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Abstract: This paper presents a feedback deign approach to the cold-start speed control for
spark ignition engines. First, in order to ensure successful combustion in the transient mode, a
fuel injection controller is given based on the air charge estimation with inverse dynamics of fuel
path, which is a dual sampling rate system, i.e. the estimation for the air charge is performed
TDC-based, and the fuel injection command is delivered cycle-based, respectively. Then, a
speed control scheme is proposed that provides a coordination between the spark advance and
the throttle operation. A supervisor is exploited to management the multi-control laws. Finally,
simulation results will be demonstrated which are carried out on a full scale 6-cylinder engine
system simulator provided by the SICE benchmark problem.

1. INTRODUCTION

The speed control problem for internal combustion en-
gines is not a new topic in the engine control community,
since regulation of the idle speed is one of fundamental
control specifications for engine management. However,
precise speed control for spark ignition (SI) engine during
transient operation mode is still a challenging issue. Par-
ticularly, as mentioned in Ohata, et al. (2007), a typical
transient operation mode is the cold start in which speed
control with high precision is difficult based on the mea-
surable signals. As is shown in many references (e.g. Cho
and Hedrick (1989), Stotsky, et al. (2000)), the idle speed
controller is usually established based on the mean-value
models of the engines, which describe the average charac-
teristics in a given operating condition. The difficulty in
speed control during the cold start lies on the variation of
the models due to the dramatic changes of environmental
temperature and the thermal conditions. For example, the
wall wetting of injection fuel onto the inlet port and the
intake valves causes unpredictable transient behavior of
air-fuel mixing, and the air charging for individual cylinder
can not be easily described by the mean-value model.
However, in order to control the torque, which is provided
by the multi-cylinders serially, with high precision under
the air-fuel ratio (A/F) constraint for engine operation
without misfiring, it is necessary to manage the behavior
of individual cylinder air charging.

This paper deals with the speed control problem for inter-
nal combustion engines in the cold-start mode. The main
purpose is to provide a solution to the SICE benchmark
problem for engine cold start control, which is provided
by the SICE Research Committee on Advanced Engine
Control (Ohata, et al. (2007)). The characteristics of the
proposed control approach are as follows. First, the control
structure is a model-based feedback control with event-
based switching, where for the air charging estimation and
the fuel path, mean-valve models but with time-varying

parameters are used in order to accommodate the transient
behaviors. Second, the system is a multi-rate sampling
control system. The control law for intake air dynamics via
throttle operation is designed in continuous time domain,
however, the fuel injection path is a cycle-based discrete
time control for each individual cylinders with fixed phase
delay in crankshaft angle, and the intake air estimation
for individual cylinder is provided in TDC-based sampling
rate, since each cylinder provides active torque during the
expansion stroke only for one cycle, which start at the
corresponding TDC and is determined by the intake air
at the previous TDC sampling period. The proposed con-
troller will be validated by the simulation results carried
out on the simulator provided by the benchmark problem.
Finally, it should be noted that the topic of emission
control during cold start is not addressed in this paper.
Indeed, the problem is more widely investigated in the
automotive control community (Shaw (2002), Eng (2007)).

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A simplified physical structure of a four-stroke SI engine is
shown in Fig. 1. In the engine with multi-cylinders, where
we only sketched one of them for the sake of simplicity,
the torque to drive the crankshaft rotational motion is
provided by each cylinder serially along the crank angle,
and the torque generated in each cylinder during its own
expansion stroke is determined by the individual air charge
and fuel injection mass during the corresponding induction
stroke, which are influenced by the air inlet path and the
fuel path, respectively. Thus, the engine speed dynamics
should be divided into three parts: the intake air dynamics,
the fuel dynamics and the crankshaft rotational dynamics.
Typically, the actuating variables to the dynamics are
chosen as the angle of throttle uth, the fuel injection
quantity uf and the spark advance (SA) angle us, and the
measurement signals for online control are engine speed
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ω [rad · s−1](ω̄ [rpm]), and the air mass flow rate entering
the intake manifold ṁi [g · s−1].
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Fig. 1. Schematic representation of SI engine

Due to the complexity of the system, control is usually
based on oriented mean-value models, which ignore the
characteristics of individual cylinder and capture the aver-
age features of engine physics (Guzzella and Onder (2004),
Heywood (1988)). In the following, we will briefly review
and discuss these models from the references. In order to
simplify the control scheme, we will exploit these models
with some modifications to describe the dynamics more
precisely during the cold-start mode.

