
     

Indirect Adaptive Fuzzy Control of Unmanned Aerial Vehicle  
 

Shaaban A. Salman*  Sreenatha G. Anavatti*   Jin Young Choi** 

*Australian Defence Force Academy, UNSW@ADFA, 
Canberra, Australia, ({s.salman,s.anavatt}@adfa.edu.au) 

** Electrical Engineering Department, Seoul National University, 
Seoul, Korea, (jychoi@snu.ac.kr) 

Abstract: The design and application of indirect adaptive fuzzy controller is developed and applied to 
Unmanned Aerial Vehicles (UAVs). The parameters of identified model are adapted on-line based on the 

error between the identified model and the actual output. The model process sensitivity factor my
u

∂
∂

and the 

error between the reference input and process output are used  to adapt the controller parameters.  The 
model process sensitivity is seen to improve the convergence in addition to improving the response of the 
UAV, when applied to the attitude control of a typical UAV.  Simulation results show the superiority of 
the proposed controller in the attitude control of the UAV. 

 

1. INTRODUCTION 

The dynamics of the Unmanned Aerial Vehicle (UAV) are 
not well documented, unlike the conventional aircraft. They 
fly at very low speeds and Reynolds numbers, have nonlinear 
coupling, and tend to exhibit time varying characteristics with 
uncertainty. In addition, the success of the UAVs is 
completely dependent on the accuracy of the control provided 
by the flight controllers. Thus there is a necessity for 
accurate, robust and adaptive flight controllers. 

The control challenge for UAV arises from the nonlinear 
equations governing the dynamics that do not lend 
themselves to the standard methods for controlling linear 
systems such as PID (Proportional + Integral + Derivative) or 
state feedback (Jang and Liccardo, 2006 and Beard et al., 
2005). Although the simplicity in structure and ease of design 
of these linear controllers is attractive, their performance is 
highly affected by the presence of nonlinearity, disturbances, 
and time varying parameters (Chao et al., 2007). 

Intelligent and adaptive control systems such as fuzzy and 
neural networks provide the appropriate solutions for such 
systems.  In Johnson and Kannan (2002) a Neural Network 
adaptive control has been developed and applied for rotary 
wing UAV. Fuzzy logic control is proposed for small UAV 
and unmanned helicopter in Kumonet et al. (2006) and 
Sugeno el al. (1995) respectively. The major challenge with 
these adaptive techniques is the tuning of the controller 
parameters in real time (Kumonet al. 2006).  Due to their 
simplicity in design and implementation, fuzzy controllers 
provide an advantage over the neural nets.  

This paper presents an application of an adaptive fuzzy 
control in the attitude control of UAV. There are two 
approaches of adaptive fuzzy control, the direct and the 
indirect. In direct adaptive fuzzy control (Phan and Gale 
2006; Wu-xi 2006; Spooner et al. 1997a; Zhang and Ge 
2006), the controller parameters are directly adapted to 

reduce the error between the reference input and the process 
output. On the other hand, in indirect adaptive fuzzy control 
(Park 2004; Ruiyun and Brdys 2006; Spooner et al. 1997a ; 
Wang 2004), the parameters of the process are identified and 
then the controller is designed based on the identified model 
of the process.  Process sensitivity (Ku and Lee 1995; Chen 
and Teng 1995) is an important parameter in adaptive 
controller design.  In general, most of the indirect adaptive 
fuzzy controllers do not give consideration to this process 
sensitivity. A recurrent neural network based control 
architecture using process sensitivity is presented in Ku and 
Lee 1995.  Chen and Teng 1995 proposed a model reference 
control structure that uses a fuzzy neural network.  

In the present work, an indirect adaptive fuzzy controller is 
designed for the UAV using the process sensitivity to adapt 
the controller for varying flight conditions as shown in Fig.1. 
The identification of the UAV model is carried out by fuzzy 
system identification (Salman et al. 2006).  The feedback of 
process sensitivity in adapting the controller for varying 
models is shown to improve the performance of the controller 
significantly, both in terms of convergence as well as 
performance.  Simulation results for a representative UAV in 
tracking the pitch and roll angles are provided.  

Section 2 explains the design of indirect adaptive fuzzy 
controller, its stability and convergence analysis whereas 
Section 3 gives a brief description of the UAV attitude 
dynamics. Simulation results and concluding remarks are 
given in section 4 and 5 respectively. 

2. INDIRECT ADAPTIVE FUZZY CONTROL 

2.1 Fuzzy Model 

Consider a general nonlinear discrete-time system described 
by a state–space model of the form 
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       ( 1) ( ( ), ( ))y k f x k u k+ =                                                 (1) 

where ( )x k is the state vector of the process at instant k , 
f is the nonlinear function, ( )u k is a control signal and  
( 1)y k + is the process output. The corresponding fuzzy 

model can be represented as, 

:  IF ( ) is  and ( ) is  

                         THEN y ( 1) is m

FM x u
j j j

y
m j

R x k A u k A

k B+
                              (2) 

where  and  x u
j jA A  are the fuzzy sets for state and control 

inputs respectively, my
jB is the rule consequent parameter for 

fuzzy singletons and my is the fuzzy identified model output. 

