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Abstract: This work proposes a nonlinear observer for attitude estimation on SO(3), exploiting
the information of vector observations and biased angular rate measurements. It is shown
that the attitude and bias estimation errors converge exponentially fast to the origin, for
arbitrary angular velocity trajectories. The proposed attitude feedback law is an explicit
function of the vector measurements and observer estimates, and convergence rate bounds are
obtained using recent results for parametrized linear time-varying systems. The stability and
convergence properties of the estimation errors are evidenced in simulation for time-varying
angular velocities.

1. INTRODUCTION

Attitude estimation is a classical problem with a rich and
fascinating historical background, still subject of intensive
research and advances in the present times [Crassidis et al.,
2007]. Recent insights on the problem of nonlinear attitude
estimation [Chaturvedi and McClamroch, 2006, Bhat and
Bernstein, 2000] present guidelines for observer design on
SO(3) and evidence the topological obstacles for global
stabilization on the non-Euclidean spaces used in attitude
representation.

Nonlinear attitude estimation and compensation algo-
rithms have been proposed in recent literature. In [Lee
et al., 2007], a deterministic attitude filter is derived using
single direction measurements, where the attitude estimate
and the vector observation are merged by intersecting
uncertainty ellipsoids. In [Rehbinder and Ghosh, 2003], the
observability of a locally exponentially convergent attitude
observer is studied, using a monocular camera and iner-
tial sensors. A symmetry-preserving observer for velocity-
aided inertial navigation is presented in [Bonnabel et al.,
2006]. In [Chaturvedi and McClamroch, 2006], an almost
globally stabilizable attitude controller is obtained, guar-
anteeing input torque levels below the saturation limits.
An eventually globally exponentially convergent angular
velocity observer, expressed in the Euler quaternion rep-
resentation, is derived in the reference work [Salcudean,
1991] by exploiting attitude and torque measurements.

In many applications it is desired to construct an atti-
tude observer based only on the rotation kinematics. In
[Pflimlin et al., 2007], an asymptotically stable attitude
observer on SO(3) is derived using attitude and biased
angular velocity readings. The nonlinear attitude observer
⋆ This work was partially supported by Fundação para a
Ciência e a Tecnologia (ISR/IST plurianual funding) through the
POS Conhecimento Program that includes FEDER funds and by
the project PTDC/EEA-ACR/72853/2006 HELICIM. The work of
J.F. Vasconcelos was supported by a PhD Student Scholarship,
SFRH/BD/18954/2004, from the Portuguese FCT POCTI pro-
gramme.

proposed in [Thienel and Sanner, 2003] is formulated using
the quaternion representation, to obtain global exponen-
tial convergence to the origin given attitude measure-
ments and biased inertial readings. In these references,
the observer is derived assuming that a perfect rotation
matrix/quaternion attitude reading is available, obtained
by batch processing information such as landmark mea-
surements, image based features, and vector readings.
However, it is desirable to exploit the sensor readings
directly in the observer and to analyze how the estimation
results are influenced by the characteristics of the vector
measurements.

This work derives an exponentially convergent attitude
observer on SO(3), exploiting directly vector observations
and biased inertial readings. The feedback law, derived
constructively using the Lyapunov’s stability theory, is an
explicit function of the vector measurements. Exponential
convergence is obtained, and convergence bounds for the
biased angular rate sensor case are given resorting to the
recent results for parameterized linear time-varying (LTV)
systems [Loŕıa and Panteley, 2002].

The paper is organized as follows. In Section 2, the attitude
estimation problem is described. Section 3 introduces the
tools adopted for attitude observer design. A Lyapunov
function based on the error of the vector observations
is formulated, a coordinate transformation of the vector
readings is proposed and the necessary sensor setup for
attitude determination is discussed. In Section 4, the at-
titude observer is derived for the cases of unbiased and
biased angular velocity readings. Exponential convergence
of the attitude and bias estimation errors to the origin is
demonstrated. In Section 5, the feedback law is written
as an explicit function of the sensor readings, and expo-
nential convergence bounds are obtained using the recent
results for parametrized LTVs. In Section 6, the conver-
gence of the estimation errors is illustrated in simulation
for distinct initial conditions and feedback gain values.
Section 7 presents concluding remarks and comments on
future work.
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NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m) and
M(n) := M(n, n). The sets of skew-symmetric, orthogonal,
and special orthogonal matrices are respectively denoted
as K(n) := {K ∈ M(n) : K = −K′}, O(n) := {U ∈ M(n) :
U′U = I}, SO(n) := {R ∈ O(n) : det(R) = 1}, and the
n-dimensional sphere and ball are described by S(n) :=
{x ∈ R

n+1 : x′x = 1} and B(n) := {x ∈ R
n : x′x ≤ 1},

respectively.

