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Abstract: Local sub-model networks based nonlinear approximated model and the identifica-
tion algorithm are developed for nonlinear system. The structure of local sub-model is selected
through a criterion with respect to both the approximation accuracy and model simplicity for
the further applications. The computional load of identification does not change so much with
the increaing of number of sub-models. The sub-model can be a linear model, or a simple block-
oriented nonlinear model to improve the model accuracy and convergence performance of the

identification algortihm.
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1. INTRODUCTION

Nonlinear system analysis and system design are very
urgent and challenging issues in a wide range of application
areas, and the key step is construction of an effective
model to satisfy practical requirement, see Billings [1980],
Sjoberg et al. [1995] and Nelles [2001]. A system model
may be obtained through system identification, neverthe-
less, nonlinear system identification is often not an easy
task due to the complex model structure, complicated
numerical nonlinear optimization, etc.

Many works have been considered to construct a global
model for nonlinear system directly. For example, block-
oriented models such as Hammerstein model, Wiener
model, Hammerstein-Wiener model are applied in control
applications, see Janczak [2005]. Although their structures
are very simple, and the identification procedures can be
performed easily, it seems that they are only effective to
the systems whose nonlinearity can be separated from
linear dynamics. Wiener or Volterra series based approxi-
mation is independent of the system structure as shown in
Schetzen [1980], however, it often requires a large number
of kernels and coefficients for high accuracy, so it often
causes numerical problems easily. NARMAX model allows
the approximation to use linear combination of parameters
and regression containing the nonlinear components, i.e.,
linear in parameters, see Chen et al. [1989], and the regres-
sion structure is required to be chosen appropriately before
parameter estimation from some prior system information.
GMDH in Ivakhnenko [1970] is the method to choose the
nonlinear components involved in the regression from a
short data record, but its efficiency will decrease when
handling a long data record. On the other hand, neural
networks, genetic algorithms map from the input space
into output space even though the physical structure of
the nonlinear system is unknown, see Hunt et al. [1992],
however, they usually need a large number of samples to

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

4030

optimize the weight coefficients of the nonlinear model.
The wavelet based neural networks using orthogonal non-
linear basis functions have also been considered in Sjoberg
et al. [1995].

Instead of construction of global models, some methods
have constructed the nonlinear model by networks of a set
of local models assigned by weighting functions to indicate
their respective contribution in the nonlinear model. For
example, local linear model tree (LOLIMOT) using simple
linear models in Nelles et al. [1996], or Takagi-Sugeno
fuzzy models using neuro-fuzzy model in Takagi et al.
[1985], Pekpe et al. [2007], divides the operating space into
several partitions corresponding to the operating regime
of local models. The partition can be performed through
measuring the deviation of the operating state from the
partition center, or the self-organizing map, see Jeongho
et al. [2003]. Furthermore, the comparison of global model
and local model networks shows that the local model
networks has some advantages, e.g., it does not require
the structure information of nonlinear system, is very
effective to dynamic systems, and can be implemented
easily, see Brown et al. [1999], Koga et al. [2006]. However,
the number of local models, convergence performance and
computational complexity of identification depend on the
structure of the local model largely.

In this paper, a nonlinear identification scheme based on
local sub-model networks is developed. The model has the
similar structure as LOLIMOT since it has an explicit
interpretability, and the parameters of local sub-models
can be estimated easily. In the new identification, the local
model structure is selected through a specified criterion
function to adjust trade-off between the accuracy and
simplicity of the nonlinear model. Only the parameters of
sub-models corresponding to new partitions are estimated
per iteration, so the computational load does not change
so much with increasing of sub-models number compared
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with other networks based identification methods. Further-
more, the structure of sub-model is extended to simple
block-oriented nonlinear model for the system with severe
nonlinearity to improve the model accuracy and conver-
gence performance of parameter estimation.

2. PROBLEM STATEMENT

Assume the nonlinear system can be represented by

y(k)=f(y(k—=1),-- -, y(k—na),u(k—1),---,

u(k—ny)) + e(k) (1)
where u(k), y(k) and e(k) are the system input, output and
noise at sampling instant k respectively. f(-) is an unknown
nonlinear mapping function which will be approximated
by a local sub-model networks illustrated in Fig. 1. The
networks is composed of M sub-models followed by weight
functions w;, j =1,2,---, M. w; is determined by the re-
gression of sub-model deviation from the partition centers,
i.e., the closer the regression to the j-th partition center,
the larger w; will be. Each sub-model has the same struc-
ture and model order, and the parameters are estimated
form the input and output data iteratively. The sub-model
can be chosen as a linear dynamic model similarly as
LOLIMOT, or the simple block-oriented model which is
easy to be estimated, e.g., a Hammerstein model, if the
application requires more accurate nonlinear model.

