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Abstract: This paper analyzes a hybrid-state-system-based controller for an autonomous vehicle in urban 
traffic and provides development procedures for hybrid-state systems for automatic control. The Ohio-
State University Autonomous City Transport utilizes a discrete-state system, based on a finite state 
machine for high-level decision making and a continuous-state controller for low-level lateral and 
longitudinal control. The design procedure for the overall hybrid controller involves a series of capability 
grafts, each improving the ability of the vehicle to handle diverse situations. The design methodology, as 
demonstrated in a number of development steps, and architecture are capable of handling various urban 
scenarios, as demonstrated in a June 2007 site visit by Darpa officials. 

 

1. INTRODUCTION 

This paper analyzes the control scheme and the design 
methods that were used to develop Autonomous City 
Transport (ACT) of The Ohio State University, built to 
participate in 2007 Darpa Urban Challenge (DUC). The 
setting of the competition consists of several urban scenarios, 
for which a Hybrid State System (HSS) was selected to be 
the suitable control scheme. 

The 2007 Darpa Urban Challenge is a natural extension of 
2004 and 2005 Darpa Grand Challenge competitions. While 
the Grand Challenges were based on off-road ground vehicle 
automation, the Urban Challenge tackles the problems 
associated with city scenarios for an autonomous vehicle, 
where the roads, intersections and parking lots are among the 
possible environments, each with its distinct rules and 
regulations. 

A Hybrid States System consists of two distinct parts, the 
Discrete State System (DSS), in which the state assumes only 
a finite and discrete set of values, and the Continuous State 
System (CSS), where the system state varies continuously.  

This type of interaction between systems of various state 
domains is common in process control, flexible 
manufacturing systems (FMS), etc. as the continuous 
operation of the plant generates a number of discrete events, 
which need to be handled by separate procedures in the 
controller. 

The DSS definition as part of the hybrid state system can be 
considered a subset of Discrete Event Systems (DES), which 
were studied extensively in (Özveren, 1989), (Ramadge and 
Wonham, 1989), (Cao and Ho, 1990). The main advantage of 
restricting the discrete part of the system definition to DSS is 
that the automaton nature of the discrete system leads to a 
state-equation representation developed in (Doğruel and 
Özgüner, 1997a). This representation of the DSS in state 
equations is helpful both in terms of familiarity and ease of 
use when investigating the connections of such systems. 

As an alternative to the HSS approach, it is also possible to 
model the systems of various state domains with a general 
and unifying representation. Both the discrete and continuous 
systems can be covered in such a singular formulation.  

The reason for selecting the HSS approach for the design of 
OSU-ACT was the natural affinity of the system towards a 
situation-dependent solution for different scenarios and an 
underlying continuous model for the vehicle. Modelling 
examples and analysis tools for the general HSS architecture 
can be found in (Doğruel and Özgüner, 1997b) and (Passino 
and Özgüner, 1991). 

The main contribution of this paper is in developing a 
structured design methodology for HSSs and demonstrating 
the power and flexibility of the HSS approach for automation 
in complex and largely uncontrolled environments. The 
system architecture for the OSU-ACT, subsystem definitions, 
the design procedure and comments on the performance can 
be found in the following sections. 
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2. SYSTEM ARCHITECTURE 

2.1 The HSS layout 

The OSU-ACT was developed for the Darpa Urban 
Challenge, of which the setting, rules and regulations are 
highly situational. 

The autonomous vehicles are expected to obey the general 
rules of traffic for roads of varying curvature, lane numbers 
and directions; intersections with or without stop signs and 
parking zones without structured lanes of traffic. Each of 
these situations demand detailed regulations, some of which 
are stricter than the day-to-day traffic rules a human driver is 
expected to obey. 

In order to be able to capture the situation-dependent nature 
of the challenge, the controller for OSU-ACT is layered into 
a Low-level Controller (LC), and a High-level Controller 
(HC). The “human driver” analogy is helpful in visualizing 
the distinct layers. The HC is responsible for the conscious-
level decisions such as lane changes, obeying the speed limits 
and handling intersections, while the LC handles the 
subconscious control of steering to stay in the lane and 
throttle/brake control to maintain the speed. 

