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Abstract: Algorithms for observation, identification and fault detection of linear time-invariant
strongly observable systems with unknown inputs are developed, based on high order sliding
modes. The possibility of their extension is discussed to strongly detectable and nonlinear
systems. Some applications of the proposed algorithms are presented.

1. INTRODUCTION

1.1 Preliminaries and motivation

Observation of system states in the presence of unknown
inputs is one of the most important problems in the mod-
ern control theory. Usually the observers for such systems
are designed under assumption that only the outputs are
available but not their derivatives. In particular, it is
required that the unknown inputs need to match to the
known outputs.

Sliding-mode-based robust state observation is successfully
developed in the Variable Structure Theory within the re-
cent years (see Utkin et al. [1999], Walcott and Zak [1987],
Edwards and Spurgeon [1998], Barbot et al. [2002], Shtes-
sel et al. [2003], Poznyak [2003], Edwards et al. [2002]).
The sliding-mode-based observation has such attractive
features as

• insensitivity (more than robustness) with respect to
unknown inputs;

• possibility to use the equivalent output injection in
order to obtain additional information.

Further analysis has shown that this observers are very
useful for fault detection Edwards et al. [2000], Xiong and
Saif [2001], Tan and Edwards [2003]. However in those ob-
servers the fault detection is realized via equivalent output
injection, while the estimations of the observable states
were made by traditional smooth (usually Luenberger)
observers without differentiators. It generates their main
limitation: the output of the system should have a rela-
tive degree one with respect to the unknown input. This
condition is very restrictive even for velocity observers for
mechanical systems Alvarez et al. [2000], Xian et al. [2004],
Davila et al. [2005], Davila et al. [2006], Su et al. [2007].

Step-by-step vector-state reconstruction by means of slid-
ing modes is studied by Hashimoto et al. [1990], Ahmed-
Ali and Lamnabhi-Lagarrigue [1999], Floquet and Barbot

[2006]. These observers are based on a system transfor-
mation to a triangular form and successive estimation
of the state vector using the equivalent output injection.
The corresponding sufficient conditions for observation of
linear time-invariant systems with unknown inputs were
obtained in Floquet and Barbot [2006]. Moreover the
above-mentioned observers theoretically ensure finite-time
convergence for all system states.

Unfortunately, the realization of step-by-step sliding-mode
observers is based on conventional sliding modes requiring
filtration at each step due to imperfections of analog
devices or discretization effects.

In order to avoid the filtration, the hierarchical observers
were recently developed in Bejarano et al. [2006]. They
iteratively use the continuous super-twisting controller
(Levant [1993]). A modified version of the super-twisting
controller is also used in the step-by-step observer by
Floquet and Barbot [2006]. Unfortunately, also those ob-
servers are not free of drawbacks:

(1) The super-twisting algorithm provides the best-
possible asymptotic accuracy of the derivative estima-
tion at each single realization step (Levant [1998]). In
particular, with discrete measurements the accuracy
is proportional to the sampling step τ in the absence
of noises, and to the square root of the input noise
magnitude, if the above discretization error is neg-
ligible. The step-by-step and hierarchical observers
use the output of the super-twisting algorithm as
noisy input at the next step. As a result, the overall
observation accuracy is of the order τ

1
2r−1 , where r

is the observability index of the system. This means,
for example, that in order to implement the fourth-
order derivative observer with the 0.1 precision, and
the unknown fifth derivative being less than 1 in its
absolute value, the practically-impossible discretiza-
tion step τ = 10−8 is needed.
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(2) Similarly, in the presence of the measurement noise
with magnitude ε the estimation accuracy is propor-
tional to ε

1
2r , which requires measurement noises not-

exceeding 10−16 for the fourth-order observer imple-
mentation under the above conditions.

(3) The step-by-step observers Floquet and Barbot [2006]
provide for semiglobal finite-time stability only, re-
stricting the application of these observers to the class
of the systems for which the upper bound of the initial
conditions might be estimated in advance. Moreover,
it works only under conditions of full relative degree,
i.e. that the sum of the relative degrees of the outputs
with respect to the unknown inputs equals to the
dimension of the system.

At the same time the rth-order robust exact sliding-mode-
based differentiator (Levant [2003]) removes the first issue
providing for the rth derivative accuracy proportional
to the discretization step τ , and resolves the second
one providing for the accuracy ε

1
r+1 . Unfortunately, its

straight-forward application requires the boundedness of
the unknown (r + 1)th derivative. In practice it means that
still only semiglobal observation of stable linear systems is
allowed.

