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Abstract: The paper compares the Bayesian algorithms for estimation of random vectors and the 
algorithms based on the fuzzy systems. It is shown that the traditional and fuzzy logic algorithms provide 
the estimates with the similar properties. The comparison results are discussed. The efficiency of applying 
the Takagi-Sugeno fuzzy systems to the nonlinear estimation problems is investigated by two examples.  

 

1. INTRODUCTION 

Since the introduction of the fuzzy set theory by Zadeh 
(1973), many people have devoted a great deal of time and 
effort to both the theoretical research and implementation 
technique for the fuzzy systems (FS). FS have been 
investigated in the context of adaptive control and system 
identification (Mamdani and Assilian, 1974; Takagi and 
Sugeno, 1985; Kreinovich et al., 1998; Tanaka and Wang, 
2001; Shaaban et al., 2006). But only recently they came to 
be used for filtering problem (Chan et al., 1997; Wu and 
Harris, 1997; Crocetto and Ponte, 2002; Amosov, 2004a, b). 
Optimal filtering is known to be widely used in estimation of 
random processes and sequences (Kalman, 1960; Meditch, 
1969; Jazwinski, 1970; Yarlykov and Mironov, 1999; 
Stepanov, 1998). However constructing algorithms requires a 
comprehensive a priori information about the processes 
estimated and their measurement errors. Besides, serious 
difficulties emerge in the constructing nonlinear filtering 
algorithms (Jazwinski, 1970; Yarlykov and Mironov, 1999; 
Stepanov, 1998; Dmitriev and Stepanov, 1998). These 
disadvantages make the researchers look for new approaches 
to the construction of algorithms.  

One of such approaches can be based on fuzzy systems due to 
their capability to approximate any nonlinear behavior and 
the possibility to be applied to the solution of difficult (from 
the calculation standpoint) problems. 

However, in our opinion, there is no an unambiguous answer 
about the advantages or disadvantages of the fuzzy approach 
in comparison with the traditional one. Most attention in the 
papers has been concentrated on the methods of applying 
fuzzy systems to the filtering and estimation. The 
publications that do compare FS and optimal filtering 
approaches concern, as a rule, some particular examples and 
are based on simulation. The authors do not discuss the 
relation between the traditional and fuzzy systems 
algorithms. In our opinion, this makes it difficult to use 
widely FS for the solution of applied problems. 

Such relation is investigated for the particular problem of 
linear estimation in present paper. It is shown that for Takagi-
Sugeno (T-S) FS with the linear consequents and the 
appropriate choice of the criterion used for its off-line 

generating, the traditional and fuzzy logic algorithms are 
practically identical and they provide estimates with the 
similar properties. Besides, the present paper is devoted to a 
more general nonlinear, non-Gaussian case, for which the 
problem of linear estimation is a particular case. The main 
publications (Stepanov and Amosov, 2004; 2005; 2006) 
devoted to the neural network based estimation have been 
served as the base of this paper. 

2. NONLINEAR ESTIMATION PROBLEM 

2.1  Problem Statement 

Consider the following problem: to estimate an n -
dimensional random vector T

nxx ]...[ 1=x  by m - 

dimensional measurements T
myy ]...[ 1=y  (Stepanov and 

Amosov, 2006) 

vxsy += )( ,   (1) 
 
where T

ms ])(...)(s[)( 1 xxxs =  is the known m -

dimensional nonlinear vector-function; T
mvv ]...[ 1=v  is 

a random vector of measurement errors. Suppose that the 
joint probability density function (p.d.f.) ),( vxf  for the 
vectors x  and v  is known. For simplicity v  and x  are 
assumed to be zero means random vectors independent of 
each other, i.e. )()(),( vxvx fff = . Thus, taking into 
account (1), it is possible to get the p.d.f. ),( yxf  for x  and 
y  ))(()(),( xsyxyx v −= fff . 
The assumptions made allow to state the problem of finding 
the optimal (minimum variance) estimate )(ˆ yx  that 
minimizes the criterion 