2. PROBLEM FORMULATION

In this section, the attitude estimation problem is intro-
duced. The vector observations are a function of the rigid
body’s orientation, and the inertial sensors measure the
angular velocities of the body. While vector observations
yield a snapshot attitude estimate for each time instant,
inertial sensors allow for the propagation of the attitude
in time. The attitude estimator combines the inertial mea-
surements with the vector observations, hence exploiting
both information sources.

The rigid body kinematics are described by
˙̄R = R̄ [ω̄×] ,

where R̄ is the shorthand notation for the rotation matrix
L
BR from body frame {B} to local frame {L} coordinates,
ω̄ is the body angular velocity expressed in {B}, and [a×]
is the skew symmetric matrix defined by the vector a ∈ R

3

such that [a×]b = a × b, b ∈ R
3.

The body angular velocity is measured by a rate gyro
sensor triad

ωr = ω̄. (1)

On-board sensors such as magnetometers, star trackers
and pendulums, among others, provide vector observations
expressed in body frame coordinates

hr i = Bh̄i := R̄′Lhi, (2)

where i = 1..n is the vector index, n is the number of
vector measuring sensors and the vector representation in
the local coordinate frame {L}, denoted by Lhi, is known.

The proposed observer estimates the orientation of the
rigid body by computing the kinematics

˙̂R = R̂ [ω̂×] ,

where R̂ is the estimated attitude and ω̂ is the feedback
term constructed to compensate for the attitude estima-
tion error.

The attitude error is defined as R̃ := R̂′R̄, and the
Euler angle-axis parametrization of R̃ is described by
the rotation vector λ ∈ S(2) and by the rotation angle

θ ∈ [0 π], yielding R̃ = rot(θ,λ) := cos(θ)I+sin(θ) [λ×]+
(1− cos(θ))λλ

′. While the observer results are formulated
directly in the SO(3) manifold, the rotation angle θ is
adopted to characterize some of the convergence properties
of the observer.

The attitude error kinematics are a function of the angular

velocity estimates and given by ˙̃R = −R̃
[

R̃′
ω̂ − ω̄×

]

.The

attitude feedback law ω̂ is defined as function of the

velocity readings (1) and vector observations (2), so that
the closed loop attitude estimation errors converge to the
origin, i.e., R̃ → I, as t → ∞.

3. OBSERVER CONFIGURATION

The attitude feedback law is derived resorting to the
Lyapunov’s stability theory and to a conveniently defined
transformation of the vector observations. Define the linear
combination of the sensed vector Lhi expressed in the local
coordinate frame, given by

Luj :=

n
∑

i=1

aij
Lhi, j = 1..n. (3)

The vector transformation (3) is represented in matrix
form by UH = HAH , where UH :=

[

Lu1 . . . Lun

]

, H :=
[

Lh1 . . . Lhn

]

, UH ,H ∈ M(3, n) and AH := [aij ] ∈ M(n)
is invertible.

Let Bûi := R̂′Lui and Būi := R̄′Lui be the estimated
and the nominal representation of Luj in Body frame
coordinates, respectively. The corresponding matrix rep-
resentation is BŪH = R̄′UH , BÛH = R̂′UH , where
BÛH :=

[

Bû1 . . . Bûn

]

and BŪH :=
[

Bū1 . . . Būn

]

,
BÛH , BŪH ∈ M(3, n).

The candidate Lyapunov function is defined by the esti-
mation error of the transformed vectors

V = 1
2

n
∑

i=1

‖Bûi − Būi‖2 = 1
2‖

BÛH − BŪH‖2. (4)

Algebraic manipulation produces the equivalent Lyapunov
formulation and time derivative

V = tr
[

(I − R̃)UHU′
H

]

= (1 − cos(θ)) λ
′Pλ,

V̇ =
[

R̃′UHU′
H − UHU′

HR̃⊗
]′

(R̃′
ω̂ − ω̄)

(5)

where P := tr(UHU′
H)I−UHU′

H , P ∈ M(3) and ⊗ is the
unskew operator such that [[a×]⊗] = a,a ∈ R

3.