The High-Order Sliding-Mode observers recently devel-
oped by Fridman et al. [2006], Fridman et al. [2007c],
Fridman et al. [2007a] provides for the global finite-time
convergence to zero of the estimation error in strongly
observable case and for the best possible accuracy. How-
ever, the application of that observer is confined to the
class of the systems having a well defined vector rel-
ative degree with respect to the unknown inputs, i.e.
a special matrix of high-order partial derivatives should
be nonsingular. It turns that this is just the restriction
of transformation method suggested in the above cited
papers.

To avoid that restriction the technique of weakly observ-
able subspaces and corresponding Molinari transforma-
tions Molinari [1976] is proposed in Bejarano et al. [2007b],
Fridman et al. [2007b].

1.2 Structure of the paper

In section 2 we discuss the problem statement and the
main notions. The algorithms for observation of strongly
observable systems, unknown input identification and fault
detection are presented in section 3. Section 4 contains an
example illustrating proposed algorithms. Possible gener-
alization of the obtained results and bibliographical review
are considered in section 5.

2. PROBLEM STATEMENT AND MAIN NOTIONS

2.1 System description

Consider a Linear Time-Invariant System with Unknown
Inputs (LTISUI)

ẋ = Ax + Bu(t) + Eζ(t),

y = Cx + Du(t) + Fζ(t), (1)
where x ∈ X ⊆ Rn are the system states, y ∈ Y ⊆ Rp is the
vector of the system outputs, u(t) ∈ U ⊆ Rq0 is a vector

control input, ζ(t) ∈ W ⊆ Rm, m ≤ p, are the unknown
inputs (disturbances, system uncertainties or system non-
linearities), and the known matrixes A, B, C, D, E, F
have suitable dimensions. The equations are understood
in the Filippov sense Filippov [1988] in order to provide
for possibility to use discontinuous signals in controls and
observers. Note that Filippov solutions coincide with the
usual solutions, when the right-hand sides are continuous.
It is assumed also that all considered inputs allow the
existence of solutions and their extension to the whole
semi-axis t ≥ 0.

Without loss of generality it is assumed that

rank

[
E
F

]
= m.

The task is to build an observer providing the exact
(preferably finite-time convergent) estimation of the states
and the unknown input. Obviously, it can be assumed
without loss of generality that the known input u(t) is
equal to zero (i.e., u(t) = 0).

The following notation is used in the paper. Let G ∈ Rn×m

be a matrix. If rankG = n, then define the right-side
pseudoinverse of G as the matrix G+ = GT (GGT )−1. If
rank G = m, then define the left-side pseudoinverse of G
as the matrix G+ = (GT G)−1GT . For a matrix J ∈ Rn×m,
n ≥ m, with rank J = r, we define one of the matrixes
J⊥ ∈ Rn−r×n, such that rankJ⊥ = n − r and J⊥J = 0.
The notation J⊥⊥ ∈ Rr×n corresponds to one of the
matrixes such that rankJ⊥⊥ = r and J⊥(J⊥⊥)T = 0.
It is obvious that

rank

[
J⊥

J⊥⊥

]
= n.

2.2 Strong observability, strong detectability and some
their properties

Conditions for observability and detectability of LTISUI
are studied, for example, in Wonham [1974], Molinari
[1976], Hautus [1983], Trentelman et al. [2001]. Recall some
necessary and sufficient conditions for strong observability
and strong detectability. It is assumed in the following
definitions that u(t) = 0.
Definition 1. (Trentelman et al. [2001]). The Rosenbrock
matrix R(s) of the quadruple {A, E, C, F} is given by

R(s) =
[

sI −A −E
C F

]
. (2)

The values of s0 ∈ C such that rank R(s0) < n +

rank
[
−E
F

]
are called invariant zeros of the quadruple

{A, E, C, F}.
Lemma 1. (Trentelman et al. [2001]). Let s0 ∈ C be an
invariant zero of the quadruple {A, E, C, F}. Suppose
that the initial values x0 ∈ X and ζ0 ∈ W are such that

R(s0)
[

x0

ζ0

]
= 0,

and let the “unknown” input satisfy ζ(t) = es0tζ0. Then
the corresponding output y(t) is identical zero for all t ≥ 0.
Definition 2. (Hautus [1983]). System (1) is called strongly
observable, if for any initial state x(0) and any unknown
input ζ(t), y(t) ≡ 0 with ∀t ≥ 0 implies that also x ≡ 0.
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2.3 The weakly unobservable subspace and its properties

The concepts introduced in this section are further used
for the development of observers.
Definition 3. (Wonham [1974].) A set V is called A-
invariant if

AV ⊂ V.

Definition 4. (Wonham [1974]). A set V is called (A,E)-
invariant if

AV ⊂ V ⊕ E ,

where E is the range space (image) of E.