])(ˆ([ 2yxx −= EJ ,  (2) 
 

where aaa T=2 ; E  is the mathematical expectation 
corresponding to ),( yxf . Two variants of the solution to this 
problem are discussed below. 
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2.2  Nonlinear Optimal Estimate 

The nonlinear optimal estimate and the covariance matrix of 
estimation errors are determined as (Jazwinski, 1970) 

∫= xyxxyx dfopt )/()(ˆ ,   (3) 

∫ −−= xyxyxxyxxyP dfToptoptopt )/())(ˆ))((ˆ()( , 

where )/( yxf  is the a posteriori (conditional) p.d.f. for the 
vector x . It should be noted that the symbol of the integral in 
these expressions and below corresponds to the multiple 
integrals with the infinite limits. The matrix )(yPopt  
(conditional error covariance matrix) characterizes the 
accuracy of the state-vector estimate for the given set of the 
measurements y . It is well known that the problem of 

designing an algorithm for the calculation of )(ˆ yxopt  and 

)(yPopt  is easily solved only for the Gaussian ),( vxf  and 
the linear character of the function )(xs , i.e. when 

Hxxs =)( . For this case the dependence of the optimal 
estimate on measurements has a linear character. In all other 
cases there arises the problem of designing suboptimal 
algorithms that do not involve a large size of calculations.  

2.3  Linear Optimal Estimate 

One of the variants of designing suboptimal algorithms is 
reduced to finding a linear optimal estimate instead of (3). 
Then the estimate is calculated as ][)(ˆ linlinlin yyxyx −+= K . 
The idea of designing a linear optimal algorithm consists in 
choosing the gain factor matrix linK  and the vector liny  in 
such a way as to minimize the criterion (2) in the class of the 
linear estimates. It can be shown that the linear optimal 
estimate is determined as (Medich, 1969): 

 

][)(ˆ 1 linlin yyPPxyx yyxy −+= − ,  (4) 
1−= yyxyPPK lin ,   (5) 

yxyyxy PPPPyxxyxxP 1
0]))(ˆ))((ˆ[( −−=−−= Tlin E , (6) 

where x , yy =lin , 0P , yyP  are the mathematical 
expectations and the covariance matrices of the vectors x  
and y , xyP  is the cross covariance matrix for x  and y . 
Thus the problem of finding the optimal linear estimate is 
reduced to calculation of the first two moments of the joint 
vector that includes the vector of the parameters being 
estimated x  and the measurement vector y . After these 
moments have been derived, the relations (4)–(6) are used to 
calculate the estimates and the corresponding covariance 
matrix. 

3. BAYESIAN ESTIMATION IN THE PRESENCE OF A 
TRAINING SET 

For the problem considered it means that there is a set of data  

)},{( )()( jj xy , onj .1= ,  (7) 
 
in which the pairs )( jy , )( jx , onj .1=  are the independent-
of-each-other realizations of the random vector 

TTT ][ yxz = , with the p.d.f. ),( yxf . 

Let us consider a possible statement of the estimation 
problem for the case when, instead of the ),( vxf  or 

),( yxf , the set of data (7) is known. In other words, assume 
that the a priori information is given in the form of (7) and it 
is necessary, having this set and the measurement y , to find 
the estimate )(~ yx  that minimizes the following criterion: 

 

∑
=

−=
on

j

jj

on
J

1

2)()( )(~1~ yxx .  (8) 

 

As ∫∫ −=− yxyxyxxyxx ddfE ),()(ˆ)(ˆ 22
, then, in 

accordance with the Monte Carlo method, it is possible to 
write (Zaritsky, et. al., 1975): 
 

2

1

2)()( )(~)(~1lim yxxyxx −=−∑
=

→∞
E

n

on

j

jj

oon
,   

 
i.e. criterion (8) tends to (2) as the on  increases. It is evident 
that in these conditions the estimation algorithm, optimal in 
the sense of criterion (8), will be similar to the traditional 
Bayesian algorithm (3), optimal in the minimum variance 
sense. The approximate solution to this problem can be found 
by introducing a class of parameter-dependent functions used 
for the calculation of the estimate. Then the criterion (8) can 
be written as: 

∑
=

−=
on

j

jj

on
J

1

2)()(* )~,(~1)~(~ WyxxW , (9) 

 
where W~  is the vector or matrix determining a set of free 
parameters that define the function )~,(~ Wyx .  