First, the air inlet path dynamics is mainly determined by
the pressure in the intake manifold pm [Pa]. Following the
ideal gas law, the dynamics can be characterized as (1)
under isothermal condition (Guzzella and Onder (2004))

ṗm =
RTm

Vm
(ṁi(uth, pm)− ṁo(pm, pc)) (1)

where R is the gas constant, Tm [K] denotes the tempera-
ture of manifold, Vm [m3] is the manifold volume, and pc

is the cylinder pressure.

In (1), ṁo [g·s−1] denotes the air mass flow rate leaving the
manifold. Since the induction stroke changes sequentially
according to the crankshaft angle, ṁo is a nonlinear
function obtained by applying the fluid flow model passing
through an orifice, which is related to the ratio of the
pressures in manifold and cylinders. A mean-value model
for ṁo can be found in Stotsky, et al. (2000) and Guzzella
and Onder (2004) as follows:

ṁo =
ρaVcη

4πpa
ωpm (2)

where ρa [g · m−3] and pa [Pa] denote the atmosphere
density and pressure, respectively, Vc [m3] is the volume
of the cylinder, and η is the volumetric efficiency.

Second, the fuel injection dynamics is generally used to
represent the fuel mass injected into each cylinder during
the induction stroke, which is denoted by mfc and a mean
value model is (Aquino (1981)){

ṁf = −τmf + εuf

mfc = τmf + (1− ε)uf
(3)

where mf is the fuel mass entering the intake port per
induction stroke, uf is the fuel injection command. ε
represents the fraction of fuel deposited on the inlet port,
and τ is the inlet port time constant.

When the air-fuel ratio λ in the cylinder satisfies the con-
straint condition for combustion, the crankshaft rotational
dynamics from Newton’s law is

Jω̇ = τe(ṁo, λ, SA)− τf (ω) (4)

where τe is the engine torque and τf represents the friction
torque. Due to the engine torque is generated serially
with multi-cylinders, the description for the torque should
be event-based discontinuous mathematical model, which
will cause unfeasible complexity in the control design.
Generally, the following mean-value computation of engine
torque can be found in Stotsky, et al. (2000) as

τe =
aρaVcη

4πpa
pm(t− td)fλ(·)[cos(u′s)]

2.875 (5)

where a represents the maximum torque capacity which
depends on the physical system parameters, td is the
intake to torque production delay, which is a function of
ω(td ' π/ω), fλ denotes the A/F influence for the mean-
value engine torque, and u′s = us − MBT is the spark
advance from MBT (the minimum SA for best torque).

The cold start operation is as follows. First, the crankshaft
is driven by a starting motor to a constant rotational speed
ω̄mo ± δ till a cylinder gets successful combustion, and
the motoring mode will be continued up to maximum
time Tmo. Once a cylinder gets successful combustion,
the motor will turned off, and the driving torque will be
switched from the motor to the engine. Therefore, the key
to obtain a good starting speed performance is how to
guarantee the successful combustion as quick as possible
via managing the control inputs: uth, uf and us, and to
regulate the engine speed at the desired idle speed ωr with
pre-specified error and without undesirable overshoot.

To perform feedback control with the models of the engine
dynamics, the bottleneck is that the mean-value models
mentioned above can not give enough information on the
engine dynamics during the cold-start operation mode.
Moreover, even if the A/F is under successful control to
ensure combustion, open loop control, i.e. keeping the
throttle opening constant determined with the model pa-
rameters in the static idle mode, can not provide sat-
isfactory transient performance. Fig. 2 shows a simula-
tion result where we just keep a constant spark advance
us = 20 [degree] and the throttle angle uth = 5.2 [degree]
corresponding to the static mode of idle speed opera-
tion, and the fuel injection is controlled well to keep the
combustion successfully. Obviously, to obtain satisfactory
performance, advanced control is required.