(k)

/{z(k)
k +
o JAO) >

&(k)

Fig. 1. Illustration of local sub-model networks
3. IDENTIFICATION ALGORITHM

In the new identification algorithm, the structure of the
local sub-model will be determined first from the input
and output data by using a specified criterion function
with consideration of both approximation accuracy and
model simplicity.

3.1 Selection of Sub-Model Structure

The selection of model structure is an essential step in
system identification, see Haber et al. [1990], Sjoberg et al.
[1995]. Tt influences the result of system identification
greatly.

Two aspects of model quality are often considered. One is
the model accuracy to approximate the main characteris-
tics of the system, the other one is the model simplicity
for applications. In the local sub-model networks, the
structure of sub-model should be considered carefully.

The structure of the local sub-models as well as the number
of sub-models can be determined by using some crite-
ria such as Mallow’s ()}, statistics, Akaike’s information
criterion (AIC), or Bayesian information criterion (BIC),
etc., as illustrated in Haber et al. [1990]. However, the
computational load may be heavy since not only the es-
timation of sub-models, but also the partitions have to
be re-calculated when using different structure of local
models. In the proposed identification algorithm, a simple
scheme to select local model orders just using one local
linear model is proposed.

Consider the case where the sub-model is a linear ARX
model. Define the mean squares error V;(01) by

N
V1(01) = %ZEQ(/{) (2)
k=1

where the nonlinear system is approximated by only a
single linear model and 6, is its parameter vector obtained
by minimizing V;(6;) through least squares method, and

e(k) =y(k) — (k), (3)
(k) =" ()61, (4)
@(k) =[y(k—1) y(k—nq)
u(k —1) u(k—ms)]", (5)
01=[a, - an, b b, |” (6)

Then the model denominator and numerator orders n,, ng
can be selected by minimizing the criterion function

Ng,np = arg min J(ng, np) (7)
Tame

where J(ng,np) is defined by

J(naa nb) = ‘/1(01) + AVé (naa nb), (8>
Ng + Np
Ng,Np) = —————.
‘/2( as b) CY+H|Pi—Zj| (9)
ij

Here p; and z; are poles and zeros of the transfer function
of the estimated model, « is a small regularization positive
number. J(ng,np) in (8) can be interpreted as follows.
The first term V;(6;) is the accuracy indicator of local
model networks, whereas the second term Va(ng,np) is
a penalty function corresponding to the simplicity of
model structure, and the constant A is used as a weight
adjustment between these two terms. When the locations
of some poles p; are close to some zeros z;, the penalty term
becomes large to prevent the excessive model complexity.
In the applications, A can be chosen as a proportional
factor of the variance of output y(k) to adjust the weights
of V1(6;1) and Va(ng,ny).

As initial values, let the mean and standard deviation vec-
tors of the regression of the linear model with parameter
vector @7 be denoted as ¢; and o1, where
T
C1 = [01,1 ]

o1 =[o11

Cl,ng+ny
01 yMa+np ]

and ¢y ;, 01,; are the mean, standard deviation of i-th entry
of the regression ¢(k).
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For the simplicity of calculations, let the structure of all
the local linear models have same orders selected by (8),
then the regressions of each sub-model have n,+mn; entries.

3.2 Partition of Regressions

In the M-th iteration, the regressions ¢(k) for k =
1,---, N are divided into M partitions. The output of the
approximated model is given by

M
§(k) =>_ @' (k)0,w;(¢(k), c;, 05) (10)
j=1
where 6; is the (n, + np) x 1 parameter vector of the
sub-model corresponding to the j-th partition. The weight
functions w;(¢(k), cj, ;) take important roles in local
sub-model networks. They indicate which sub-model will
dominate the model output at instant k£, and make the
operating regime of the networks be adaptive to the
current state of nonlinearity. Following the methods used
in LOLIMOT Nelles et al. [1996] and neuro-fuzzy model
Takagi et al. [1985], w;(@(k), cj,0;) can be given by

q; (k)
M
> (k)
=1

( (y(’“*:;lcl’l)Q oot

Then the prediction error (k) becomes to

e(k) = y(k) — 9(k).