Let now define three important subsets.
Definition 5. (Wonham [1974]). The unobservable sub-
space of the pair {A, C} is the set

N =
n−1⋂
i=0

ker
(
CAi

)
.

Definition 6. ( Molinari [1976]). A subspace V is called a
null-output (A, E)-invariant subspace if for every x ∈ V
there exists some input ζ such that (Ax + Eζ) ∈ V and
(Cx+Fζ) = 0. The maximal null-output (A, E)-invariant
subspace, is denoted by V∗.
Definition 7. (Trentelman et al. [2001]). A point x0 ∈ X is
called weakly unobservable if there exists an input function
ζ(t), such that the corresponding output y(t) equals zero
for all t ≥ 0. The set of all weakly unobservable points of
(1) is denoted by V∗ and is called the weakly unobservable
subspace of (1).

Definitions 6 and 7 actually define the same subspace.
Thus, the maximal null-output (A, E)-invariant subspace
and the weakly unobservable subspace coincide.

Obviously AN ⊂ N and N ⊂ ker(C). It follows from def-
inition 6 that the weakly unobservable subspace satisfies
the inclusions

AV∗ ⊂ V∗ ⊕ E , CV∗ ⊂ F . (3)

Due to (3) the unobservable subspace of the pair (A,C) is
a subset contained in the weakly unobservable subspace of
(A,E, C, F ), and N ⊆ V∗.
The subspace VN̄ is defined as the complement of N in
V∗, such that

VN̄ ⊕N = V∗.
Note that VN̄ belongs to the observable subspace of the
pair (A,C).

Let V̄N̄ be the complement of VN̄ such that X = VN̄ ⊕V̄N̄ .
The next result is applicable to any null-output (A, E)-
invariant subspace.
Theorem 2. (Trentelman et al. [2001]). The following
statements are equivalent:

(i) The quadruple {A, E, C, F} is strongly observable.
(ii) The quadruple {A, E, C, F} has no invariant zeros.
(iii) The weakly unobservable subspace contains only the

origin, V∗ = {0}.

The goal is now to design a sliding mode observer ensur-
ing finite time observation of the states in the strongly
observable case.

3. OBSERVATION OF STRONGLY OBSERVABLE
SYSTEMS

Hypothesis 3. The quadruple {A, C, E, F} is strongly ob-
servable.

3.1 Output transformation

Suppose a matrix F⊥ is selected in the form

F⊥ =
[

F 1
⊥

F 2
⊥

]
,

such that F 1
⊥ ∈ Rp1×p, F 2

⊥ ∈ Rp2×p, and

F 1
⊥F = 0, and F 1

⊥CAiE = 0, ∀ i = 0, ..., n− 1,

F 2
⊥F = 0, and F 2

⊥CAri−1E 6= 0, for some 0 ≤ ri < n,

rank

[
F 1
⊥

F 2
⊥

]
= p− p3, and rankF = p3.

Choose a matrix F⊥⊥, and apply the output transforma-
tion [

F⊥

F⊥⊥

]
y(t),

where F⊥⊥ ∈ Rp3×p. The transformed output takes the
form [

y1

y2

y3

]
=

[
C1

C2

C3

]
x +

[
D1

D2

D3

]
u +

[ 0
0
F3

]
ζ, (4)

Note that rank F3 = rank F = p3.
Definition 8. Consider the system (1). Define the vector of
partial relative degrees of the output y(t) with respect
to the unknown vector input ζ(t) as the vector (r1, ..., rp)
composed of the integers ri, i = 1, ..., p. Each partial
relative degree ri satisfies the following requirements:

• ri = 0, if fi 6= 0, where fi is the i-th row of the matrix
F3;

• If fi = 0, then ri is the integer such that

ciA
jE = 0, j = 0, ..., ri − 2, ciA

ri−1E 6= 0,

ri ≤ n− 1 (5)
where ci is the i-th row of the matrix C;

• and ri = ∞, if ciA
jE = 0 for all j = 0, ..., n− 1.

In other words F 1
⊥y corresponds to the outputs with par-

tial relative degree equal to infinity, and F 2
⊥y corresponds

to the outputs with finite-positive partial relative degree.
The vector y1(t) ∈ Rp1 is composed of all the outputs
with partial relative degree equal to ∞, the components of
y2(t) ∈ Rp2 correspond to the outputs with finite partial
relative degree such that 0 < ri < n − 1 for i = 1, ..., p2,
and the output y3(t) ∈ Rp3 is composed by all the outputs
with partial relative degree equal to 0 with respect to the
unknown inputs.
Remark 1. The standard definition of the vector relative
degree Isidori [1996] requires the non-singularity of a spe-
cific matrix. The introduced notion removes this restric-
tion.