Using the fuzzy inference based upon product sum gravity at 
given input ( ( ), ( ))x k u k  and the Gaussian membership 
function (Fig. 2,  and c σ  are the membership parameters) 
for all the fuzzy sets, the final output of the fuzzy model is 
given by (3),  with ,i jcx  and ,i jσ  representing the centre and 

width of Gaussian memberships for state variable ix  for the 
rule j , and jcu  and juσ  representing the centre and width 
of Gaussian membership functions for input u  for the rule j  
along with  and l n being the number of rules of fuzzy model 
and number of states respectively. 

The gradient method is used to adapt  ,i jcx  , jcu  and my
jB  

based on the following objective function, 

    2

1

1( ) ( ( ) ( ))
2 i

p

FM i m
i

E k y k y k
=

= −∑                                     (4) 

where ( )FME k is the summation of the outputs errors 
between the system and the fuzzy model and p is the number 
of outputs. 

If ( )FMz k  represents the parameter to be adapted at iteration 
k  in the Fuzzy Model, the back propagation algorithm seeks 
to decrease the value of the objective function by,  
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where FMη  represents the learning rate of the fuzzy model.  
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Fig. 1.  Indirect Adaptive fuzzy control 
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2.2 Adaptive Fuzzy Controller 

The adaptive fuzzy controller is shown in Fig. 1, where the 
inputs to the fuzzy controller are the error and error 
difference. The adaptive fuzzy controller can be represented 
as    ( ) ( ( ), ( ))u k f e k e k= ∆                                                    (6) 

where ( )u k is control signal, ( )e k is the error between the 
reference and the process output and ( )e k∆  is the error 
difference.  The fuzzy controller rule base is represented by, 

e:   e( ) is  and e( ) is  THEN ( ) is FC e u
j j j jR If k A k A u k B∆∆      (7) 

where  and  e e
j jA A∆  are the fuzzy sets for error and change of 

error respectively and u
jB is the rule consequent parameter 

for fuzzy singletons. 

Using the fuzzy inference based upon product sum gravity at 
given input ( ( ), ( ))e k e k∆  and the Gaussian membership 
functions for all fuzzy sets, the final output of the fuzzy 
controller is shown in (8). jce , jeσ  and jc e∆ and 

jeσ∆ represent the centre and width of Gaussian 

memberships for the error  ( )e k  and error difference ( )e k∆  
respectively for the rule j and h are the number of rules of 
fuzzy controller. 

The gradient method is used to adapt jce  , jc e∆ , jeσ , jeσ∆  

and jB  based on the following objective function. 

     21( ) ( ( ) ( ))
2FCE k r k y k= −                                              (9) 

The back propagation algorithm seeks to decrease the value 
of the objective function by, 

( )
( 1) ( )

( )
( ) ( )       ( ) ( )
( ) ( )
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∂
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∂
∂ ∂= −
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                             (10) 

When the identified model matches the actual process output 
very well, the process sensitivity can be approximated as  

                                 
( )( )

( ) ( )
my ky k

u k u k
∂∂

∂ ∂
, 

hence (10) becomes  

( ) ( )( 1) ( ) ( )
( ) ( )

m
FC FC FC

FC

y k u kz k z k E k
u k z k

η ∂ ∂+ −
∂ ∂

                         (11) 

Thus, the process sensitivity function plays an important role 
in adapting the parameters of the Fuzzy Controller.  In 
addition, the use of the process sensitivity function ensures an 
indirect adaptive control as against direct adaptive control in 
its absence.  This is seen to improve the performance of the 
controller in the present paper. 

The learning rates FMη and FCη  in (5) and (11) respectively 
(Ku and Lee 1995; Chen and Teng 1995) have a significant 
effect on the stability and convergence of the system. A 
higher learning rate may enhance the convergence rate but 
can reduce the stability of the system.  A smaller value of 
learning rate guarantees the stability of the system but slows 
the convergence. The proper choice of the learning rate is 
thus very important.  The following theorems provide the 
bounds on the learning rate. 