3.1 Vector Measurement Configuration

The proposed Lyapunov function measures the error of
the vector observations. To guarantee that V = 0 if and
only if the attitude is correctly estimated, i.e. R̃ = I, the
geometric configuration of the measured vectors is required
to satisfy the following assumption.

Assumption 1. There are at least two noncollinear vectors
Lhi, that is, rank(H) ≥ 2.

Lemma 2. The Lyapunov function V has a unique global
minimum at R̃ = I if and only if Assumption 1 is verified

∀R̃6=I
V > 0 if and only if ∃i6=j∀α∈R : Lhi 6= αLhj .

Proof. The result can be obtained by following the proof
of [Vasconcelos et al., 2007, Lemma 1] where the properties
of a similar Lyapunov function are derived. 2

To illustrate the necessity of Assumption 1, assume that
rank(H) = 1, i.e. all Lhi (and Lui) are collinear. Any

attitude error R̃ represented by an arbitrary rotation θ
about the vector λ = Lui/‖Lui‖ satisfies V = 0. For a
detailed insight on the limitations of attitude estimation
using single direction measurements see [Lee et al., 2007]
and references therein.
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3.2 Vector Measurement Directionality

The asymptotic stability and the region of attraction of
the origin are derived by analyzing the level sets V ≤ c.
For c large enough, the level sets contain multiple critical
points due to the directionality of P, see [Vasconcelos
et al., 2007, Lemma 2] for a motivation. In the present
work, the directionality of P is made uniform by means of
transformation AH .

Proposition 3. Assume that H is full rank, then there is a
nonsingular AH ∈ M(n) such that UHU′

H = I.

Proof. Take the SVD decomposition of H = USV′ where
U ∈ O(3), V ∈ O(n), S =

[

diag(s1, s2, s3) 03×(n−3)

]

∈
M(3, n), and s1 > s2 > s3 > 0 are the singular values
of H. Any AH = V blkdiag(s−1

1 , s−1
2 , s−1

3 ,B)V′
A, where

B ∈ M(n − 3) is nonsingular and VA ∈ O(n), verifies
UHU′

H = HAHA′
HH = UV′

AVAU′ = I. 2

Using the transformation AH defined in Proposition 3, the
Lyapunov function (5) is expressed by

V = 1
2‖I − R̃‖2 = 2(1 − cos(θ)), (6)

V̇ =
[

R̃′ − R̃⊗
]′

(R̃′
ω̂ − ω̄) = −2 sin(θ)λ′(R̃′

ω̂ − ω̄).

Note that the conditions of Proposition 3 are not satisfied
directly by Assumption 1. In Appendix A it is shown
that in case rank(H) = 2, the direction orthogonal to
the columns of H can be generated, producing a full rank
matrix Ha that is used in the observer equations in the
place of H.

4. OBSERVER SYNTHESIS

In this section, the feedback law for attitude estimation in
the presence of rate gyro bias is derived. The formulation
of a feedback law for unbiased angular velocity readings is
presented to illustrate the topological limitations to global
stabilization on SO(3).

4.1 Unbiased Angular Velocity Measurements

Under Assumption 1 and given the Lyapunov function
time derivative (6), a feedback law is proposed to drive
the attitude error to zero,

ω̂ = R̃ω̄ − Kωsω, (7)

where the feedback term is given by

sω :=
[

R̃′ − R̃⊗
]

= −2 sin(θ)λ, (8)

and Kω > 0 is a positive scalar. The attitude feedback
yields the autonomous closed loop attitude kinematics

˙̃R =KωR̃(R̃′ − R̃), (9)

and the closed loop Lyapunov function time derivative
is given by V̇ = −Kωs′ωsω = −4Kω sin2(θ) ≤ 0, so
it is immediate that the attitude feedback law produces
a Lyapunov function that decreases along the system
trajectories. Under Assumption 1, the set of points where
V̇ = 0 is given by

CR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,λ),λ ∈ S(2)}
By direct substitution in the closed loop system (9), it is

easy to see that R̃ = rot(π, λ) ⇒ ˙̃R = 0. Convergence to

the origin by LaSalle’s invariance principle is inconclusive
given that CR is invariant.

