the 
membership function for the given test sample belonging to 
class iC . Then the classification decision can be made as 
follows (τ is the classification decision threshold.): 

 

  max( ( ))i
i

Class of Cω τ≡ >x                              (6) 

 
k-nearest neighbor (k-NN) is a nonparametric approach for 
classification which is simple but effective in many practical 
applications. It does not need the priori knowledge. It is an 
instance-based classification method. Various distance 
functions can be used e.g. the Euclidean and Mahalanobis 
distance and so on. The result of k-NN is a sub optimal, yet 
popular in practice, nonlinear classifier (Theodoridis et al, 
2006). We consider the problem of classifying samples into 
M categories or classes. The set of classes is denoted 
by 1 2{ , ,..., }MC C C C= . The available information is 
assumed to consist of a training set 

(1) (1) ( ) ( ){( , ),..., ( , )}N NC C= x xT  of N  n-dimensional 

samples ( ) , 1,...,j j N=x  and their corresponding class labels 
( ) , 1,...,jC j N= , which takes values in C  (We assume for 

simplicity the class of each training vector to be known 
definitely). A certain distance function ( , )d ⋅ ⋅ is defined to 
represent the similarity between samples. Given an unknown 
feature vector x , then (Theodoridis et al, 2006): 

1) Out of the N  training vectors, identify the k nearest 
neighbors, irrespective of class label. k is chosen to be odd 
for a two class problem, and in general not to be a multiple of 
the number of classes M .  

2) Out of these k samples, identify the number of vectors ik , 
which belong to class , 1,...,iC i M= . Obviously: ii k k=∑ . 

3) Assign x  to class iC  with the maximum number ik  of 
samples. When tie happens, x can be assigned the class label 
randomly and it can also be rejected to be classified. 

4.  NOVEL MULTI-SOURCE CLASSIFICATION 
APPROACH BASED ON EVIDENCE COMBINATION 

To obtain better classification performance, we propose a 
novel selective classifiers combination approach, which can 
enlarge the diversity among member classifiers. Based on 
different feature spaces of the same training dataset, we can 
design multiple classifiers by utilizing either GRNN or k-NN. 
We utilize Dempster rule of combination to implement 
classifiers combination, so the mass functions are required. 
The generation of mass functions is always the most difficult 
step in practical use of evidence combination. Some 
approaches (Xu et al, 1992; Zhang et al, 2002) generate mass 
functions based on the member classifiers’ classification 
performances. In (Bi et al, 2004), the mass functions are 
constructed based on the output at measurement level. The 
approaches to generating mass functions are dependent on the 
output type of member classifiers and specific applications. 

4.1 Generating mass functions for GRNN  

The GRNN classifier should belong to the classifier at 
measurement level. Suppose that there are L  different 
feature spaces. Given a test sample x , the output at feature 
space l ( 1,...,l L= ) of the GRNN classifier 
is 1[ ( ),... ( ),..., ( )]i MY C C Cω ω ω= , where M represents the 
number of all the possible classes.  Given a test sample x , we 
can generate mass functions as follows (Bi et al, 2004): 

 

1
({ }) ( ) / ( )

M

l l i l j
j

m i C Cω ω
=

= ∑                      (7) 

 

The classification decision of member classifier l  based on: 

 

  max ({ })l l
i

class of x m i τ≡ >                     (8) 

 

4.2 Generating mass functions for k-NN 

In our previous research (Han et al, 2007), we proposed a 
novel mass function generation approach for the k-NN 
classifier. k-NN classifier’s direct output is just the class label. 
But when the class label is obtained, for a given sample based 
on a k-NN classifier, we can obtain the class distribution on 
given sample’s k-nearest neighbours. Suppose that there are 
L  different feature spaces. Given a sample x , according to 
feature space l ( 1,...,l L= ), its feature vector is lx . Based on 
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k-NN, in feature space l , we can identify lk nearest neighbors 
of lx , irrespective of class label. Out of these lk  samples, we 
can identify lik samples belonging to class , 1,...,C i Mi = .  
We can generate BPA as follows (Han et al, 2007): 
 