This layered structure is comparatively easy to model in a 
HSS representation. In Fig. 1, the discrete-state nature of the 
HC is connected to the continuous-state system, which 
includes the LC, through an interface, Ψ and the events 
generated in LC is signalled back to HC through the second 
interface, Φ. 

 

Fig. 1, HSS layout. The HC is in the discrete-state system and 
the LC is in the continuous-state system. 

The external input to the DSS, Γ, consists of discrete events 
generated by the sensing and situation analysis system of 
OSU-ACT. The details of each control subsystem from 
lowest to highest layer can be found in the following 
subsections. 

2.2 The vehicle model 

OSU-ACT is based on a commercially available, hybrid 
Sport Utility Vehicle (SUV), the image of which with a 
number of sensors mounted can be seen in Fig. 2. For 
modelling this front-wheel steering vehicle, widely utilized 
Dubins’ car (Dubins, 1957) is used. This model fits our 
implementation as the rate of change in yaw (η) and speed (ε) 
inputs defined in the model (1) are either readily available, or 
easy to access in a hybrid vehicle. 

 

 

Fig. 2, OSU-ACT with front and rear looking LIDARs and 
GPS antenna visible. 
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In this 2D model, x and y stand for corresponding coordinates 
of the vehicle, θ is the yaw and , η and  ε are the steering (as 
the steering wheel position is proportional to the rate of yaw 
change) and speed inputs as mentioned earlier. 

2.2 The low-level controller (LC) 

The low-level controller is responsible for steering and speed 
control of the vehicle. As illustrated in Fig. 3, LC has desired 
path and velocity as inputs p and v from higher level, through 
interface Ψ, feedback input from the vehicle in the form of 
position and orientation x ,y and θ, and generates control 
inputs for the vehicle, η for steering and  ε for velocity. 

 

Fig. 3, Input/output connections for the low-level controller. 

2.3 The interfaces 

There are two subsystems in the interface layer of the HSS. Φ 
passes the event signals from continuous-state system to 
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discrete-state system, and Ψ works in the opposite direction, 
generating the continuous signals to be used in the CSS. 

Φ is the simpler of two interface subsystems. The discrete 
events required by the DSS (and the HC within) are either 
threshold checks such as “distance to intersection is less than 
30 meters” or command completions generated by LC such 
as “the vehicle stopped”. These signals are used in the higher 
level and the details can be examined in the HC subsection. 

The interface from DSS to CSS, Ψ, is slightly more complex, 
as the low-level controller required continuous signals 
representing velocity and desired path commands.  

On the global scale, the route of the vehicle is defined by a 
sequence of discrete waypoints. On the higher-end, discrete 
system, the destination at a given time instance is as simple 
as “waypoint n”, n being the index of the current waypoint 
target in the overall waypoint sequence. The actual 
continuous path for the LC to follow is generated in Ψ, by 
fitting a spline to a number of these waypoints. 

 

Fig. 5, Spline-based continuous trajectory, generated by 
interface Ψ. 

As seen in Fig. 5, three coordinate pairs from waypoints and 
the position of the vehicle are used to generate a continuous 
trajectory for the LC to follow. A Catmull-Rom spline is used 
to interpolate these points. The Catmull-Rom spline (Catmull 
and Rom, 1974) was selected among a number of 
interpolation options, mainly because of the forced nature of 
the spline that makes the trajectory pass through all the 
points. This was important in our application, since the 
missions in DUC are defined as a sequence of special, “must-
go-through” waypoints that are called “checkpoints”. 

2.4 The high-level controller (HC) 

As mentioned above, the high-level controller is responsible 
for emulating the higher-level, conscious decision-making 
process of a human driver. A number of these decisions are 
initiating lane changes and passing manoeuvres, speed 
selection, car following, u-turns, handling the order 
precedence in an intersection, merging into or crossing 
moving traffic. 

One can observe that this brief list of required capabilities is 
highly situation dependent. A general control scheme of “If 
event A happens, check for C and D; and decide to take 
action X or Y accordingly” is repeatedly employed in the 
decision-making process of a human driver. 

