

Hybrid State System Development for Autonomous Vehicle Control in Urban
Scenarios

Arda Kurt* and Ümit Özgüner**

*Electrical and Computer Engineering Department, The Ohio State University, Columbus, OH 43210,
USA (Tel: 614-940-9670; e-mail: kurt.12@ osu.edu).

**Electrical and Computer Engineering Department, The Ohio State University, (e-mail:
umit@ece.osu.edu)

Abstract: This paper analyzes a hybrid-state-system-based controller for an autonomous vehicle in urban
traffic and provides development procedures for hybrid-state systems for automatic control. The Ohio-
State University Autonomous City Transport utilizes a discrete-state system, based on a finite state
machine for high-level decision making and a continuous-state controller for low-level lateral and
longitudinal control. The design procedure for the overall hybrid controller involves a series of capability
grafts, each improving the ability of the vehicle to handle diverse situations. The design methodology, as
demonstrated in a number of development steps, and architecture are capable of handling various urban
scenarios, as demonstrated in a June 2007 site visit by Darpa officials.

1. INTRODUCTION

This paper analyzes the control scheme and the design
methods that were used to develop Autonomous City
Transport (ACT) of The Ohio State University, built to
participate in 2007 Darpa Urban Challenge (DUC). The
setting of the competition consists of several urban scenarios,
for which a Hybrid State System (HSS) was selected to be
the suitable control scheme.

The 2007 Darpa Urban Challenge is a natural extension of
2004 and 2005 Darpa Grand Challenge competitions. While
the Grand Challenges were based on off-road ground vehicle
automation, the Urban Challenge tackles the problems
associated with city scenarios for an autonomous vehicle,
where the roads, intersections and parking lots are among the
possible environments, each with its distinct rules and
regulations.

A Hybrid States System consists of two distinct parts, the
Discrete State System (DSS), in which the state assumes only
a finite and discrete set of values, and the Continuous State
System (CSS), where the system state varies continuously.

This type of interaction between systems of various state
domains is common in process control, flexible
manufacturing systems (FMS), etc. as the continuous
operation of the plant generates a number of discrete events,
which need to be handled by separate procedures in the
controller.

The DSS definition as part of the hybrid state system can be
considered a subset of Discrete Event Systems (DES), which
were studied extensively in (Özveren, 1989), (Ramadge and
Wonham, 1989), (Cao and Ho, 1990). The main advantage of
restricting the discrete part of the system definition to DSS is
that the automaton nature of the discrete system leads to a
state-equation representation developed in (Doğruel and
Özgüner, 1997a). This representation of the DSS in state
equations is helpful both in terms of familiarity and ease of
use when investigating the connections of such systems.

As an alternative to the HSS approach, it is also possible to
model the systems of various state domains with a general
and unifying representation. Both the discrete and continuous
systems can be covered in such a singular formulation.

The reason for selecting the HSS approach for the design of
OSU-ACT was the natural affinity of the system towards a
situation-dependent solution for different scenarios and an
underlying continuous model for the vehicle. Modelling
examples and analysis tools for the general HSS architecture
can be found in (Doğruel and Özgüner, 1997b) and (Passino
and Özgüner, 1991).

The main contribution of this paper is in developing a
structured design methodology for HSSs and demonstrating
the power and flexibility of the HSS approach for automation
in complex and largely uncontrolled environments. The
system architecture for the OSU-ACT, subsystem definitions,
the design procedure and comments on the performance can
be found in the following sections.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9540 10.3182/20080706-5-KR-1001.2672

2. SYSTEM ARCHITECTURE

2.1 The HSS layout

The OSU-ACT was developed for the Darpa Urban
Challenge, of which the setting, rules and regulations are
highly situational.

The autonomous vehicles are expected to obey the general
rules of traffic for roads of varying curvature, lane numbers
and directions; intersections with or without stop signs and
parking zones without structured lanes of traffic. Each of
these situations demand detailed regulations, some of which
are stricter than the day-to-day traffic rules a human driver is
expected to obey.

In order to be able to capture the situation-dependent nature
of the challenge, the controller for OSU-ACT is layered into
a Low-level Controller (LC), and a High-level Controller
(HC). The “human driver” analogy is helpful in visualizing
the distinct layers. The HC is responsible for the conscious-
level decisions such as lane changes, obeying the speed limits
and handling intersections, while the LC handles the
subconscious control of steering to stay in the lane and
throttle/brake control to maintain the speed.

This layered structure is comparatively easy to model in a
HSS representation. In Fig. 1, the discrete-state nature of the
HC is connected to the continuous-state system, which
includes the LC, through an interface, Ψ and the events
generated in LC is signalled back to HC through the second
interface, Φ.