Hence it follows that the problem of deriving the estimation 
algorithm is reduced to finding the parameters W~  
determined by the minimization of the criterion formed with 
the use of the data of the training set (7). The algorithms 
based on the minimization of the criterion of the types (8), (9) 
are widely used in the pattern recognition. They are usually 
called the algorithms of empirical risk minimization (Vapnik, 
1982; Haykin, 1994). 

4. FUZZY MODEL BASED ESTIMATOR 

From the above it follows that the statement of the problem 
under consideration is in full agreement with the statement 
for the solution of problems with the use of FS.  Thus in 
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order to find the estimate )~,(~ Wyx , it is possible to use the 
fuzzy system, i.e. 

)~,()(ˆ WyKyx FSFS = ,  (10) 
 
where )~,( WyK FS is FS; W~  is the matrix that specifies the 
free parameters (the membership function parameters) and y  
is the input of the fuzzy system.  

There are four principal parts in a fuzzy system: fuzzifier, 
fuzzy rule base, fuzzy inference engine, and defuzzifier. The 
estimation procedure using FS can be divided into two tasks 
(Shaaban et al., 2006): structure identification, which 
determines the type and number of rules and membership 
functions, and parameter identification which adjust fuzzy 
systems parameters such as membership parameters. For both 
structural and parametric adjustments, a priori knowledge 
plays an important role.  

Thus, using FS, we must realize the unknown mapping 
)~,( WyK FS  (10) for estimating the state vector x in terms 

of the input information vector y (1) if the training set (7) is 
available. 

The corresponding fuzzy rule base consists of a collection of 
fuzzy If-Then rules in the following form:  

 

kkk isThenisIfR BxAy FSˆ,: ; η.1=k ,  (11) 
 

where y  is the input measurement vector (1), 

kmkk AA ××= ...1A  are fuzzy sets defined on the Cartesian 
product Y  of universal sets of input linguistic variables and 
having the membership functions )( ikiA yμ , η.1=k , mi .1= , 

and knkk BB ××= ...1B  are fuzzy sets defined on the 
Cartesian product X  of universal sets of output linguistic 
variables and having the membership functions 

)ˆ( FS
ikiB xμ , η.1=k , ni .1= . η  is the total number of fuzzy 

If-Then rules in the rule base. 

For designing the fuzzy system it is possible to realize them 
on the basis of fuzzy neural networks (NN) and, similarly to 
conventional NN, to use a gradient method for adjusting the 
parameters of given predicate rules. The matrix W~  is 
determined when FS is generated trained according with the 
criterion (9), where )~,(~ Wyx = )~,(ˆ )()( Wyx jjFS  is the estimate 

generated by FS by the measurements )( jy corresponding to 

the realization of )( jx .  

5. SOLUTION OF THE ESTIMATION PROBLEM WITH 
THE USE OF A TAKAGI-SUGENO SYSTEMS 

For T-S approach the universal approximation property was 
proven (Kreinovich et al., 1998). Let us solve the estimation 

problem by using a Takagi-Sugeno FS under the assumption 
that the training set (7) has been specified: 

 

;)~,()(ˆ,:
)()(

k
FS
k

jFSj
k ThenisIfR WyKyxyy = ..1η=k (12) 

 

The final output of the T-S fuzzy system can be represented 
by (Kreinovich et al., 1998) 

∑∑
==

=
ηη

αα
1

)(

1

)()()(F /)~,(ˆ
k

j
k

k
k

jFS
k

j
k

jS WyKx ,  (13) 

where )),(...,),,(),,(( )()(
222

)(
111&

)( j
mmm

jjj
k yyyf aaa μμμα =  ; 

babaforbabaf ⋅== ),(),min(),( && ; ),( )( j
iii yaμ  is the 

membership function for input mii .1, = ; ia  is a vector of 

parameters for ),( )( j
iii yaμ . 