Similarly as the regression partition, the prediction error
e(k) can also be divided into M partitions and the cor-
responding local mean squares error denoted as MSE;,
j=1,---, M, can be calculated by

wj(d)(k)vcjvo'j) = ; (11)

ak) =e

=

(u(k7lb)cl,na+"b)2>

(Tl,na+nb

(12)

(13)

MSE; = e2(k)

@(k) € j—th
partition

L (14)

where N; is the total regression number of the j-th
partition. In order to reduce the global error in the
(M + 1)-th iteration, the partition to be divided into two
new partitions is determined by choosing the partition
whose local error MSE; is the largest one among the M
partitions. Let such partition number be denoted as m,
then m is given by

m = arg max MSE;. (15)
j

There are n, + np candidates to divide the m-th partition
with respect to the regression size. Consider the m-th
partition in the last iteration. Following the i-th entry
of regression ¢(k), which is denoted as z;(k), the m-th
partition can be divided into two new partitions

If xz(k) < Cm,i
¢(k) € m—th partition;
else
o(k) € (M + 1)—th partition.

(16)

Then the mean and standard deviation denoted as ¢,,, o,
of the new m-th partition, epr41 and o pr41 of (M + 1)-
th partition, are calculated from the regressions in m-
th and (M + 1)-th partitions respectively. Mean of the
other partitions ¢y, - - -, ¢m—1, Cm+1, - - -, Car as well as the
standard deviation oy, - -+, 6p—1, -+, Omt1, -, O arE
kept the same values as those in the last iteration for the
simplicity of computation.

8.8 Parameter Estimation of Local Models

Following Fig. 1, the nonlinear system is approximated by
M + 1 sub-models

M+1
y(k) = Z ¢ (k)0 w;(d(k), c;,0;) (17)

in the (M +1)-th iteration, where 8, is the parameter vec-
tor of the sub-model corresponding to the j-th partition.
Corresponding to the new partitions, the weight functions
w;(¢(k), c;, o) are updated by

(18)

Notice that in (17) only the m and (M + 1)-th partitions
are the new ones, then by letting the parameter vectors of
1, -m—1, m—+1, ---, M-th sub-models be the same as
those in the last iteration, only the parameter vectors 6.,
and 0741 remain unknown. Define the MSE cost function

V(Om,Onri+1) by
V(0m70M+1) =
N
% Z (yreS(k) - ¢T(k)0mwm(¢(k)7cma o'm)
k=1

) (k)9M+1wM+1(¢>(k)»CM+1»UM+1)> (19)

where the signal y,es(k) is given by

m—1
Yres(k) =y (k) — Z ¢ (k)0;w;(p(k), c;,0;)
M =
- > ¢ (k)0;w;(p(k),c;, ;). (20)
j=m-+1

Then the parameter vectors 6, and @741 correspond-
ing to this partition candidate are estimated by some
algorithms such as least squares through minimizing the
cost function V(0,,,054+1). Notice that only 2(n, + np)
parameters are required to be estimated for one partition
candidate, the computational complexity is almost the
same in every iteration and does not increase too much
even though the sub-model number increases.

Following (n, + np) entries of the regression ¢(k), there
are (ng +np) candidates to divide the m-th partition, con-
sequently (nq + np) sets of the estimated parameters and
the corresponding global MSE functions V(8,,,,0x+1) are
obtained. Choosing the partition candidate corresponding
to the smallest global MSE function V(0,,,0,/4+1) yields
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the optimal partition of regressions ¢ (k) in this iteration,
correspondingly the parameters of m, (M + 1)-th sub-
models, the mean vector as well as the standard deviation
vector can be updated.

It is noticed that the number of sub-models increases
with the increasing of iteration number. If some sub-
models with the similar mapping property are merged
into one sub-model, the complexity of the networks can
be decreased.

3.4 Identification Procedures

Assume that the order range of sub-model is n1 < ng,np <
ng, where n; and ng are determined by prior information.
If no prior information is available, n; can be chosen
as 1, and ng can be given by an enough large integer
such that mean squares error does not decrease too much
for ng,np > no. The identification using local sub-model
networks can be performed by the following procedures.