3.2 State transformation

Consider the system output (4) and the first equation
of (1). It is necessary to separate the state dynamics
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contaminated by the unknown inputs from the ”clean”
state dynamics.

Define ny1 as the rank of the observability matrix of the
pair (C1, A) (see Chen [1999]). Let the matrix Uy1 ∈
Rny1×n be composed by the first ny1 linearly independent
rows of the observability matrix. The matrix Uy1 is further
called the reduced order observability matrix of the pair
(C1, A).

The observable subspace of the pair (C1, A) is free from
the unknown input. Choose one of the matrixes Ūy1 ∈
R(n−ny1 )×n so that

Uy1Ū
T
y1

= 0, rank
[

Uy1

Ūy1

]
= n.

and define the transformation matrix

Ty =
[

Uy1

Ūy1

]
. (6)

The system (1) with the transformed outputs could be
written in the equivalent form

ẋ = Ax + Bu + Eζ (7)[
y1

y2

y3

]
=

[
C1

C2

C3

]
x +

[
D1

D2

D3

]
u +

[ 0
0
F3

]
ζ

Theorem 4. Consider the state transformation ξ = Tyx
with Ty defined by (6). The system (7) is transformed into
the form[

ξ̇1

ξ̇2

]
=

[
A11 0
A21 A22

] [
ξ1
ξ2

]
+

[
B1

B2

]
u +

[
0

E2

]
ζ, (8)[

y1

y2

y3

]
=

[
C11 0
0 C22

C31 C32

] [
ξ1
ξ2

]
+

[
D1

D2

D3

]
u +

[ 0
0
F3

]
ζ, (9)

where ξ1 ∈ Rny1 , ξ2 ∈ R(n−ny1 ).

Proof. Recall that Uy1 is the observability matrix for the
pair (C1, A). Following Wonham [1974] the unobservable
subspace of this pair is given by

N1 =
n⋂

i=1

ker(C1A
i−1) = kerUy1 . (10)

It is known (Wonham [1974]) that N1 ⊂ X satisfies
AN1 ⊂ N1, and the subspace N1 is A-invariant.

The inverse of the matrix Ty can be represented as

T−1
y = [ U+

y1
Ū+

y1
],

where U+
y1
∈ Rn×ny1 , Ū+

y1
∈ Rn×(n−ny1 ).

Apply the transformation Ty to each matrix of (7):

TyAT−1
y =

[
Uy1AU+

y1
Uy1AŪ+

y1

Ūy1AU+
y1

Ūy1AŪ+
y1

]
.

By definition AŪ+
y1
∈ N1, and it is clear from equation

(10) that
Uy1AŪ+

y1
= 0ny1×(n−ny1 ).

The transformed matrix TyB consists of the matrixes
B1 = Uy1B and B2 = Ūy1B.

The transformed matrix E takes the form

TyE =
[

Uy1

Ūy1

]
E =

[
Uy1E
E2

]
.

It follows from definition 8 and the matrix (Uy1)being
the observability matrix (Uy1) of the pair (C1, A) that
Uy1E = 0.

The transformed matrix C takes the form[
C1

C2

C3

]
T−1

y =

 C1U
+
y1

C1Ū
+
y1

C2U
+
y1

C2Ū
+
y1

C3U
+
y1

C3Ū
+
y1

 .

Consider the matrixes C1, C2. It is clear from the defini-
tions of U+

y1
and Ū+

y1
that

C1Ū
+
y1

= 0p1×(n−ny1 ), C2U
+
y1

= 0p2×ny1
.

The remaining submatrixes are given by
C11 = C1U

+
y1
∈ Rp1×ny1 , C22 = C2Ū

+
y1
∈ Rp2×(n−ny1 ),

C31 = C3U
+
y1
∈ Rp3×ny1 , C32 = C3Ū

+
y1
∈ Rp3×(n−ny1 ).

The matrixes D1, D2, D3 and F3 have the same form as
in (7). The theorem is proved.
Corollary 5. The subsystem of (8), (9), describing the
dynamics of ξ1 ∈, Rny1

ξ̇1 = A11ξ1 + B1u,
y1 = C11ξ1 + D1u,

, (11)

is observable.

Proof. The rank of the observability matrix of the
pair (C1, A) is ny1 , and is invariant under similarity
transformations. Compute the observability matrix of
(C1T

−1
y , TyAT−1

y ) which has the form
C1T

−1
y

C1T
−1
y (TyAT−1

y )
C1T

−1
y (TyAT−1

y )2
...

C1T
−1
y (TyAT−1

y )n−1

 .

It is known that C1Ū
+
y1

= 0 and C1U
+
y1

= C11, thus
C1T

−1
y

C1T
−1
y (TyAT−1

y )
C1T

−1
y (TyAT−1

y )2
...