The purpose of the SICE benchmark problem for cold-
start speed control is to give an opportunity for the control
community to challenge this problem. The benchmark
problem is set with the specification: ω̄mo = 250 [rpm],
the admissible motoring error δ = 50 [rpm], the maximum
motoring time Tmo = 1.5 [s], and the adjusting time for
the speed regulation Tg ≤ 1.5 [s], the idle speed set value
ω̄r = 650 [rpm] with admissible error 50 [rpm]. In the next
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section, we will propose a model-based feedback control
scheme with switching supervisor.
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Fig. 2. Engine speed during cold start with constant
control input

3. CONTROLLER DESIGN

In this section, we will describe the proposed design
approach to the model-based feedback controller with
switching supervisor design approach, which is expected to
provide a solution for the SICE benchmark problem. The
control system is indicated in Fig. 3. The whole system is
divided into two main subsystems: one is the coordinated
control between throttle and SA for the speed regulation,
and the other one is for the management of A/F by the
fuel injection control. The supervisor unit provides the
necessary switching actions, the adjustment for the control
parameters and the design reference model.
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Fig. 3. Block diagram of the cold start control system

The speed control subsystem is designed on the models (1)
and (4) in continuous time domain. The supervisor will
coordinate the control action between us and uth which
provide a switching action from us to uth based on speed
error. On the other hand, the fuel control is formulated
as an event-based discrete system under a multi-rate
sampling algorithms: first, the air charge estimation is
achieved at each TDC time, the sampling period Tc =
2π/(3ω) [s] (i.e. 120 [degree] in crankshaft angle) and l
is used as the sampling sequence, then, the fuel injection
control is designed with the sampling period Ts = 4π/ω [s]
(i.e. 720 [degree] in crankshaft angle), since the control
signals for each cylinder will be delivered once in a cycle,

and the sampling sequence is denoted by k. Obviously,
k = fix((l − 1)/6) + 1.

The control algorithm for the fuel path is shown in Fig. 4,
and the details for each block of the fuel control system and
the speed regulation controller are shown in the following
subsections.
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Fig. 4. Block diagram of the fuel path control system

3.1 Cylinder air charge estimation

The typical fueling injection for an SI engine is usually
based on the estimation of the air charge into the cylin-
ders, and then, on the basis of the estimation and the
desired A/F, the necessary fuel amount to be injected
is determined by the fueling control system. Since the
air mass flow rate ṁo is not measurable, we propose an
open-loop observer (6) for ṁo using the equation (2) and
the air dynamic function (1) with the initial condition
p̂m(0) = pa.





˙̂pm =
RTm

Vm
(ṁi − ˆ̇mo)

ˆ̇mo =
ρaVcη

4πpa
ωp̂m

(6)

The effectiveness of the proposed observer has been tested
in the simulation model provided by the SICE benchmark
problem. The result is illustrated in Fig. 5, which shows
that the estimation ˆ̇mo follows the actual value closely
during the initial period.
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Fig. 5. Estimated air mass flow rate leaving manifold with
open-loop observer

Generally, the fuel injection quantity for each cylinder
should be depended on its air charge mass which is
determined by the air flow passing through the intake valve
of the cylinder during the whole induction stroke. Since the
air and fuel are pumped into each cylinder synchronous,
it is difficult to get the exact air mass and proper fuel
injection command to satisfy the combustion condition
for the A/F requirement. In the following, we propose an
estimation method for the air charge mass m̂cyl into each
cylinder using ˆ̇mo and measured ω at each TDC as follows:

m̂cyl(l) = ˆ̇mo(lTc) · t̂TDC(l) (7)
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where ˆ̇mo(l) is obtained from the open-loop observer, and
t̂TDC(l) = 2π/(3ω(lTc)) is a predicted time of induction
time.