Let's establish the relation between the traditional linear 
optimal and T-S fuzzy logic algorithms. Consider T-S fuzzy 
models with the linear consequents described by a set of 
fuzzy rules as follows 

Wywxyy += 0
)(F)( ˆ,:

jSj
k ThenisIfR ; η.1=k . (14) 

 

Taking into consideration the dimensions of the vector to be 
estimated, the T-S fuzzy system )~,(ˆ WyxFS  (13) with linear 
consequents (14), and the number of fuzzy rules 1=η  can be 
simplified as follows: 

)(
0

)()( )~,(ˆ jjjFS WywWyx += , onj .1= , (15) 
 

where ]|[~
0 WwW = is an )1( +× mn -dimensional matrix 

that includes an n - dimensional biases vector 
T

nww ]...[ 0100 =w  and an mn × - dimensional matrix of 

weighing coefficients T
nl ]...||...|[ 1 wwwW = , 

in which T
lmll ww ]...[ 1=w are m - dimensional vectors 

nl .1= . Using (15), the criterion (9) can be represented in the 
following form 

∑
=

+−=
on

j

jj

on
J

1

2)(
0

)(* )(1)~(~ WywxW . (16) 

 
From the previous part it follows that the estimate (13) 
determined with the use of FS generated in accordance with 
the criterion (16) will tend to the optimal estimate (4) as the 
number of realizations on  increases. To do this, one should, 
similarly to the way it was done in Reference (Stepanov and 
Amosov, 2004) calculate partial derivatives with respect to 

0w  and W , and put them to zero. After some not 
complicated but tiresome transformations the derived 
equations can be resolved with respect to 0w  and W . As the 
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result, the estimate )~,(ˆ WyxFS derived by the measurements 
y  with the use of FS (15) trained in accordance with (16) can 
be given as: 

( ) ][)~,(ˆ *1*** yyPPxWyx yyxy −+=
−FS , (17) 

 
where **

xmx = ; **
ymy = ; *

yyP , *
xyP  are the sample values 

of the mathematical expectations and corresponding 
covariance matrices: 

∑
=

=
on

j

j

on 1

)(* 1 xmx ; ∑
=

=
on

j

j

on 1

)(* 1 ymy , (18) 

T)(][ ***
2

*
yyyy mmyP −= α ; T)(],[ ***

1,1
*

yxxy mmyxP −= α . (19) 

∑
=

=
on

j

Tjj

on 1

)()(*
1,1 )(1],[ yxyxα ; ∑

=

=
on

j

Tjj

on 1

)()(*
2 )(1][ yyyα . 

From Expressions (17) and (4) it is follows that FS, after 
some adequate generating under the conditions when the 
specified sample values of mathematical expectations and 
covariance matrices are close to their true values, provide the 
determination of the estimate close to optimal in the linear 
class. Thus, the optimal linear algorithm can be treated as a 
simplified Takagi-Sugeno FS trained in accordance with (16).  

6. EXAMPLES 

6.1  Example 1 

It is necessary to estimate the random variable x , uniformly 
distributed on the interval ],0[ b , from the noisy 
measurements of the form 
 

ll vxy += , il .1= ,  (20) 
 
in which the measurement errors lv , il .1=  are assumed to 
be zero-mean random variables independent of each other 
and of x  uniformly distributed on the interval ]2/,2/[ aa− . 

In this example x≡x , T
iyy ]...[ 1≡y , т]1...1[=H , 

т
1 ]...[ ivv=v . It should be noted that the a posteriori 

p.d.f. )/( yxf  is non Gaussian here, as x  and lv , il .1=  are 
the uniformly distributed random variables. 
It is possible to find the linear optimal estimate )(* yx  and 

the corresponding error covariance *
eP  by using (4), (5), i.e.  