Step 1(a): Let n, = ny = n1, and the regressions be
constructed by (5) from the observation data.

Step 1(b): Estimate parameter vector 87 in (6).
Step 1(c): Calculate criterion function J(ng,np).

Step 1(d): If both n, and ny, are larger than ns, go to Step
2. Otherwise let n, = n, + 1 if n, < ng; otherwise let
ng = n1, npy = np + 1 then return to Step 1(b).

Step 2: Choose the orders n,, np such that J(ng,ny) has
the smallest value, and the corresponding estimation
of parameter vector 61. Let M = 1, calculate ¢;
and o, by using the all the regressions, and weight
function wy (¢p(k), c1,01) = 1. Choose the partition
number to be divided in the next iteration as m =1,
and the division entry number ¢ = 1, then start the
identification iteration.

Step 3(a): Divide the regressions ¢(k) in m-th partition
into two new partitions following (16) with respect to
i-th entry of ¢(k).

Step 3(b): Calculate weight functions wy, - - -,
the current division candidate.

Step 3(c): Calculate yres(k) in (20).

Step 3(d): Estimate 6,, and 041 by minimizing
V(0:m,0n141) in (19).

Step 3(e): Let ¢ = i+ 1. If i < ng + ny, return to Step
3(a), otherwise go to Step 4.

WHp+1 for

Step 4: Choose the regression partition such that
V(0:1,011+1) has the smallest value from (ng + np)
candidates, then update the corresponding parameter
vectors 0., @xr+1, mean and standard deviation ¢,
Om, CM+1, O M+1 Of the new partitions.

Step 5: Calculate the local errors MSE; for j =

M +1in (14).
Step 6: Let m be number of the partition that has largest

local error, and let M = M + 1. Return to Step 3(a)
to continue the next iteration.

4. EXTENSION TO LOCAL NONLINEAR MODEL
NETWORKS

A simple nonlinear local sub-model can also be used in
the networks. For example, by introducing some nonlinear

components of input signals, the performance to deal with
nonlinearity can be improved significantly. In this section,
the networks using a Hammerstein model as local sub-
models are considered.

Let the model output of the networks model with M sub-
models be represented by

M
= (DL (k)01 + S (k)0 np)w; (B (), c;, o))

- (21)

where ¢ (k) is the linear part of regression, ¢y (k) is the
nonlinear part that contains the nonlinear terms of input
signal, e.g.,

b (k) = [g(u(k - 1)) g(ulk —np)) " (22)
Here ¢(-) is a nonlinear basis function, 6, and 8; y1 are
the linear regression, nonlinear regression corresponding
parameter vectors respectively. The weight function wy; is
determined by the linear regression ¢ (k) and its mean
vector ¢;, standard deviation vector o;. When the order
selection of sub-model and partition of regression are
performed similarly as the linear sub-model case, where
only the linear part ¢, (k) is considered for order selection
in (8) and regression partition in (16), the parameter
estimation can be performed similarly as the linear sub-
model case.

Moreover, it is possible to decrease the computation load
if the nonlinear regression part is also considered in (8) to
reduce the model orders.

5. NUMERICAL EXAMPLES

Two simulation examples are considered in this section.
The first one is the example to deal with local linear model
networks.

5.1 Example 1: Case of Local Linear Model
Consider a true nonlinear system which is represented by

s(k) —1.5s(k—1) +0.7s(k — 2)
=r(k—1)+0.5r(k —2)
(k) = u(k) + 0.1u*(k)
y(k) = 0.1s(k) 4 0.0255%(k) 4 0.00645° (k)

+e(k) (23)
where e(k) is an i.i.d white Gaussian noise with A/(0,0.052).
Provide that 4096 input and output data u(k), y(k) are
collected for system identification. Here u(k) is chosen as a
uniformly distributed random signal on [0, 1]. The system
is a black-box system, where the information of nonlinear
mapping function is unknown, and the intermediate sig-
nals (k) and s(k) cannot be observed either. The system
will be identified to construct a model of local linear model
networks from u(k) and y(k).