3.2 Fuel path control algorithm

From (3), the discrete time dynamic model for the fuel
path is as follows,{

mfi(k + 1) = (1− τ)mfi(k) + εufi(k)
mfc(k) = τmfi(k) + (1− ε)ufi(k) (8)

where i = 1, 2, · · · , 6. The following fuel injection control
law is derived based on the inverse dynamics of (8)

ufi(k + 1) = Aufi(k) + Bmfci(k) + Cmfci(k + 1) (9)

where

A = −τε− (1− τ)(1− ε)
1− ε

, B = −1− τ

1− ε
, C =

1
1− ε

and mfci(k) is calculated with the desired air-fuel ratio λd

by

mfci(k) =
m̂cyl(6(k − 1) + i)

λd
(10)

It is well known that the amount of fuel required during
the cold-start stage is significantly higher than the one
needed for the warmed-up operation due to the little fuel
vaporization during the first a few cycles (Eng (2007)).
This means the fuel model parameters τ and ε, which
are related to the temperature of individual cylinder
and the engine speed are different from the steady state
operation during cold start. Hence, we introduce the
adjusting scheduling for the model parameters in (9) for
temperature compensation during the first a few cycles.

3.3 Speed control with multi-input

If the A/F is under control, the cold-start engine speed
control problem can be formulated as a multi-input single-
output system with the throttle angle uth and SA us

as inputs and speed ω as output. The proposed speed
control problem is closely related to idle speed regulation.
Many papers (e.g. Hrovat and Sun (1997), Thornhill, et al.
(2000)) have been published to solve this problem: the
main control action includes PI controllers for the air loop
with the integral portion as the core to achieve the desired
speed, and proportional feedback control for the spark loop
which is faster but with limited authority. We roughly
divide the cold-start transient into two phases: first, the
rapid engine acceleration, and then, the stage of idle speed
regulation. In the following, we will describe the algorithms
used.

We first introduce the following first-order system as the
reference model, and which begins to work when a cylinder
successfully ignited at t = t0,

ω̇d = −τm(ωd − ωr), t ≥ t0, ωd(t0) = ω(t0) (11)

τm is a positive constant, ωr = 650π/30 [rad ·s−1], and ωd

is the reference trajectory for engine speed control. us is
turned on at t = t0 and turned off definitely at t = t1 when
the speed error eω = ω−ωd satisfies 0 ≤ ēω(t1) ≤ 50 [rpm],

and at the time t = t1, the throttle control uth is turned
on. For the first stage, the control input is chosen as{

uth = 0
us = kp1eω

t0 ≤ t ≤ t1 (12)

where kp1 is a given constant. The control during the
first stage is expected to reduce engine torque output to
reduce the overshoot of engine speed, which is due to the
high pressure pm. Hence, from physical consideration, the
throttle opening is not necessary in order to drive the
pressure pm to the static value for idle speed as soon as
possible, i.e. we set uth = 0. The friction torque τf is
simply modeled by the damping term −Dω only, where
D = D0/J and D0 is the damping coefficient. So that,
from (4)and (5), the rotational dynamics can be written
as

ω̇ = −Dω + cpm(t− td)[cos u′s]
2.875 (13)

where c is calculated by c = aρaVcη
J4πpa

, and, we can compute
u′s from the inverse dynamics at t = t0 as

ω̇d(t0) =−Dωd(t0) + cp̂m(t0)[cos(u′s(t0))]
2.875

=−τm(ωd(t0)− ωr) (14)
where p̂m(t0) is obtained from the open-loop observer (6).
In order to reduce the engine torque output, we can choose
a = 0.3a(t0) in (14). Since from physical consideration, u′s
should be retarding from MBT and eω < 0 during a few
seconds after t0, we choose kp1 > 0.

For the idle speed regulation, the feedback control law is
given as follows:{

Uth = −kp2ω̃ + u′th
u′s = 0, i.e., us = MBT (15)

where kp2 is a constant, ω̃ = ω − ωr, Uth = (1 −
cos uth)·fp(pm, pa) and fp(·) is a nonlinear function used to
represent the air flow passing through an orifice (Guzzella
and Onder (2004)), and, the feedforward compensation
term u′th is a solution of the following equations:{−Dωr + cpmr = 0

αu′th − βωrpmr = 0 (16)

which gives the equilibrium of the engine dynamics repre-
sented by the mean-value model{

ω̇ = −Dω + cpm(t− td)
ṗm = αUth − βωpm

(17)

where the second equation is the air dynamics with ṁi =
s0(1 − cos uth)fp(·), α = RTms0

Vm
, β = RTm

Vm
· ρaVcη

4πpa
and

s0 is the area of the throttle. It should be noted that to
perform this control law, the model parameters D and c
are needed and a feasible way to determine the parameter
values is to apply the identification technique to the model
of rotational dynamics.