The equilibrium points θ = π are a consequence of the
fact that the region of attraction of a stable equilibrium
point is homeomorphic to some Euclidean vector space
and that SO(3) is only locally homeomorphic to R

3 [Bhat
and Bernstein, 2000]. However, the set θ = π has zero
measure and the following theorem establishes that the
trajectories emanating from the set θ < π, i.e. almost
everywhere, converge exponentially fast to the origin. The
proof is obtained by adaptation of the results presented in
[Vasconcelos et al., 2007, Theorem 3] for a similar error
kinematics and Lyapunov function.

Theorem 4. The closed-loop system (9) has an exponen-

tially stable point at R̃ = I. For any initial condition
in the region of attraction R̃(t0) ∈ {R̃ ∈ SO(3) : R̃ =
rot(θ,λ), |θ| < π,λ ∈ S(2)} the trajectory satisfies

‖R̃(t) − I‖ ≤ kR‖R̃(t0) − I‖e−
1
2γR(t−t0), (10)

where kR = 1 and γR = 2Kω(1 + cos(θ(t0))).

4.2 Biased Angular Velocity Measurements

In this section, asymptotic stabilization of the attitude
error in the presence of angular velocity bias is derived
and exponential convergence to the origin is obtained. The
rate gyro readings are corrupted by a bias term

ωr = ω̄ + b̄ω

where the nominal bias is considered constant, ˙̄bω = 0.
The proposed Lyapunov function (6) is augmented to
account for the effect of the rate gyro bias

Vb = 2 (1 − cos(θ)) + 1
2 b̃

′
ωWbω

b̃ω

where b̃ω = b̂ω − b̄ω is the bias compensation error,

b̂ω is the estimated bias and Wbω
is a positive definite

matrix. Under Assumption 1 and given Lemma 2, the
Lyapunov function Vb has an unique global minimum at
(R̃, b̃ω) = (I, 0).

The feedback law for the angular velocity is obtained by
compensating the bias of the angular velocity reading in
(7), producing

ω̂ = R̃(ω̄ + b̄ω − b̂ω) − Kωsω = R̃(ω̄ − b̃ω) − Kωsω.

The time derivative of the augmented Lyapunov function

is described by V̇b = −Kωs′ωsω + b̃′
ω(Wb

˙̃
bω − sω). Noting

that
˙̂
bω =

˙̃
bω, the bias feedback law is defined as

˙̂
bω =

Kbω
sω, and Wb = K−1

bω
I where Kbω

is a positive scalar.
The closed loop kinematics are given by

˙̃R = KωR̃(R̃′ − R̃) + R̃
[

b̃ω×
]

,
˙̃
bω = Kbω

[

R̃′ − R̃⊗
]

,

(11)
and the time derivative of the Lyapunov function is de-
scribed by V̇b = −Kω s̃′ω s̃ω = −4Kω sin2 (θ).

The set of points where V̇bω
= 0 is characterized by Cbω

=

{(R̃, b̃ω) ∈ SO(3) × R
3 : R̃ ∈ CR}. The invariant subsets

of Cbω
where θ = π are a consequence of the topological

limitation to global stabilization on SO(3) discussed in
Section 4.1. By analyzing the level sets of Vb, the next
lemma shows that the attitude and bias estimation errors
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are bounded, providing sufficient conditions that exclude
convergence to the attitude error θ = π.

Lemma 5. The attitude and bias estimation errors, R̃ and
b̃ω respectively, are bounded. For any initial condition
such that

Kbω
>

‖b̃ω(t0)‖2

4(1 + cos(θ(t0)))
, (12)

the attitude error is bounded by θ(t) ≤ θmax < π for all
t ≥ t0 .

Proof. Let x := (R̃, b̃ω) and define the set Ωρ = {x ∈
D : Vb ≤ ρ} where D = SO(3) × R

3. The Lyapunov
function is given by the weighted distance of the state to
the origin Vb = 1

2 (‖I − R̃‖2 + 1
Kbω

‖b̃ω‖2), so the set Ωρ

is compact. The Lyapunov function decreases along the
system trajectories, V̇b ≤ 0, so any trajectory starting in
Ωρ will remain in Ωρ. Consequently, ∀t≥t0

1
2 (‖I−R̃(t)‖2 +

1
Kbω

‖b̃ω(t)‖2) ≤ Vb(x(t0)) and the state is bounded.