1
({ }) /

M

l i li lj
j

m C k k
=

= ∑                                 (9) 

 

For example, given a test sample x , on one feature space, the 
class distribution on its k nearest neighbors ( 13k = ) can be 
described in Fig. 2. In the k ( 13k = ) nearest neighbors, the 
class distribution is 7 samples of Class 1, 3 samples of Class 
2 and 3 samples of Class 3. In this case, the mass function 
should be ({1}) 7 /13;m =  ({2}) 3 /13;m = ({3}) 3/13;m =  

 

Fig. 2. Class distribution on a test sample’s neighborhood 

4.3 The member classifiers’ selective combination approach  

Different types of member classifiers may have their different 
expert environment. For GRNN classifiers, they are 
accomplished in constructing the complicated decision plane 
or boundaries in training samples. And they focus on the 
global information but they might always be weak near the 
decision plane, i.e., in the ambiguous area. For k-NN 
classifiers, they are adept in discovering the class distribution 
near the given test sample. And they focus on local area 
information while do not think much of the global 
information. We utilize the two types of classifiers 
selectively and dynamically according to specific 
environments to implement classifiers combination. Their 
drawbacks may be counteracted and their advantages may be 
reinforced. The member classifiers’ selective combination is 
implemented as follows: 

1) We train L  GRNN classifiers according to L different 
feature spaces. We input all the training samples to the 
trained GRNN classifiers again to evaluate the classification 
performance on training samples and to derive all the 
misclassified training samples. The collection of the 
misclassified training samples in each feature space is 
denoted as lE , where 1,...,l L= . 

2) For a given test sample, calculate its lk nearest neighbors 
in each of the L feature spaces, where 1,...,l L= . The 
collection of the lk nearest neighbors is denoted as lT .  

3) If element number of l lE T∩  is no less than a threshold lw , 
we generate mass function for the given test sample based on 
the approach for k-NN which is described in 4.2, otherwise 
we generate corresponding mass function based on the 
approach for GRNN which is described in 4.1. 

4) For all the test samples, by repeating the steps from 1 to 3, 
we generate their corresponding mass functions for each 
feature space. Then, based on Dempster rule of combination, 
the combined mass functions for each test sample can be 
derived. Final combined decision can be made as follows 
( cτ is the combined decision threshold.): 

 

  max ({ }) c
i

class of x m i τ≡ >                  (10) 

 

5. EXPERIMENT 

The experiment is based on artificial data (3 classes), which 
has 1200 samples totally (400 samples per class). The 
artificial dataset has two different feature spaces: feature 
space I (illustrated in Fig. 3) and feature space II (illustrated 
in Fig. 4). In feature space I, Class 2 is not linear separable 
with other two classes. Class 1 and Class 3 are linear 
separable. In feature space II, Class 3 is not linear separable 
with other two classes. Class 1 and Class 2 are linear 
separable. The information for classification provided by the 
two different feature spaces is complementary. Randomly 
select 200 samples from each class (totally 600 samples) for 
training. The remainders (600 samples) are reserved for 
testing. Two GRNN member classifiers are designed based 
on feature space I and feature space II respectively. The 
target outputs of the GRNN classifiers are listed in Table 1. 

 

Fig. 3. Feature space I of the artificial dataset 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2221



 
 

 

 
Fig. 4. Feature space II of the artificial dataset 

Table 1.  Target Outputs 

Class Target output 
Red (Class1) [0.95  0.05  0.05] 

Green (Class2) [0.05  0.95  0.05] 
Blue (Class3) [0.05  0.05  0.95] 

 

The target output values, e.g. for class1, is not set as [1 0 0] 
but [0.95 0.05 0.05] for convenience of computational 
convergence. The classification performances on training 
samples and test samples for the two GRNN classifiers are 
listed in Table 2. Kernel width are: 5Iσ = , 6IIσ = . 
Decision threshold is 0.5. “Total” means “average”. 