3.4 Stability and robustness analysis

Now, we discuss the convergence of the speed regulation
control system. As shown in subsection 3.3, the controller
is finally switched to (15) at t = t1. Therefore, to show
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the convergence, we will prove the asymptotic stability of
the error system consisting of (17) with the controller (15),
which is presented by the following equations{ ˙̃ω = −Dω̃ + cp̃m(t− td)

˙̃pm = −(αkp2 + βpmr)ω̃ − βωp̃m
(18)

where p̃m = pm − pmr. The conclusion is summarized
as the following Proposition. Obviously, system (18) is
with time-delay, and the delay-time td is time-varying
depending on the engine speed ω. If we consider the region
ω0 < ω, the maximum value of td is determined: r = π/ω0

(td ∈ [0, r]). Hence, the proof for its stability is done
using the Lyapunov-Razumikhin theorem (Hale and Lunel
(1993)).

Proposition 1. Let q(> 1) be a sufficient small number
and γ > 0 be a constant satisfying

q2γ2 − 2Dγ + c2 < 0 (19)

Consider the system (18) and the region: ωmin < ω < +∞,
where ωmin = q2γ2/(2β). If the feedback gain kp2 satisfies

−M(ωmin)− βpmr

α
< kp2 <

M(ωmin)− βpmr

α
(20)

then, system (18) is asymptotically stable at the origin,
i.e. ω̃ → 0 as t →∞ for any given initial condition, where
M(ω) =

[
(2Dγ − c2 − q2γ2)(2βω − q2γ2)

]1/2.

Proof: By Lyapunov-Razumihkin theorem, a time-delay
system ẋ = f(x(t − τ)),

(
x(τ) = x0(τ), τ ∈ [0, r]

)
with

f(0) = 0 is asymptotically stable if there exists a positive
definite function V (x) such that V̇ ≤ −W (||x||), whenever
max

0≤τ≤r
{||x(t − τ)||} < q · ||x(t)|| along any trajectory of

the system, where W (s) > 0, ∀s > 0 is a continuous
nondecreasing function and q(> 1) is a given constant.

To prove the stability of (18) with Lyapunov-Razumikhin
theorem, we need to show a positive definite function
V (ω̃, p̃m) that satisfies V̇ ≤ −W (ω̃, p̃m), whenever

max
0≤td≤r

{ω̃2(t− td) + q̃2
m(t− td)} < q · (ω̃2(t) + q̃2

m(t)) (21)

where q > 1 is a given number. Construct a candidate
Lyapunov-Razumihkin function as

V =
γ

2
ω̃2 +

1
2
p̃2

m (22)

The time derivative of V along system (18) is

V̇ =−Dγω̃2 + γcp̃m(t− td)ω̃ − (αkp2 + βpmr)ω̃p̃m

−βωp̃2
m (23)

Hence, along any trajectory of (18), when the Ruzumikhin
condition (21) holds, V̇ satisfies the following inequality

V̇ ≤−
(

Dγ − c2

2
− q2γ2

2

)
ω̃2 −

(
βω − q2γ2

2

)
p̃2

m

− (αkp2 + βpmr) ω̃p̃m = −xTQx (24)
where

Q =




2Dγ − c2 − q2γ2

2
αkp2 + βpmr

2
αkp2 + βpmr

2
2βω − q2γ2

2




and, taking the conditions (19) and (20) into account, the
matrix Q is positive definite, i.e. the time derivative of the
positive definite function (22) satisfies V̇ ≤ −W (ω̃, p̃m),
whenever the condition (21) holds. The convergence of ω̃
follows from Lyapunov-Razumihkin theorem. 2

Observing the proof of Proposition 1, it is obvious that
if the system involves uncertainty, the stability can be
guaranteed unless the derivative of V losses the negative
definiteness whenever the Razumihkin condition holds.
This motivates robustness consideration for uncertainties
in the models.