The gain condition (12) is equivalent to Vb(x(t0)) < 4.
Given that Vb(x(t)) ≤ Vb(x(t0)), then 2(1 − cos(θ(t))) ≤
Vb(x(t0)) < 4 which implies that θ(t) < π for all t > t0.
2

Although asymptotic stability of the origin can be ob-
tained by LaSalle’s invariance principle and Lemma 5,
the exponential properties of LTV systems [Khalil, 1996,
Theorem 3.9] motivate the stability analysis of the attitude
observer kinematics (11), in the form ẋ = f(t,x)x, as
a parameterized LTV system ẋ⋆ = A(λ, t)x⋆, where the
parameter λ is associated with the initial conditions of the
nonlinear system [Loŕıa and Panteley, 2002].

A seminal approach to the LTV formulation can be found
in [Khalil, 1996, Section 13.4] for a model reference adap-
tive controller, and exploited in [Thienel and Sanner, 2003]
for a quaternion based attitude observer. However, as
shown in [Khalil, 1996, p. 629], the inference of exponential
stability must be addressed properly given that A(λ, t)
depends on the parameter λ. The validity of the pa-
rameterized LTV approach is demonstrated in [Loŕıa and
Panteley, 2002], which generalizes the exponential stabil-
ity results of nonparameterized to parameterized systems,
under uniformity conditions with respect to the parameter
λ. The tools presented therein allow for the derivation of
exponential stability of the present attitude observer.

Theorem 6. For any initial condition such that θ(t0) < π,
let the feedback gain satisfy (12). Then the attitude and
bias estimation errors converge exponentially fast to the
stable equilibrium point (R̃, b̃ω) = (I, 0).

Proof. Let the attitude error vector be given by q̃q =

sin( θ
2 )λ, the closed loop attitude and bias compensation

errors kinematics are described by

˙̃qq = 1
2Q(q̃)(b̃ω−4Kωq̃q q̃s),

˙̃
bω = −4Kbω

Q′(q̃)q̃q, (13)

where Q(q̃) := q̃sI+[q̃q×], q̃s = cos( θ
2 ), ˙̃qs = 2Kωq̃′

qq̃q q̃s−
1
2q

′
qb̃ω, and q̃ =

[

q̃′
q q̃s

]′
is the Euler quaternion repre-

sentation [Wertz, 1978]. Using ‖q̃q‖2 = 1
8‖R̃ − I‖2, the

Lyapunov function in quaternion coordinates is described
by Vb = 4‖q̃q‖2 + 1

2Kbω
‖b̃ω‖2.

Define the system (13) in the domain Dq = {(q̃q, b̃ω) ∈
B(3) × R

3 : Vb ≤ 4 − εq}, 0 < εq < 4. The set Dq is
given by the interior of the Lyapunov surface, so it is
positively invariant and well defined. The feedback gain
(12) implies that the initial condition is in the set Dq for
εq small enough.

Define the parameterized LTV system
[

˙̃qq⋆

˙̃
bω⋆

]

=

[

A(t, λ) B′(t, λ)
−C(t, λ) 03×3

] [

q̃q⋆

b̃ω⋆

]

(14)

where (q̃q⋆, b̃ω⋆) ∈ R
3 × R

3, λ ∈ R≥0 ×Dq. The matrices
A(t, λ) := −2Kω q̃s(t, λ)Q(q̃(t, λ)), B(t, λ) := 1

2Q
′(q̃(t, λ))

and C(t, λ) := 4Kbω
Q′(q̃(t, λ)) are bounded, so the system

is well defined [Khalil, 1996, p. 626]. The quaternion q̃(t, λ)
represents the solution of (13) with initial condition λ =

(t0, q̃q(t0), b̃ω(t0)). If the parameterized LTV system (14)
is λ-UGES, then the nonlinear system (13) is uniformly
exponentially stable in the domain Dq, see Appendix B
for details. The parameterized LTV system verifies the
assumptions of [Loŕıa and Panteley, 2002, Theorem 1]:

1) The elements of B(t, λ) and ∂B(t,λ)
∂t

= 1
2Q

′( ˙̃q(t, λ)) are
bounded, so there exits bM such that

max
λ∈R≥0×Dq, t≥0

{

|B(t, λ)| ,
∣

∣

∣

∣

∂B(t, λ)

∂t

∣

∣

∣

∣

}

≤ bM

where |·| is the induced Euclidean norm of matrices.