Fig. 1, HSS layout. The HC is in the discrete-state system and
the LC is in the continuous-state system.

The external input to the DSS, Γ, consists of discrete events
generated by the sensing and situation analysis system of
OSU-ACT. The details of each control subsystem from
lowest to highest layer can be found in the following
subsections.

2.2 The vehicle model

OSU-ACT is based on a commercially available, hybrid
Sport Utility Vehicle (SUV), the image of which with a
number of sensors mounted can be seen in Fig. 2. For
modelling this front-wheel steering vehicle, widely utilized
Dubins’ car (Dubins, 1957) is used. This model fits our
implementation as the rate of change in yaw (η) and speed (ε)
inputs defined in the model (1) are either readily available, or
easy to access in a hybrid vehicle.

Fig. 2, OSU-ACT with front and rear looking LIDARs and
GPS antenna visible.

cos()
sin()

x
y

ε θ
ε θ

θ η

=
=

=

&

&

&

 (1)

In this 2D model, x and y stand for corresponding coordinates
of the vehicle, θ is the yaw and , η and ε are the steering (as
the steering wheel position is proportional to the rate of yaw
change) and speed inputs as mentioned earlier.

2.2 The low-level controller (LC)

The low-level controller is responsible for steering and speed
control of the vehicle. As illustrated in Fig. 3, LC has desired
path and velocity as inputs p and v from higher level, through
interface Ψ, feedback input from the vehicle in the form of
position and orientation x ,y and θ, and generates control
inputs for the vehicle, η for steering and ε for velocity.

Fig. 3, Input/output connections for the low-level controller.

2.3 The interfaces

There are two subsystems in the interface layer of the HSS. Φ
passes the event signals from continuous-state system to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9541

discrete-state system, and Ψ works in the opposite direction,
generating the continuous signals to be used in the CSS.

Φ is the simpler of two interface subsystems. The discrete
events required by the DSS (and the HC within) are either
threshold checks such as “distance to intersection is less than
30 meters” or command completions generated by LC such
as “the vehicle stopped”. These signals are used in the higher
level and the details can be examined in the HC subsection.

The interface from DSS to CSS, Ψ, is slightly more complex,
as the low-level controller required continuous signals
representing velocity and desired path commands.

On the global scale, the route of the vehicle is defined by a
sequence of discrete waypoints. On the higher-end, discrete
system, the destination at a given time instance is as simple
as “waypoint n”, n being the index of the current waypoint
target in the overall waypoint sequence. The actual
continuous path for the LC to follow is generated in Ψ, by
fitting a spline to a number of these waypoints.

Fig. 5, Spline-based continuous trajectory, generated by
interface Ψ.

As seen in Fig. 5, three coordinate pairs from waypoints and
the position of the vehicle are used to generate a continuous
trajectory for the LC to follow. A Catmull-Rom spline is used
to interpolate these points. The Catmull-Rom spline (Catmull
and Rom, 1974) was selected among a number of
interpolation options, mainly because of the forced nature of
the spline that makes the trajectory pass through all the
points. This was important in our application, since the
missions in DUC are defined as a sequence of special, “must-
go-through” waypoints that are called “checkpoints”.

2.4 The high-level controller (HC)

As mentioned above, the high-level controller is responsible
for emulating the higher-level, conscious decision-making
process of a human driver. A number of these decisions are
initiating lane changes and passing manoeuvres, speed
selection, car following, u-turns, handling the order
precedence in an intersection, merging into or crossing
moving traffic.

One can observe that this brief list of required capabilities is
highly situation dependent. A general control scheme of “If
event A happens, check for C and D; and decide to take
action X or Y accordingly” is repeatedly employed in the
decision-making process of a human driver.

The Finite State Machine (FSM) was the selected method of
control that mimics this manner of decision-making. FSMs
are scalable and easy to trace by nature and the flexibility of
this method has so far proven useful in a number of previous
autonomous vehicle applications.

Since the most basic classification of the high-level controller
capabilities is dependent on the structure of the environment,
a number of meta-states are defined to cover these basic
situations. Depending on the position of the vehicle and the
mission, the high-level controller is in one of these meta-
states, the list of which includes the following:

• Mission Start

• Mission End

• Road

• Intersection

• U-Turn

• Parking Zone

This overall list of meta-states are connected in a FSM, as
seen in Fig. 6, while each meta-state is a FSM in itself.

Fig. 6, Meta-state connections.