The Finite State Machine (FSM) was the selected method of 
control that mimics this manner of decision-making. FSMs 
are scalable and easy to trace by nature and the flexibility of 
this method has so far proven useful in a number of previous 
autonomous vehicle applications. 

Since the most basic classification of the high-level controller 
capabilities is dependent on the structure of the environment, 
a number of meta-states are defined to cover these basic 
situations. Depending on the position of the vehicle and the 
mission, the high-level controller is in one of these meta-
states, the list of which includes the following: 

• Mission Start 

• Mission End 

• Road 

• Intersection 

• U-Turn 

• Parking Zone 

This overall list of meta-states are connected in a FSM, as 
seen in Fig. 6, while each meta-state is a FSM in itself. 

 

Fig. 6, Meta-state connections. 

3. DESIGN PROCEDURE 

3.1 Formulation 

The DSS part of the controller, based on a FSM as described 
above, was designed in various stages that correspond to an 
increasing set of capabilities. 

This design approach, which we call “capability grafting”, 
relies on the scalable nature of the FSMs, and the final 
controller is reached by means of a sequence of expansions 
on top of a core set of capabilities. The overall methodology 
and terminology is demonstrated in this section, by using the 
initial stages of development for the “road” meta-state.  

The HSS architecture described in 2.1 can be detailed more 
formally in order to obtain the system equations in (2). The 
detailed block diagram is in Fig. 7. 
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Fig. 7, HSS blocks used in system formulation. 

In this formal block diagram, F is the high-level controller in 
DSS, f is the low-level controller part of the CSS, v is the 
vehicle model, S and s are the control signals generated for 
discrete-to-continuous and continuous-to-discrete 
connections, Ψ and Φ are the interfaces for these connections 
as described above, X and x are the states of the high and low 
level controllers and y is the vehicle state that is fed back to 
the low-level control and up to the DSS through appropriate 
interface. 

The development stages of block F and the related design 
decisions will be the focus of this section, as the design 
methodologies for the standalone continuous controller have 
been widely studied. 

 3.2 Development Stages 

A series of snapshots from the development of an example 
controller for the “road” meta-state, which is an FSM in 
itself, will be illustrated in this subsection. 

The design direction is from a core set of capabilities to a 
flexible and more capable architecture. The first stage is the 
most basic capability associated with the road situation, the 
general waypoint following that can be seen in Fig. 8. 

 

 

Fig. 8, Stage I: simple waypoint following. 

At this stage, a single waypoint following state, with 
connections into and out of this meta-state is sufficient, as 
can be seen in Fig. 9. The state-transition triggers, or 
“events”, an example of which is E1 in Fig. 9, can either be 
generated within the HSS and fed into F in signal s, or come 
from the sensing and situation analysis systems of the 
autonomous vehicle as represented in signal Γ. 

 

Fig. 9, FSM for stage I. E1: End of the road is reached. 

The second stage involves adding the capabilities related to 
external stimuli. The case example here is a blocking obstacle 
on the followed path. The world model still consists of a 
single lane, so a generic stop-and-wait capability is required. 

 

Fig. 10, Stage II: single lane with blocking vehicle. 

In Fig. 11, this capability is “grafted” into the existing state 
machine by means of adding two new states and a new event. 
This type of graft forms an alternate state trajectory. The 
existing state trajectory of S1  S2  S3 is still available in 
the absence of an obstacle and the new trajectory S1  S2  
S4  S5  S3 works in parallel to the existing system.  

 

Fig. 11, FSM for stage II. E2: Current lane is blocked. 

A graft of this type, where the new state trajectory is parallel 
to the existing ones, is an “extension”, and can be visualized 
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as a parallel connection in the block diagram, as seen in Fig. 
12. The grafted system, F2 has connections to the existing 
system and utilizes the same interface to the CSS part of the 
HSS.  

 

Fig. 12, Parallel connection of an “extension graft”, F2, to 
the existing system, F1 at the end of Stage II. 

For the next stage, the world model is expanded to include a 
second lane as seen in Fig. 13, under the strict assumption of 
an opposing direction of traffic and a solid lane boundary. 
Under the rule set of DUC, this situation requires a complete 
stop, followed a lane-change pass around obstacles, if the 
passing lane is free of obstacles. 