2) The positive definite matrices P (t, λ) = 8Kbω
I

and Q(t, λ) = 32Kbω
Kω q̃2

s(t, λ) satisfy −Q(t, λ) =

A′(t, λ)P (t, λ) + P (t, λ)A(t, λ) + Ṗ (t, λ), P (t, λ)B′(t, λ) =
C′(t, λ), pmI ≤ P (t, λ) ≤ pMI, qmI ≤ Q(t, λ) ≤ qMI,
with pm = pM = 8Kbω

, qm = qM cos2( θmax

2 ) and qM =
32KωKbω

.

The system (14) is λ-UGES if and only if B(t, λ) is λ-
uniformly persistently exciting (λ-uPE) [Loŕıa and Pante-
ley, 2002]. For any unitary norm vector y

‖B′(τ, λ)y‖2 =
1 − (y′q̃q)2

4
≥ 1 − ‖q̃q‖2

4
≥

1 − sin2
(

θmax

2

)

4
,

hence the persistency of excitation condition is satisfied,

y′
∫ t+T

t
B(τ, λ)B′(τ, λ)dτy ≥ T

4 cos2
(

θmax

2

)

. Consequently,
the parameterized LTV (14) is λ-UGES, and the nonlinear
system (13) is exponentially stable in the domain Dq. 2

Theorem 6 guarantees that the trajectories emanating
from the initial conditions in the set {(R̃, b̃ω) ∈ SO(3) ×
R

3 : 1
2‖I− R̃‖2 + 1

2Kbω
‖b̃ω‖2 < 4} converge exponentially

fast to the origin if Kbω
satisfies (12). The following corol-

lary establishes sufficient conditions in Kbω
for uniform

exponential stability, i.e. the exponential convergence rate
bounds are independent of the initial condition x(t0).

Corollary 7. Assume that the initial estimation errors are
bounded

θ(t0) ≤ θ0 max < π, ‖b̃ω(t0)‖ ≤ b̃0 max. (15)

Let Kbω
>

b̃2
0 max

4(1+cos(θ0 max)) , the origin (R̃, b̃ω) = (I, 0) is

exponentially stable, uniformly in the set defined by (15).
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5. OBSERVER PROPERTIES

This section evidences important characteristics of the
observer. Namely, it is shown that the attitude feedback
law is an explicit function of the sensor readings and the
state estimates. Convergence bounds for the estimation
error of the attitude observer are also presented.

Theorem 8. The feedback laws are explicit functions of the
sensor readings and state estimates

ω̂ = ÛHA′
HH′

r

(

ωr − b̂ω

)

− Kωsω,
˙̂
bω = Kbω

sω,

sω =

n
∑

i=1

(BÛHei) × (HrAHei),

where Hr := [hr 1 · · · hr n] is the concatenation of the

vector readings, BÛH := R̂′HAH , and ei is the unit
vector where ei = 1.

Proof. Using BÛH
BŪ′

H = R̂′UHU′
HR̄ = R̃ in (8) yields

sω =
[

BŪH
BÛ′

H − BÛH
BŪ′

H⊗
]

. Using BŪH
BÛ′

H =
∑n

i=1
Būi

Bû′
i and Būi

Bû′
i − BûB

i ū′
i =

[

(Bûi × Būi)×
]

,

bears sω =
∑n

i=1

(

Bûi × Būi

)

=
∑n

i=1(
BÛHei) ×

(BŪHei). Applying BŪH = R̄′HAH and Hr = R̄′H
produces the desired results. 2

The convergence rate bounds are a direct consequence
of the results presented in [Loŕıa, 2004, Theorem 1 and
Remark 2]. The analytical derivation of the constants for
the attitude observer is omitted due to space constraints.