 
][)( 1* yyPPy yyy −+= −

xxx ,  (21) 

xxe PP yyyy PPP 1
0

* −−= ,  (22) 

where   ;
2
bx =  ;]...[

2
1 Tbb=y   

12/22
00 bP == σ ; T

xx HP y
2σ= ; iix r EIPyy

22 +σ= . (23) 

Here iI  is a square matrix composed of 1; iE  is a unit 

matrix, 12/22 bx =σ , 12/22 ar = . It is essential that the 
optimal nonlinear estimate can be determined exactly for this 
example (Stepanov and Amosov, 2005). To explain it, let us 
introduce the domain Ω  that represents the crossing of all 
the intervals ]2/,2/[ ayay ll +− , il .1= , i.e. 

I
i

l
ll ayaydd

1
21 ]2/,2/[],[

=

+−=≡Ω . (24) 

 
It can be shown that the a posteriori density in the example 
considered is uniform on the interval ],[ 21 cc , which 
represents the crossing of the a priori domain ],0[ b  and the 
domain Ω  so that { }11 ,0max dc = , { }22 ,min dbc = . Then it 
follows that 

2/)()(ˆ 12 ccx +=y .  (25) 
 
Assume that the a priori information is represented by a set of 
pairs )( jx , )( jy , onj .1= . Then the estimation problem can 

be solved by using FS. Let us use both T-S FS1 (13)-(14) 
with i  inputs and with number of the rules i2 (number of 
membership functions per input is equal 2) and a simplified 
T-S FS2 (15) with i  inputs and with number of the rules 
equal 1. Below there are the simulation results corresponding 
to the linear and nonlinear optimal estimates and T-S FS 
estimates derived for different number of measurements i . 
The simulation was performed under the assumption that 

1=b , 1=a , ki .1= , 10,...,2,1=k . The calculation of the 
optimal nonlinear estimate was carried out in accordance 
with (25).  
Generating of T-S FS with Gaussian membership functions 
was performed in accordance with the criterion (16). To 
provide generating, the realizations )( jx , )( jy , onj .1= , 

3000=on  were simulated in accordance with (20). 
Generating was followed by testing. For this purpose 

1000=ωn  pairs of the realizations )( jx , )( jy , 1000.1=j  

were additionally simulated for various ki .1= , 10=k . 

The values iσ~ , μσ i
~ , 2,1 FSFS=μ  were calculated as  

∑
=

≈
ω

ω
σ

n

j

j
ii e

n 1

2)( )(1~ , )(ˆ )()()()( jjjj
i xxe y−= , 

∑
=

≈
ω

μ

ω

μσ
n

j

j
ii e

n 1

2)( )(1~ , )~,(ˆ )()()()( Wy jjjj
i xxe μμ −= . 

Figure 1 shows the sample root-mean- square (r.m.s.) errors: 
**~
ei P≈σ  – for the linear optimal estimates; iσ~  – for the 

nonlinear optimal estimates; 1~ FS
iσ  – for T-S FS estimates; 

2~FS
iσ  – for the simplified T-S FS estimates. 
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0.14 

0.18 

0.22 

i

2~FS
iσ  

*~
iσ

iσ~  

1~FS
iσ

iσ  

 
Fig. 1. The r.m.s. estimation errors ix  

As may be seen from Fig. 1 the estimate of the simplified 
Takagi-Sugeno FS2 and the optimal linear estimate are 
identical, but they differ very much from the optimal 
nonlinear estimate. At the same time the estimate of T-S FS1 
is close to the optimal nonlinear estimate. It is of importance 
to note that the derivation of the optimal estimate involved a 
priori information presented in the form of the analytic 
dependence (20) and the known joint probability distribution 
density function )/()(),( xfxfxf yy = . At the same time the 
derivation of estimates with the use of FS only a set of 
realizations )( jx , )( jy , onj .1=  involved. 

6.2  Example 2: APPLICATION TO NAVIGATION 
PROBLEM USING REFERENCE BEACONS 

One of the navigation problems, whose nonlinear character 
has to be taken into account, is the so-called navigation with 
the use of measurements of distances T

myy )...,,( 1=y  to m  
reference beacons whose coordinates are assumed to be known.  