 

Fig. 13, Stage III: double lane, opposite direction, blocking 
vehicle. 

This new capability is added into the system by a second 
“extension graft” that can be seen in Fig. 14. The new state, 
S6 forms an alternate trajectory, S1  S2  S4  S5  S6  
S3, and connects to the exiting system in parallel as 
demonstrated in Fig. 15.  

 

Fig. 14, FSM for stage III. E3: Passing lane is occupied. 

 

Fig. 15, The extension graft of F3 for Stage III, utilizing 
same interface to the continuous level. 

For the final stage of this example sequence, the assumption 
on travel direction of the next lane is relaxed, as in Fig. 16. 
Depending on the direction of travel on the passing lane, or 
equivalently the lane divider being broken or solid, the 
autonomous vehicle needs to perform either a complete stop 
and pass, or a non-stop lane change. 

 

Fig. 16, Stage IV: double lane, next-lane direction unknown, 
blocking vehicle. 

The added capability is handled by the new graft, S7, as 
displayed in Fig. 17. The connection of this state 
demonstrates the second type of graft, which we name an 
“insertion”. S7 is inserted into an existing state trajectory 
passing from S2 to S4 and this manner of graft is more akin 
to a serial connection as it does not preserve all existing 
trajectories. 

 

Fig. 17, FSM for stage IV. E4: Lane divider is solid. 

The “insertion graft” can also be seen in Fig. 18, where the 
new system F4, severed the direct connection of F1 and F2.  
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Fig. 18, “Insertion graft” of F4. The direct route from F1 to 
F2 is destroyed. 

The major difference between the two types of grafts is that 
the extension graft preserves existing state trajectories, so any 
failure or removal of the grafted system results in a working 
system. On the other hand, insertion grafts are placed in 
serial connection, severing existing state trajectories. Hence, 
the malfunction or removal of an insertion graft creates 
unreachable subsystems, which in turn impacts the 
reachability and stability of the overall system, as described 
in (Doğruel and Özgüner, 1997a). 

However, it might be more problematic to implement new 
capabilities solely with extensions in order to avoid 
aforementioned insertion risks, since a parallel-connected 
system to handle the same capability generally contains a 
higher number of states and events. So, both types of grafts 
are needed in this design methodology and it is important to 
note the particular risks of each. 

4. SYSTEM PERFORMANCE 

As of September 2007, OSU-ACT, with the above-described, 
HSS-based controller, is selected to be among 36 semi-
finalists for the 2007 Darpa Urban Challenge. 

During the elimination stages for the initial group of 89, the 
most recent tests included a site visit by the Darpa officials. 
During this site visit, OSU-ACT was asked to perform a 
series of tasks, which required a subset of the final set of 
capabilities to be functional. The performance of the vehicle 
was found to be satisfactory by Darpa reviewers, which led to 
the OSU team getting into the next stage of the DUC. 
Following is a sample list of capabilities, implemented in a 
series of insertion and extension capability grafts as described 
above and successfully demonstrated on the site visit: 

• Route planning for a given mission, 

• Waypoint following without crossing lane 
boundaries, 

• Performing u-turn manoeuvres within specified 
boundaries, 

• Performing passing manoeuvres by changing lanes 
around stopped vehicles, 

• Handling a queue formations at an intersection, 

• Establishing an order of precedence at an 
intersection and obeying this order, 

5. CONCLUSIONS 

The hybrid-state system implementation for controlling an 
autonomous vehicle in Darpa Urban Challenge was analyzed 
and a flexible design methodology was formulated in this 
paper.  

The controller is divided into a continuous-state system that 
handles the low-level control, and a discrete-state system that 
uses a FSM, segmented into meta-states, for high-level 
control. These layers of the HSS are connected via 
continuous-to-discrete and discrete-to-continuous interfaces. 

The design stages involve a sequence of expansions called 
“capability grafts”, the two types of which were named 
“extension grafts” and “insertion grafts”. 

This implementation was tested and found to be successful 
during a number of events, latest of which was run by Darpa 
officials. The autonomous vehicle is currently under further 
development for the national qualification event and the final 
race of the Darpa Urban Challenge. 
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