Suppose the uncertainty is modeled as follows:
Jω̇ = τe − τf + ∆f(ω, pm) (25)

where ∆f(ω, p̃m) represents the modeling error in torque
generation. Then, the error system becomes{ ˙̃ω = −Dω̃ + cp̃m(t− td) + ∆f(ω, pm)

˙̃pm = −(αkp2 + βpmr)ω̃ − βωp̃m
(26)

Assume that the uncertainty satisfies
||∆f(ω, pm)|| ≤ ρ||p̃m(t− td)|| (27)

where ρ > 0 is a known constant.

Proposition 2. Let q(> 1) is a sufficient small number
and γ > 0 is a positive constant satisfying

(γ2 + ρ2)q2 − 2Dγ + c2 + γ2 < 0 (28)

Consider system (26) and the region: ωmin < ω < +∞,
where ωmin = q2(γ2 + ρ2)/(2β), if the feedback gain kp2

satisfies
−N(ωmin)− βpmr

α
< kp2 <

N(ωmin)− βpmr

α
(29)

system (26) is asymptotically stable at the origin for any
∆f satisfying condition (27), where N(ω) =

[
(2Dγ − c2−

γ2 − (γ2 + ρ2)q2)(2βω − q2(γ2 + ρ2))
]1/2.

Proof: The procedure is similar to the proof for the
proposition 1, and we omit the details in this paper. 2

4. SIMULATION RESULTS

The values of the simulation parameters for the SICE
benchmark problem are shown in Table 1. The fuel in-
jection control is under (6), (7), (9) and (10), and in order
to compensate the fuel requirement of the cold engine,
during the first 3 cycles, the parameters for the individual
cylinders are scheduled and shown in Table 2.

Table 1. Simulation parameters

R 287 Vc 3× 10−3[L]
pa 1.01× 10−5[Pa] η 1
ρa 1.1837[g ·m−3] τ 0.01
Tm 298[K] ε 0.1
Vm 6× 10−3[L] λd 14.5

Table 2. Parameter compensation for fuel path

cycle 1 cycle 2 cycle 3 cycle 4 ...
τ 0.08 0.6 0.2 0.01 ...
ε 0.5 0.1 0.1 0.1 ...
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During the acceleration stage, the time constant of ref-
erence model (14) is set as τm = 16, the control gain is
kp1 = 0.05 and the initial value for SA is set as us(0) = 10
for simplicity. For the regulation of idle speed, SA is set as
MBT= 20 [degree]. The reference values of the model (17)
are: D = 0.3, c = 0.0015, α = 2.312× 107, β = 0.098 and
the control gain kp2 = 0.2. The results in Fig. 6 show that
the design specification is satisfied. To test the robustness
of the proposed control system, the value of the model
parameter c is changed to c = 0.001, and kp2 is set as 0.8.
The results in Fig. 7 indicate that the control system has
robustness.
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Fig. 6. Simulation results of cold-start speed control
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5. CONCLUSION

The cold-start control problem is investigated for SI en-
gines. Here, we only focused on the speed control per-

formance. From the view of control, the speed control
system for SI engines is a multi-input single-output system,
and there are two challenging issues: to keep combustion
successfully and to regulate the engine speed without
undesired overshoot. Also, as is well-known, the torque
generation process is with speed-depended time delay.

In this paper, a model-based feedback control scheme
is presented. For the combustion event management, a
discrete time control with a dual sampling rate is pro-
posed, i.e. the fuel injection command is delivered cycle-
based with a TDC-based provided individual cylinder air
charging estimation. For the speed regulation, a coordi-
nated feedback controller is presented between the spark
advance control in the transient mode and the throttle
operation in the idle speed regulation mode. Furthermore,
the stability and the robustness of the error system in the
speed regulation mode are discussed with the Lyapunov-
Razimikhin theorem. Finally, the proposed control scheme
is tested in the simulator provided by the SICE benchmark
for engine cold-start problem. It is shown that the control
scheme satisfies the speed control performance specified by
the SICE benchmark problem.
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