As an illustration let us consider the problem of determining 
the unknown vector Txx ),( 21=x  with the use of 

measurements of distances Tyy ),( 21=y  to two reference 
beacons whose coordinates are assumed to be known 
(Stepanov and Amosov, 2006). Assume that there is one, two 
and more pairs ( l ) of measurements which have the form 

( ) ( ) l
i

iil
ii

l
i vxxxxvxsy +−+−=+=

2
22

2
11)( , 

2.1=i , ,...,2,1=l  

where ;, 21 xx  ii xx 21, , 2.1=i  are the unknown vector and the 
coordinates of the beacons, correspondingly.  
It is assumed that Txx ),( 21=x  is the zero mean Gaussian 
vector with the diagonal covariance matrix and similar 
variances 2

0σ ; iv  are the zero mean, independent-of-each-
other and of x , Gaussian random values with similar 
variances equal to 2r . Under the assumptions made 

,2
2
00 EP σ= ,2

2
ir EPv =  where 2E  and i2E  are 22×  and 

ii 22 ×  unit matrices. It is also supposed that m5000 =σ ; 

mr 30= ; Tmm )0,3000(1 =x ; Tmm )3000,0(2 =x . 
The Cramer-Rao inequality was used to evaluate the potential 
accuracy. The latter makes it possible to find the lower 
Cramer-Rao boundary (CRB) for the unconditional 
covariance matrix of optimal estimate errors (Stepanov, 1998, 
Bergman 1999). It can be shown that for the problems 
considered the inequality can be written as  

 ≥ −1JGopt ,   (26) 

where 
1

222
0

1 )()()(11
−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∫ xx

x
xs

x
xsEJ df

d
d

d
d

r T

T

σ
, 

∫∫ −−= yxyxyxxyxxG ddfToptoptopt ),())(ˆ))((ˆ( , (27) 

 
is the unconditional covariance matrix for the optimal 
estimation errors. It is easy to show that the square roots of 
the diagonal elements (26), determining CRB, can be 

calculated as ( ) 2/122
0 //1

−
+≈ krCRB

k σσ , where k  is number 
of measurements. The square roots of the diagonal elements 
(27) are the r.m.s. errors for the corresponding algorithms. 
They characterize the accuracy of algorithms needed for 
comparison. The diagonal elements (27) were calculated as 

2

1

))(ˆ((1 j
s

j
s

L

j
ss L

yxxG μμ −≈ ∑
=

, 2,1=s ; .2,1, FSFSlin=μ   

 
By analogy with the example 1 let us use both T-S FS1 (13)-
(14) with number of the rules l22  and a simplified T-S FS2 
(15) with number of the rules equal 1. The Gaussian 
membership functions for FS are used. Figure 2 presents 

CRB
lσ  and *~

lσ , 1FS
lσ , 2FS

lσ  which are CRB and r.m.s. errors 
at a different number of pairs measurements ...,2,1=l  
corresponding to the linear optimal and FS methods for T-S 
FS1 and the simplified T-S FS2 estimates.  

1 2 3 4 l 
10

30

50

70

2FSσ

1FSσ

CRBσ

m,σ

*~
iσ

 
Fig. 2. The r.m.s. for lx , 2.1=l  ( m5000 =σ ) 

The number of the samples for generating of the fuzzy 
system based algorithms is equal to 3000. The number of the 
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samples for testing is 300=L . The simulation results are 
shown for one of the component coordinates. They look 
similar for the other component as well. For the sake of 
simplicity the indices l  are not shown in the plots. 

The simulation results allow the following conclusions. The 
r.m.s. errors for the linear optimal and simplified T-S FS2 
estimates are different from CRB because of the errors 
caused by the linear character of the algorithms.  

Under the assumptions made even T-S FS1 (13)-(14) with the 
linear consequents provide accuracies close to the potential 
accuracy of the nonlinear optimal algorithm.  

7. CONCLUSIONS 

The research has proved that after some adequate generating 
the suggested simplified T-S FS provides the determination 
of the estimate close to the optimal in the linear class.  

It is shown that the Bayesian and fuzzy logic algorithms 
provide the estimates with the similar properties in nonlinear, 
non-Gaussian case. 
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