C1T
−1
y (TyAT−1

y )n−1

 =


C11 0

C11A11 0
C11A

2
11 0

...
C11A

n−1
11 0

 .

Taking into account that the rank of the observability
matrix of the pair (C1, A) is ny1 , obtain

rank


C11 0

C11A11 0
C11A

2
11 0

...
C11A

n−1
11 0

 = rank


C11

C11A11

C11A
2
11

...
C11A

n−1
11

 = ny1 .

Note that by definition the rank of the last matrix is equal
to the rank of the reduced order matrix, therefore

rank


C11

C11A11

C11A
2
11

...
C11A

ny1−1
11

 = ny1 .
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The last matrix is just the observability matrix of the
pair (C11, A11) corresponding to the reduced order system
(11). Hence, the observability matrix has the rank ny1 , and
the subsystem (11) is observable.

3.3 Observer design

Hypothesis 6. The unknown input ζ(t) is a Lebesgue-
measurable function and is bounded, i. e. ||ζ(t)|| ≤ ζ+.

The observer is designed in two steps. First, the conver-
gence of the estimation error to a bounded vicinity of the
origin is ensured. Second, the bounded estimation error is
forced to vanish using a differentiator based on high-order
sliding modes.

3.4 Bounding the estimation error

Note that the eigenvalues of the matrix A from (1) are the
union of the set of eigenvalues of the matrixes A11, A22

from (8).

Consider the system (8), (9). Select a gain matrix

L =
[

L11 0 0
0 L22 L23

]
∈ Rn×p,

where L11 ∈ Rny1×p1 , L22 ∈ R(n−ny1 )×p2 , L23 ∈ R(n−ny1 )×p3 ,
so that A11−L11C11, A22−L22C22−L23C32 be Hurwitz.
The gain matrix L exists due the hypothesis 3.

The Luenberger part of the observer takes on the form[
ż1

ż2

]
=

[
A11 0
A21 A22

] [
z1

z2

]
+

[
B1

B2

]
u

+
[

L11 0 0
0 L22 L23

]
(y − ŷ), (12)

where ŷ(t) is the output estimation[
ŷ1

ŷ2

ŷ3

]
=

[
C11 0
0 C22

C31 C32

] [
z1

z2

]
+

[
D1

D2

D3

]
u. (13)

The corresponding error system is[ ˙̃e1
˙̃e2

]
=

[
Ã11 0
Ã21 Ã22

] [
ẽ1

ẽ2

]
+

[
0

Ẽ2

]
ζ(t), (14)[

ỹ1

ỹ2

ỹ3

]
=

[
C11 0
0 C22

C31 C32

] [
ẽ1

ẽ2

]
+

[ 0
0
F3

]
ζ(t), (15)

where ẽ = ξ − z, ỹ = y − ŷ, and the matrixes Ã11, Ã21,
Ã22, Ẽ2 are defined as

Ã11 = A11 − L11C11, Ã21 = A21 − L23C31,

Ã22 = A22 − L22C22 − L23C32, Ẽ2 = L23F3 + E2.

The equations (14) and (15) can be rewritten in a compact
form as

˙̃e = Ãẽ + Ẽζ(t), (16)

ỹ = C̃ẽ + F̃ ζ(t). (17)

3.5 Finite time convergence enforcement

Consider the error estimation system (16), (17). Obtain
the matrixes

UT
1i =

[
cT
11i (c11iÃ11)T · · · (c11iÃ

n1i−1
11 )T

]
where c11i, i = 1, ..., p1 is the i-th row of the matrix C11,
and n1i is the integer defined as

n1i = rank
[
cT
11i (c11iÃ11)T · · · (c11iÃ

n−1
11 )T

]T
.

It is easy to see that the matrix U1i is the observability
matrix for the pair (c11i, Ã).

Surely, the output-estimation error ỹ1 is measurable. Ap-
ply the differentiator by Levant [2003] to each component
of ỹ1:

v̇i1 = wi1 = −αn1iN
1/n1i

i |vi1 − ỹ1i|(n1i−1)/n1i ×
sign(vi1 − ỹ1i) + vi2,

v̇i2 = wi2 = −α(n1i−1)N
1/(n1i−1)
i ×

|vi2 − wi1|(n1i−2)/(n1i−1) sign(vi2 − wi1) + vi3,

...

v̇i,n1i−1 = wi,n1i−1 = −α2N
1/2
i |vi,n1i−1 − wi,n1i−2|1/2 ×

sign(vi,n1i−1 − wi,n1i−2) + vin1i ,

v̇in1i
=−α1Ni sign(vin1i

− wi,n1i−1, (18)
where Ni > 0 and the constants αi are recursively chosen
sufficiently large for all the components as in (Levant
[2003]). In particular, one of the possible choices is α1 =
1.1, α2 = 1.5, α3 = 2, α4 = 3, α5 = 5, α6 = 8, which is
sufficient for r̃i ≤ 6. The obtained components vij can be
arranged in the vector

ṽT
i =

[
vT

i1 vT
i2 · · · vT

in1i

]
.