2.3 Convergence of Fuzzy Identifier 

Theorem 1 (Ku and Lee 1995; Chen and Teng 1995): Let 
FMη  be the learning rate for the parameters of fuzzy model 

and ,maxFMg be defined as ,max : max ( )FM k FMg g k= where 
( )

( )
( )

i
FM

FM

ym k
g k

z k
∂

=
∂

and . is the usual Euclidean norm in 

nℜ . Then the convergence is guaranteed if FMη is chosen as 

                        
2

,max

20 FM
FMg

η≺ ≺
                                (12) 

2.4 Convergence of Fuzzy Controller 

Theorem 2(Ku and Lee 1995; Chen and Teng 1995): Let FCη  
be the learning rate for the parameters of fuzzy controller and 
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3. UAV ATTITUDE DYNAMICS 

The attitude dynamics of UAVs considered in this paper are 
mapped by a set of six highly coupled, nonlinear differential 
equations: (Salman et al. 2006a,b) 
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where p, q, r are the angular rates of roll, pitch and yaw 
respectively.  L, M, N represent aerodynamic moments about 
roll, pitch and yaw respectively. , , ,x y z xzI I I I  are the 

moments of inertia and thare δδδδ  and ,,,  are the elevator, 
rudder, aileron and throttle servo deflections respectively. 
φ ,θ and ψ are the roll, pitch and yaw angles respectively. 

When the yaw angle is held constant, i.e. straight flight, the 
equations in the discrete format can be represented by (1) 
where 

    ( ) ( ( ), ( ), ( ), ( ), ( ))x k p k q k r k k kφ θ= ,  

     ( ) ( ( ), ( ))e au k k kδ δ= , and ( ) ( ( ), ( ))y k k kφ θ=  

Fuzzy identification and controller design presented in 
section 2 are applied for a representative UAV.  The 
simulation results presented in the next section indicates the 
benefits of the chosen control scheme. 

4. SIMULATIONS RESULT 

The Aerosonde simulation model has been chosen to apply 
the indirect adaptive fuzzy controller developed here. The 
aerosonde model is introduced in AeroSim Blockset 
(http://www.u-dynamics.com/aerosim/default.htm). 

The fuzzy model is a two input (elevator and aileron 
deflections) two output (roll and pitch angles) system.  Roll 
and pitch angles are manipulated using the elevator and 
aileron deflections.  It is represented as 

          
( 1) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ))
( 1) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ))

m e a

m e a

k f p k q k r k k k k k
k f p k q k r k k k k k

φ φ θ δ δ
θ φ θ δ δ

+ =
+ =

 

where ( ) ( ( ), ( ), ( ), ( ), ( ))x k p k q k r k k kφ θ= , 
  ( ) ( ( ), ( ))e au k k kδ δ= , and ( 1) ( ( 1), ( 1))m m my k k kφ θ+ = + +  

The Gaussian membership functions  and  x u
j jA A  are adapted 

on line using the back propagation algorithm according 
to ( )FME k . The initial parameters of the fuzzy model, ,i jcx  

and jcu  and the singleton values my
jB  for the output are 

determined by normal equal partitioning. The total number of 
rules used for the fuzzy model is 101. The learning rate FMη  
based on the convergence limit for fuzzy identifier was set to 
0.05 for both the centres and the singleton output parameters. 
The values of ,i jxσ  and juσ  are taken to be fixed in the 
present work. 

The inputs to fuzzy controller are the roll and pitch angle 
errors and their error differences. The outputs of the fuzzy 
controller are the elevator and aileron deflections. The 
Gaussian membership functions  and  e e

j jA A∆  are adapted on 
line using the back propagation algorithm according 

to
( )

( ) and 
( )

m
FC

y k
E k

u k
∂
∂

 where the signal 
( )

( )
my k
u k

∂
∂

 is obtained 

from the fuzzy model. The initial values for membership 
centres jce  and jc e∆  and the singletons values u

jB  for the 
output, are determined by normal equal partitioning. The total 
number of rules used for fuzzy controller is 25. The learning 
rate FCη  based on the convergence limit for fuzzy controller 
was set to 0.05 for both centres and singleton output 
parameters. 

Figure 3 shows the simulation results of the proposed indirect 
adaptive controller when applied to the aerosonde model.  
Both the roll angle and the pitch angles are tracked by the 
adaptive controller with negligible overshoot and steady state 
errors.  As can be seen from the figures, initially (first 60 
samples) the response is not very good since the model as 
well as the controller are trying to adapt.  The simulation 
results are also presented without the feedback of process 
sensitivity (direct adaptive controller).   The indirect adaptive 
controller seems to be doing a better job both in the transient 
as well as steady state components.  This can be attributed to 
the correction to the membership parameters provided by the 
sensitivity function.  A sample set of the variation of the 
centre of membership functions for two membership sets are 
provided in Fig. 4.  It can be seen that the sensitivity function 
is enhancing the speed of convergence which is reflected in 
the transient responses as well. 

5.  CONCULUDING REMARKS 

The paper provides the design of an indirect adaptive 
controller using the model sensitivity function.  The feedback 
of the model sensitivity function to adapt the parameters of 
the controller is shown to have beneficial effects.  Numerical 
simulations applied to the control of roll and pitch angle of a 
UAV demonstrate the improvement compared to the direct 
adaptive controller. 
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Fig. 3. Process outputs and control signals responses for direct and indirect controller. 
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