Let n, = npy = n for the simplicity of notation to
select the local model order. The function J(ng,np) in
(8) for n = 1,2,---,9 is shown in Fig. 2. A is chosen as

Zﬁ;l (y(k) — 4)?/(6-10*N), where j is the mean of y(k).
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It illustrates that in this example J(4,4) has the smallest
value, so the model orders are chosen as n, = n; = 4 for
system identification.

J(na,rlb)

Fig. 2. J(ng,np) vs n, and ny in local model structure
selection. (): selected model order

As a comparison, the function V;(61) and Va(ng,np) are
plotted in Fig. 3, where V;(0;1) decreases slightly with
increasing of model orders, while the penalty function
Va(ng, npy) increases quickly for high model orders. In order
to verify the effectiveness of the selection approach of local
model orders, the global MSE of the obtained model with
respect to various model orders is shown in Fig. 4. It can be
seen that the global MSE in the proposed algorithm where
n = 4 is much lower than the conventional LOLIMOT
model in Nelles et al. [1996] where n = 2. Though the
values of MSE for n > 5 are slight smaller than that of
n = 4, the computational load increases largely to deal
with high dimension of matrix computation and too many
candidates of regression partition. So it implies that the
model structure selection by (8) is effective in the proposed
identification algorithm.

Fig. 3. V1(01) and Va(ng, np) vs model orders ng, np

The observed system output y(k) and the output of
networks g (k) in the 21-th iteration for k£ = 3000, - - -, 3100
are illustrated in Fig. 5. It can be seen that (k) is very
close to the system output observations so the identified

10°

1510
(o) NV B SNRVE N S

5 10 15 20
Tteration number

Fig. 4. Global MSE vs local model orders n, = n, =
2,3,4,5,6. (Average of 20 simulation runs)

model can be used to represent the characteristics of the
plant system.

1501

Ok vV, N U\f,\["\ﬁ
3000 3050 3100
Time k

Fig. 5. System output y(k) and model output ¢(k) in
Example 1. Solid line: y(k); dotted line: §(k)

5.2 FExample 2: Case of Local Nonlinear Model
Consider a nonlinear system which given by

s(k) —1.bs(k— 1)+ 0.7s(k — 2)
=k — ) + 0 5r(k — 2)
(
(

ﬁ

r(k) = )+ 0.1\/u

y(k) = 0. 15( )+ 0.0253 (k) 4+ 0.00645°(k)

+e(k) (24)
where e(k) is an i.i.d white Gaussian noise with N(0, 7.52).
4096 input and output data are used for identification.
The sub-model is chosen as a Hammerstein model whose
nonlinear regressmn part is given by a square function, i.e.,
g(z) = 22 in (22) The other simulation conditions are the
same as those in Example 1.

The orders of linear dynamics in Hammerstein sub-model,
weight function w; are determined just from ¢ (k). So the
computational load increases slightly to estimate 6, nr.
and 0 741,nr. The orders of linear dynamics of sub-model
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is selected as n, = np = 4 based on J(ng,np) in (8).
As a comparison, the global MSE of the linear sub-model
networks and Hammerstein sub-model networks is plotted
in Fig. 6.

—©-local linear model networks
—B— local Hammerstein model networks

MSE

5 10 15 20
Iteration number
Fig. 6. Global MSE of local linear model networks and
local Hammerstein model networks (Average of 20
simulation runs)

It can be seen that MSE obtained by using the Ham-
merstein sub-model networks is about 1 times faster to
reach low level than that by using linear local model
networks. Though the nonlinear component of ¢ (k) is
a square function, which is quite different from the true
nonlinearity of square root, the convergence performance
of the networks using nonlinear local model is superior to
that of the linear local model networks. The comparison
of true observed system output y(k) and the output g(k)
of obtained networks of local Hammerstein models in the
21-th iteration is also illustrated in Fig. 7, where the
model output §(k) is close to the true one so the obtained
networks model is valid for approximation of the true
nonlinear system.

6. CONCLUSIONS

The local sub-model networks based identification algo-
rithm has been developed for nonlinear system identifi-
cation. By selecting appropriate orders of the local sub-
model, the networks can approximate the characteristics
of the nonlinear system effectively. Furthermore, by using
local nonlinear models, the convergence performance of
the networks can be improved significantly. The selection
of nonlinear regressions, more effective criterion function
to select model order for the local nonlinear model net-
works, recursive identification algorithm and merging of
sub-models will be considered in the future research work.
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