For all ṽi and U1i, i = 1, ..., p1, the equality ṽi = U1iẽ1

holds after finite time.

It is possible to find the extended vectors U1extended and
vextended as:

U1extended =


U11

U12

...
U1p1

 , vextended =


ṽ1

ṽ2

...
ṽp1

 .

it is clear that rank U1extended = ny1 . Construct the matrix
U1 ∈ Rny1×n selecting the first ny1 linearly independent
rows of U1extended and the vector v composed of the
corresponding rows of the matrix vextended, so that the
equality v = U1ẽ1 holds after finite time.

Denote

C̃ =

[
C11 0
0 C22

C31 C32

]
=

 C̃1

C̃2

C̃3

 .

Compute the vector of partial relative degrees. Let r̃i be
the vector of partial relative degrees of the output ỹ2i

with respect to the unknown inputs, where ỹ2i is the i-
th component of the output ỹ2.

For every row of C̃2 obtain
ŨT

2i =
[
c̃T
2i (c̃2iÃ)T · · · (c̃2iÃ

r̃i−1)T
]
,
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where c̃2i, i = 1, ... p2 is the ith row of the matrix C̃2, and
r̃i is the corresponding vector of partial relative degrees of
the ith component of the output-estimation error ỹ2 with
respect to the unknown inputs.

Note that 
ỹ2i
˙̃y2i

...
ỹ
(r̃i−1)
2i

 =


c̃2i

c̃2iÃ
...

c̃2iÃ
r̃i−1

 ẽ (19)

where ỹ2i, i = 1 ..., p2 is the i-th row of ỹ2, and ỹ
(k)
2i denotes

the k-th derivative of ỹ2i.

Apply the high order sliding mode differentiator by Levant
[2003] to each component of ỹ2 as

˙̄vi1 = w̄i1 = −αr̃i
N̄

1/r̃i

i |v̄i1 − ỹ2i|(r̃i−1)/r̃i ×
sign(v̄i1 − ỹ2i) + v̄i2,

˙̄vi2 = w̄i2 = −αr̃i−1N̄
1/(r̃i−1)
i |v̄i2 − w̄i1|(r̃i−2)/(r̃i−1) ×

sign(v̄i2 − w̄i1) + v̄i3,

...
˙̄vi,r̃i−1 = w̄i,r̃i−1 = −α2N̄

1/2
i |v̄i,r̃i−1 − w̄i,r̃i−2|1/2 ×

sign(v̄i,r̃i−1 − w̄i,r̃i−2) + v̄ir̃i
,

˙̄vir̃i =−α1N̄i sign(v̄ir̃i − w̄i,r̃i−1), (20)

where v̄ij
and w̄ij

are the components of the vectors v̄i ∈
Rr̃i and w̄i ∈ Rr̃i−1 respectively. The parameter N̄i is cho-
sen sufficiently large for each output estimation error, in
particular, N̄i > |di|ζ+ is required, where di = c̃2iÃ

r̃i−1Ẽ.
The constants αi are chosen recursively sufficiently large
for all the components as in Levant [2003]. In particular,
one of the possible choices is α1 = 1.1, α2 = 1.5, α3 = 2,
α4 = 3, α5 = 5, α6 = 8, which is sufficient for r̃i ≤ 6. Note
that (20) has a recursive form, useful for the parameter
adjustment.

Note that in the simplest case when the partial relative
degree ri = 1 the only observable coordinate coincides with
the measured output ỹ2i and, therefore, only the input
estimation problem makes sense.

For each component of ỹ2 form the vector
v̄T

i =
[
v̄T

i1 v̄T
i2 · · · v̄T

1,r̃i

]
.

Note that the vector v̄i in finite time satisfies the relation
ỹ2i
˙̃y2i

...
ỹ
(r̃i−1)
2i

 =


vi1

vi2

...
v1r̃i

 .

Define the extended matrix U2extended, the extended vector
v̄extended, and compute the integer no2 as

v̄extended =


v̄1

v̄2

...
v̄p2

 , U2extended =


Ũ21

Ũ22

...
Ũ2p2

 ,

no2 = rank(Ũ2).

(21)

Take the full row rank matrix U2 ∈ Rno2×n composed
by the first no2 linearly independent rows of the matrix
U2extended , and select the corresponding rows of v̄extended so
that the equality v̄ = U2ẽ holds after finite time.