3. DESIGN PROCEDURE

3.1 Formulation

The DSS part of the controller, based on a FSM as described
above, was designed in various stages that correspond to an
increasing set of capabilities.

This design approach, which we call “capability grafting”,
relies on the scalable nature of the FSMs, and the final
controller is reached by means of a sequence of expansions
on top of a core set of capabilities. The overall methodology
and terminology is demonstrated in this section, by using the
initial stages of development for the “road” meta-state.

The HSS architecture described in 2.1 can be detailed more
formally in order to obtain the system equations in (2). The
detailed block diagram is in Fig. 7.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9542

(1) ((), (), ()),
(1) ((), (), ()),
(1) ((1)),
(1) ((1)),
(1) ((1)).

X k F X k k s k
x k f x k y k S k
y k v x k
s k y k
S k X k

+ = Γ
+ =
+ = +
+ = Φ +
+ = Ψ +

 (2)

Fig. 7, HSS blocks used in system formulation.

In this formal block diagram, F is the high-level controller in
DSS, f is the low-level controller part of the CSS, v is the
vehicle model, S and s are the control signals generated for
discrete-to-continuous and continuous-to-discrete
connections, Ψ and Φ are the interfaces for these connections
as described above, X and x are the states of the high and low
level controllers and y is the vehicle state that is fed back to
the low-level control and up to the DSS through appropriate
interface.

The development stages of block F and the related design
decisions will be the focus of this section, as the design
methodologies for the standalone continuous controller have
been widely studied.

 3.2 Development Stages

A series of snapshots from the development of an example
controller for the “road” meta-state, which is an FSM in
itself, will be illustrated in this subsection.

The design direction is from a core set of capabilities to a
flexible and more capable architecture. The first stage is the
most basic capability associated with the road situation, the
general waypoint following that can be seen in Fig. 8.

Fig. 8, Stage I: simple waypoint following.

At this stage, a single waypoint following state, with
connections into and out of this meta-state is sufficient, as
can be seen in Fig. 9. The state-transition triggers, or
“events”, an example of which is E1 in Fig. 9, can either be
generated within the HSS and fed into F in signal s, or come
from the sensing and situation analysis systems of the
autonomous vehicle as represented in signal Γ.

Fig. 9, FSM for stage I. E1: End of the road is reached.

The second stage involves adding the capabilities related to
external stimuli. The case example here is a blocking obstacle
on the followed path. The world model still consists of a
single lane, so a generic stop-and-wait capability is required.

Fig. 10, Stage II: single lane with blocking vehicle.

In Fig. 11, this capability is “grafted” into the existing state
machine by means of adding two new states and a new event.
This type of graft forms an alternate state trajectory. The
existing state trajectory of S1 S2 S3 is still available in
the absence of an obstacle and the new trajectory S1 S2
S4 S5 S3 works in parallel to the existing system.

Fig. 11, FSM for stage II. E2: Current lane is blocked.

A graft of this type, where the new state trajectory is parallel
to the existing ones, is an “extension”, and can be visualized

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9543

as a parallel connection in the block diagram, as seen in Fig.
12. The grafted system, F2 has connections to the existing
system and utilizes the same interface to the CSS part of the
HSS.

Fig. 12, Parallel connection of an “extension graft”, F2, to
the existing system, F1 at the end of Stage II.

For the next stage, the world model is expanded to include a
second lane as seen in Fig. 13, under the strict assumption of
an opposing direction of traffic and a solid lane boundary.
Under the rule set of DUC, this situation requires a complete
stop, followed a lane-change pass around obstacles, if the
passing lane is free of obstacles.

Fig. 13, Stage III: double lane, opposite direction, blocking
vehicle.

This new capability is added into the system by a second
“extension graft” that can be seen in Fig. 14. The new state,
S6 forms an alternate trajectory, S1 S2 S4 S5 S6
S3, and connects to the exiting system in parallel as
demonstrated in Fig. 15.

Fig. 14, FSM for stage III. E3: Passing lane is occupied.

Fig. 15, The extension graft of F3 for Stage III, utilizing
same interface to the continuous level.

For the final stage of this example sequence, the assumption
on travel direction of the next lane is relaxed, as in Fig. 16.
Depending on the direction of travel on the passing lane, or
equivalently the lane divider being broken or solid, the
autonomous vehicle needs to perform either a complete stop
and pass, or a non-stop lane change.

Fig. 16, Stage IV: double lane, next-lane direction unknown,
blocking vehicle.

The added capability is handled by the new graft, S7, as
displayed in Fig. 17. The connection of this state
demonstrates the second type of graft, which we name an
“insertion”. S7 is inserted into an existing state trajectory
passing from S2 to S4 and this manner of graft is more akin
to a serial connection as it does not preserve all existing
trajectories.