Table 2. GRNN’s Classification Accuracy 

Training Samples 
Classifier Class1 Class2 Class3 Total
Feature 
Space I 98.5% 96% 95.5% 96.7%

Feature 
Space II 93% 93% 79.5% 88.5%

Test Samples 
Classifier Class1 Class2 Class3 Total
Feature 
Space I 92.5% 90% 90.5% 91% 

Feature 
Space II 82% 82.5% 63.4% 76.5%

 

Two k-NN member classifiers are also designed based on 
feature space I and II respectively. The corresponding 
classification performances are listed in Table 3. Set 23k = . 
(For three-class classification, 23k = , which is not the 
multiple of 3, cannot bring ties for 3 classes)  

Table 3. k-NN’s Classification Accuracy 

Training Samples 
Classifier Class1 Class2 Class3 Total
Feature 
Space I 97.5% 96% 91.5% 95% 

Feature  
Space II 92% 89% 69.5% 83.5%

Test Samples 
Classifier Class1 Class2 Class3 Total
Feature 
Space I 93% 96% 89.5% 93% 

Feature 
Space II 94% 89.5% 63% 82.2%

 

Based on mass function generation method introduced in 4.1, 
by using (4), we can derive the combined GRNN 
classification accuracy listed in Table 4 (Decision threshold: 
0.8). 

Table 4. Combined GRNN Classification 
Accuracy (Test Samples)  

Classifier Class1 Class2 Class3 Total
Combined 95% 97.5% 88.5% 93.7%

 

Based on mass function generation method introduced in 4.2 
and by utilizing (4), we can derive combined k-NN 
classification accuracy listed in Table 5 (Decision threshold: 
0.8). 

Table 5. Combined k-NN Classification 
Accuracy (Test Samples)  

Classifier Class1 Class2 Class3 Total 
Combined 100% 96% 91.5% 95.8%

 

Base on the novel selective combination approach proposed 
(set 4Iw = and 2IIw = ), we can derive combined 
classification accuracy listed in Table 6 (Decision threshold: 
0.8). Iw is set greater than IIw , for GRNN, the accuracy on 
feature space I is better than that of feature space II. 

Table 6. Selective Combined Classification 
Accuracy (Test Samples)  

Classifier Class1
wise 

Class2 
wise 

Class3
wise Total

Selective 
combined 100% 98.5% 92.5% 97% 
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From the experimental results, it can be concluded that based 
on classifiers combination (such as the combined GRNN, the 
combined k-NN, the selective combined method proposed in 
this paper), the classification accuracy is superior to the best 
member classifier’s accuracy. When we use the selective 
combined classification method proposed in this paper, 
classification accuracy is superior to the combined GRNN 
and the combined k-NN classification accuracy. It is because 
that by using different types of classifiers selectively 
according to their expert environment, the diversity can be 
enlarged further. If there exist more diversity among dataset’s 
different feature spaces or there exist effective ways to 
enlarge the diversity, better accuracy for combined 
classification can be derived. Assigning the member classifier 
to its expert environment is an effective idea to further 
improving the classification accuracy based on classifiers 
combination. 

6. CONCLUSIONS 

Diversity among member classifiers is crucial to improving 
the classification accuracy based on classifiers combination. 
To achieve better combined classification accuracy, we 
should enlarge the diversity. In this paper, we implement 
member classifier based on different feature spaces of the 
same dataset and propose a novel multiple classifiers 
combination method based on evidence combination by using 
different types of member classifiers (k-NN and GRNN) 
selectively and dynamically according to their expert 
environment. Experimental results show that the approach 
proposed in this paper is effective and reasonable. The 
approach proposed also has its drawbacks such as the 
problem of optimal selection of parameters used. It always 
depends on experiences and specific application. This work is 
just a preliminary attempt and lots of further works are still 
needed.  
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