Consider the derivatives of order r̃i−1 of each component
of ỹ2. The following equality holds:

ỹr̃1−1
21

ỹr̃2−1
22
...

ỹ
r̃p2−1
2p2

 =


c̃21Ã

r̃1−1

c̃22Ã
r̃2−1

...
c̃2p2

Ãr̃p2−1

 ẽ.

Define the matrixes

Ūr =


c̃21Ã

r̃1−1

c̃22Ã
r̃2−1

...
c̃2p2

Ãr̃p2−1

 , v̄r =


v1r̃1

v2r̃2
...

vp2r̃p2

 .

Make M̃0 = 0n×n and ρ0n×1. Define the matrix ρ̃i as

ρ̃i =

 M̃iẼ

ŪrẼ
F3

⊥


ρi
v̄r∫ t

0

y3dt


For each component of the vector ρ̃i compute

β̇ij = α2N̄
1/2
i |βij − ρ̃ij |1/2sign(βij − ρ̃ij) + γij

γ̇ij = α1N̄isign(γij − β̇ij)
(22)

where ρ̃ij
is the jth component of the vector ρ̃i; N̄i >

||D̄i||ζ+, where D̄i is the i-th row of the matrix

D̄ =

 M̃iẼ

ŪrẼ
F3

⊥ ÃẼ.

Notice that the matrix D̄ is computed for each matrix M̃i

to appear below.

Compute the matrix M̃i+1 and the vector ρi+1:

M̃i+1 =

 M̃iẼ

ŪrẼ
F3

⊥  M̃iÃ

ŪrÃ
C3

 , ρi+1 =


γi1
γi2
...

γiκ

 (23)

Here

κ = rank

 M̃iẼ

ŪrẼ
F3

⊥ .

This computation is performed until

rank

 U1

U2

M̃i+1

 = n.

is satisfied. Let l be the number of computed matrices Mi.
Select the first n− ny1 − no2 linearly independent rows of
M̃i+1 to form the matrix Md such that

rank

 U1

U2

M̃d

 = n,

and select the corresponding components of ρi+1 to form
the vector ρd. Compute the matrix Mn and the vector ρn
as
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Mn =
[

U2

M̃d

]
, ρn =

[
v̄
ρd

]
.

It is clear that the equality
ρn = Mnẽ.

holds after finite time. The algorithm with finite time
convergence of the estimation error is given by

ξ̂ = z +
[

U1

Mn

]−1 [
v
ρn

]
. (24)

Theorem 7. Let hypotheses 3 and 6 be satisfied. The state
of the system (8) is estimated exactly and in finite time
by the observer (12), (13), (20), (22), (23), (24).

Proof.

Prove that the application of (12), (13) ensures the con-
vergence of the estimation error (16), (17) to a bounded
vicinity of the origin.

If the matrix Ã is Hurwitz, then also the matrices Ã11, Ã22

are Hurwitz.

Choose the Lyapunov function of the system
V = ẽT Hẽ,

where H is a symmetric positive-definite matrix. The
matrix H is chosen as the solution of the Lyapunov
equation

HÃ + ÃT H = −I.

It is used here that Ã is a Hurwitz matrix. Calculate the
derivative

V̇ = ẽT (HÃ + ÃT H)ẽ + (ẽT HẼζ(t) + ζT (t)ẼT Hẽ)
V̇ ≤ −I||ẽ||2 + 2||ẽ|| ||H|| ||Ẽ||ζ+.

V̇ is negative definite with ζ(t) = 0. Thus, if ζ satisfies the
hypothesis 6, obtain that the estimation error ẽ converges
to a bounded vicinity of the origin ẽ = 0. Since that
moment also ˙̃e remains uniformly bounded.

Now consider subsystem (11). The application of the
observer (12), (13) produces the estimation error

˙̃e1 = Ã11ẽ1

ỹ1 = C11ẽ1
. (25)

Since Ã11 is Hurwitz, the estimation error ẽ1 = ξ1 − z1

asymptotically converges to zero.

Define the estimation error as e = ξ−ξ̂, then from equation
(24) obtain

e = ξ − z −
[

U1

Mn

]−1 [
v
ρn

]
= ẽ−

[
U1

Mn

]−1 [
v
ρn

]
Now multiply the last equation by the matrix

[
U1

Mn

]
:[

e1

e2

]
=

[
U1

Mn

]
ẽ−

[
v
ρn

]
=

[
U1

Mn

] [
ẽ1

ẽ2

]
−

[
v
ρn

]
. (26)

Prove the convergence of e1 to zero. Note that by definition
U1ẽ2 = 0, and consequently e1 = U1ẽ1 − v.