Fig. 17, FSM for stage IV. E4: Lane divider is solid.

The “insertion graft” can also be seen in Fig. 18, where the
new system F4, severed the direct connection of F1 and F2.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9544

Fig. 18, “Insertion graft” of F4. The direct route from F1 to
F2 is destroyed.

The major difference between the two types of grafts is that
the extension graft preserves existing state trajectories, so any
failure or removal of the grafted system results in a working
system. On the other hand, insertion grafts are placed in
serial connection, severing existing state trajectories. Hence,
the malfunction or removal of an insertion graft creates
unreachable subsystems, which in turn impacts the
reachability and stability of the overall system, as described
in (Doğruel and Özgüner, 1997a).

However, it might be more problematic to implement new
capabilities solely with extensions in order to avoid
aforementioned insertion risks, since a parallel-connected
system to handle the same capability generally contains a
higher number of states and events. So, both types of grafts
are needed in this design methodology and it is important to
note the particular risks of each.

4. SYSTEM PERFORMANCE

As of September 2007, OSU-ACT, with the above-described,
HSS-based controller, is selected to be among 36 semi-
finalists for the 2007 Darpa Urban Challenge.

During the elimination stages for the initial group of 89, the
most recent tests included a site visit by the Darpa officials.
During this site visit, OSU-ACT was asked to perform a
series of tasks, which required a subset of the final set of
capabilities to be functional. The performance of the vehicle
was found to be satisfactory by Darpa reviewers, which led to
the OSU team getting into the next stage of the DUC.
Following is a sample list of capabilities, implemented in a
series of insertion and extension capability grafts as described
above and successfully demonstrated on the site visit:

• Route planning for a given mission,

• Waypoint following without crossing lane
boundaries,

• Performing u-turn manoeuvres within specified
boundaries,

• Performing passing manoeuvres by changing lanes
around stopped vehicles,

• Handling a queue formations at an intersection,

• Establishing an order of precedence at an
intersection and obeying this order,

5. CONCLUSIONS

The hybrid-state system implementation for controlling an
autonomous vehicle in Darpa Urban Challenge was analyzed
and a flexible design methodology was formulated in this
paper.

The controller is divided into a continuous-state system that
handles the low-level control, and a discrete-state system that
uses a FSM, segmented into meta-states, for high-level
control. These layers of the HSS are connected via
continuous-to-discrete and discrete-to-continuous interfaces.

The design stages involve a sequence of expansions called
“capability grafts”, the two types of which were named
“extension grafts” and “insertion grafts”.

This implementation was tested and found to be successful
during a number of events, latest of which was run by Darpa
officials. The autonomous vehicle is currently under further
development for the national qualification event and the final
race of the Darpa Urban Challenge.

6. ACKNOWLEDGEMENTS

The authors of this paper are grateful for discussions and help
of the OSU-ACT Team, especially Dr. Keith Redmill.

REFERENCES

Catmull, E. E. and Rom, R.J. (1974) A class of local

interpolating splines. In: Computer Aided Geometric
Design, (Barnhill, R.E. and Riesenfeld, R.F (Ed))
Academic Press, Orlando, 317—326.

Cao X.R. and Ho Y.C. (1990). Models of Discrete Event
Dynamic Systems. IEEE Control Systems Magazine,
June.

Doğruel, M. and Özgüner, Ü. (1997a). Discrete and Hybrid
State System Modeling and Analysis. Turkish Journal
of Electrical Engineering and Computer. 5, no. 2,
263—286.

Doğruel, M. and Özgüner, Ü. (1997b). Stability of a Set of
Matrices with Applications to Automatic Control.
Turkish Journal of Electrical Engineering and
Computer. 5/2, 247—262

Dubins, L.E. (1957). On Curves of Minimal Length with a
Constraint on Average Curvature, and with Prescribed
Initial and Terminal Positions and Tangents. American
Journal of Mathematics. 79/3, 497—516.

Özveren, C.M. (1989). Analysis and Control of Discrete
Event Dynamic Systems: A State Space Approach,
Ph.D. Thesis, Massachusetts Institute of Technology.

Passino, K.M. and Özgüner, Ü. (1991). Modeling and
Analysis of Hybrid Systems: Examples. Proceedings of
the IEEE International Symposium on Intelligent
Control. 251—256.

Ramadge, P.J.G. and Wonham, W.M. (1989). The Control of
Discrete Event Systems. Proceedings of the IEEE, 77,
81—98.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9545