Corollary 9. Under the conditions described in Corol-
lary 7, the trajectories of the system (11) satisfy

‖x(t)‖ ≤ kbω
‖x(t0)‖e−

1
2γbω (t−t0),∀t ≥ t0

where

x(t) :=

(

R̃(t) − I√
8

, b̃ω(t)

)

, kbω
= tM tinv

M e
1

2 γ
−

1

2

bω
, γbω

=
ρ

πc

,

tM =

(

5

4
+

2

1 +
√

17

)

1

2

, tinv

M =

(

5

4
+

2

1 −
√

17

)

−
1

2

,

and the constants ρ and πc are defined as in [Loŕıa, 2004,
Theorem 1], with

aM = 2Kω , bM = max

{

1

2
, 1

2

(

16K2

ω + b̃2max

)

1

2

}

,

Kbω
= ρω

b̃2
0 max

4(1 + cos(θ0 max))
, ρω > 1, γx =

cos2( θmax

2
)

4(1 + b2
M

T )
, T > 0,

b̃max = b̃0 max

(

ρω tan2

(

θ0 max

2

)

+ 1

)

1

2

,

θmax = arccos
(

(1 − ρ−1

ω ) cos(θ0 max) − ρ−1

ω

)

.

6. SIMULATIONS

In this section, simulation results for the proposed atti-
tude observer are presented. The directions of the sensed
vectors are given by Lh1 = [1 0 0]

′
and Lh2 = [0 0 1]

′
,

which are a simple representation of the vectors that are
measured in the body coordinates by a magnetic compass
and a pendulum, respectively. Under strong accelerations
or magnetic distortions, other vector measurements such
as star trackers or image based feature detection can be

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Time (s)

||I
−̃R
||2

 

 

θ(t
0
)=3/4 π

θ(t
0
)=1/3 π

c
R

e
− γ

R
 (t−t

0
)

(a) Attitude Estimation Error (b̃ω = 0)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Time (s)

||I
−̃R
||2

 

 

θ(t
0
)=3/4 π

θ(t
0
)=1/3 π

(b) Attitude Estimation Error (b̃ω 6= 0)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

||b
ω
||2

 

 

θ(t
0
)=3/4 π

θ(t
0
)=1/3 π

(c) Bias Estimation Error

Fig. 1. Attitude and Bias Estimation Errors.

adopted. The matrix H satisfies the conditions of Assump-
tion 1 and corresponds to the case discussed in Section 3.2
and Appendix A. The attitude feedback gain is given by
Kω = 2 and the rigid body trajectory is computed using
oscillatory angular rates of 1Hz.

For the case of biased velocity readings, the bias is identical
on each rate gyro channel b̄ω = [5 5 5] ◦ /s, and the initial

bias estimate is b̂ω(t0) = 0 ◦ /s. The feedback gain is
Kbω

= 1, the bounds of Proposition 7 are defined by

θ0 max = 3
4π, b̃0 max = 5

√
3 ◦ /s, which correspond to the

minimum gain Kbω min = 1.95 × 10−2.

The attitude estimation error, depicted in Fig. 1(a) for
the case of unbiased angular rate readings, converges ex-
ponentially fast to the origin. As expected, the convergence
bound (10) is more conservative as θ(t0) is closer to π.

The attitude and bias errors converge exponentially fast,
as shown in Figs. 1(b) and 1(c). The peak of the bias
estimation error is explained by the level set Vb ≤ c
containing points with small attitude error 2(1−cos(θ)) ≈
0, but with bias error ‖b̃ω‖2 ≈ 2Kbω

c. In Fig. 2, the
exponential convergence of the Lyapunov function (and
of the estimation error) is illustrated using a logarithmic
scale. Large feedback gains Kbω

are beneficial for tackling
the estimation errors. The convergence bounds of Corol-
lary 9 are very conservative, γbω

= 6.50 × 10−18 and
kbω

= 7.50 × 108 with optimized ρ, and should be subject
to further study. Interestingly enough, the estimation error
convergence rate obtained in simulation are satisfactory for
practical applications.
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7. CONCLUSIONS

A nonlinear observer for attitude estimation on SO(3) ex-
ploiting vector measurements and biased angular velocity
readings was derived. Using a parameterized linear time-
varying formulation of the system, exponential conver-
gence of the estimation errors to the origin was shown. The
feedback terms of the proposed observer were expressed as
an explicit function of the vector measurements and state
estimates. Simulation results depicted the convergence
properties of the estimation errors, however the theoretical
convergence rate bounds were too conservative for the
case of biased velocity sensors. Future work will focus on
obtaining a more accurate estimate of the convergence rate
bounds and on the implementation of the algorithm for
practical applications, where the presence of sensor noise
and time-varying bias must be considered.
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A. Loŕıa and E. Panteley. Uniform exponential stability
of linear time-varying systems: revisited. Systems and
Control Letters, 47(1):13–24, Sept. 2002.

J. M. Pflimlin, T. Hamel, and P. Souères. Nonlinear
attitude and gyroscope’s bias estimation for a VTOL
UAV. International Journal of Systems Science, 38(3):
197–210, March 2007.

H. Rehbinder and B. K. Ghosh. Pose estimation using
line-based dynamic vision and inertial sensors. IEEE

Transactions on Automatic Control, 48(2):186–199, Feb.
2003.

S. Salcudean. A globally convergent angular velocity
observer for rigid body motion. IEEE Transactions on
Automatic Control, 36(12):1493–1497, Dec. 1991.

J. Thienel and R. M. Sanner. A coupled nonlinear space-
craft attitude controller and observer with an unknown
constant gyro bias and gyro noise. IEEE Transactions
on Automatic Control, 48(11):2011–2015, Nov. 2003.

J.F. Vasconcelos, R. Cunha, C. Silvestre, and P. Oliveira.
Landmark based nonlinear observer for rigid body atti-
tude and position estimation. In 46th IEEE Conference
on Decision and Control, Dec. 2007.

J. Wertz, editor. Spacecraft Attitude Determination and
Control. Kluwer Academic, 1978.

Appendix A. AUGMENTED VECTOR OBSERVATION

Assumption 1 establishes that rank(H) ≥ 2 whereas
the coordinate transformation described in Proposition 3
assumes that H is full rank. If rank(H) = 2, it is possible to
construct an augmented matrix Ha with the columns of H
such that rank(Ha) = 3. Taking two linearly independent
columns of H, Lhi and Lhj , the augmented matrices are
given by Ha :=

[

H Lhi × Lhj

]

, UHa = HaAHa, where
Ha,UHa ∈ M(3, n + 1), AHa ∈ M(n + 1) is a nonsingular
matrix such that UHaU

′
Ha = I, which exists by the proof

of Proposition 3. Using the fact that the cross product is
commutable with coordinate transformations, (R′Lhi) ×
(R′Lhj) = R′(Lhi×Lhj), the representation of the vector
measurements in body coordinates is given by BŪHa =
R̄′UHa and BÛHa = R̂′UHa. The modified observer is
obtained by replacing the matrices UH and H by UHa

and Ha, respectively, yielding the same desired observer
properties, namely the convergence results of Theorem 8.

Appendix B. UNIFORM EXPONENTIAL STABILITY

The following result from [Loŕıa and Panteley, 2002] es-
tablishes that if the parameterized nonlinear system is
exponentially stable uniformly in λ, then uniform exponen-
tial stability (independent of the initial conditions) of the
associated nonlinear system can be inferred. This result is
presented here for the sake of clarity.

Lemma 10. (λ-UGES and UES Loŕıa and Panteley [2002]).
Consider i) the nonautonomous system ẏ = f(t, y) where
f : R≥0×Dy → R

n is piecewise continuous in t and locally
Lipschitz in y uniformly in t, and Dy ⊂ R

n is a domain that
contains the origin, ii) the parameterized nonautonomous
system ẋ = fλ(t, λ, x), where fλ : R≥0 × Dp × R

n → R
n

is continuous, locally Lipschitz uniformly in t and λ,
Dp = R≥0 × Dλ and Dλ ⊂ R

n is a closed not necessarily
compact set. Let Dy ⊂ Dλ and assume that x(t) = 0 is
λ-UGES, i.e. there exist ke and γe > 0 such that, for all
t ≥ t0, λ ∈ Dp and x0 ∈ R

n, the solution of the system

verifies ‖x(t, λ, t0, x0)‖ ≤ ke‖x0‖e−γe(t−t0). If the solution
of both systems coincide, y(t, y0, t0) = x(t, λ, x0, t0), for
λ = (t0, y0) and x0 = y0, then y(t) = 0 is exponentially
stable in Dy.

Proof. Let x0 = y0 and λ = (t0, y0), then x(t, λ, t0, x0) =
y(t, t0, y0) and by change of variables, the solution satisfies
‖y(t, t0, y0)‖ ≤ ke‖y0‖e−γe(t−t0), and uniform exponential
stability of y(t) = 0 in Dy is immediate. 2
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