Consider the HOSM-differentiator (18). Prove that the
equality vij = ỹ

(j−1)
1i holds for each j = 1, ..., n1i, i =

1, ..., p1.

Denote the sliding variables σij = vij − (ỹ1i)(j−1) and
obtain

σ̇i1 = −αn1iN
1/n1i

i |σi1|(n1i−1)/n1i sign(σi1) + σi2,

σ̇i2 = −αn1i−1N
1/(n1i−1)
i |σi2 − σ̇i1|(n1i−2)/(n1i−1)×

sign(σi2 − σ̇i1) + σi3,
...

σ̇i,n1i−1 = −α2N
1/2
i |σi,n1i−1 − σ̇i,n1i−2|1/2×

sign(σi,n1i−1 − σ̇i,n1i−2) + σi,n1i
,

σ̇i,n1i
= −α1Ni sign(σi,n1i

− σ̇i,n1i−1)− ỹ
(n1i)
1i .

(27)

Show now that the dynamics of σij is finite-time stable.
Since (25) is stable, starting from some moment, ẽi and ˙̃ei

remain inside a bounded zone with the maximal amplitude
Ni. The dynamics (27) satisfies the differential inclusion

σ̇i1 = −αn1i
N

1/n1i

i |σi1|(n1i−1)/n1i sign(σi1) + σi2,

σ̇i2 = −αn1i−1N
1/(n1i−1)
i |σi2 − σ̇i1|(n1i−2)/(n1i−1)×

sign(σi2 − σ̇i1) + σi3,
...

σ̇i(n1i−1) = −α2N
1/2
i |σi,n1i−1 − σ̇i,n1i

−2|1/2×
sign(σi,n1i−1 − σ̇i,n1i−2) + σi,n1i ,

σ̇i,n1i
∈ −α1Ni sign(σi,n1i − σ̇i,n1i−1) + [−Ni Ni].

(28)
The rest of the proof is based on the following Lemma.
Lemma 8. Suppose that α1 > 1 and α2, ..., αn1i

are
chosen sufficiently large in the list order. Then after finite
time of the transient process any solution of (28) satisfies
the equalities |σij | = 0, j = 1, 2, ..., n1i.

Proof. Denoting σ̃ij = σij/Ni obtain that
˙̃σi1 = −αn1i |σ̃i1|(n1i−1)/n1i sign(σi1) + σ̃i2,
˙̃σi2 = −αn1i−1|σ̃i2 − ˙̃σi1|(n1i−2)/(n1i−1)×

sign(σi2 − ˙̃σi1) + σ̃i3,
...
˙̃σi,n1i−1 = −α2|σ̃i,n1i−1 − ˙̃σi,n1i−2|1/2×

sign(σ̃i,n1i−1 − ˙̃σi,n1i−2) + σ̃i,n1i
,

˙̃σi,n1i ∈ −α1 sign(σ̃i,n1i − ˙̃σi,n1i−1) + [−1, 1].

The Lemma is now a direct consequence of Lemma 8 from
(Levant [2003]).

Thus, there exists a 2-sliding mode σi1 = ... = σi,n1i = 0
and after finite time the equality

vi1
vi2
...

vin1i

 =


ỹ1i

˙̃y1i

...
ỹ
(n1i

−1)
1i

 (29)

is kept. Note that on the other hand the following equality
holds: 

ỹ1i
˙̃y1i

...
ỹ
(n1i−1)
1i

 =


c11i

c11iÃ11

...
c11iÃ

n1i−1
11

 ẽ1, (30)

where ỹ
(n1i−1)
1i , i = 1, ..., p1 denotes the derivative of order

n1i − 1 of the ith component of the vector ỹ1.
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The component e1 of the estimation error is expressed as
e1 = U1ẽ1 − v. (31)

The matrix U1 and the vector v are composed of rows of
the extended matrices Ũ1extended and vextended. The rest of
the proof is a consequence of the equalities (29) and (30).

Consider the component e2 of the estimation error:
e2 = Mnẽ− ρn

Substitute the value of Mn and ρn, computed according to
(23), to the right hand side of the last equation and obtain

e2 =
[

U2

Md

]
ẽ−

[
v̄
ρd

]
The convergence to zero of e depends on the convergence
of v to ẽ and ρd to Mdẽ.

Convergence v̄ → U2ẽ. Consider the auxiliary variable
ē2i = Ũ2iẽ, constructed for each block of the extended
matrix Ũ2. The equality (19) holds for each block, then
the vector ē2i could be represented as

ē2i =


ỹ2i
˙̃y2i

...
ỹ
(r̃i−1)
2i

 .

Now it is clear that the next step is to prove that ṽ → ē2i.

For each ỹ2i, i = 1, ..., p2 denote σij = vij − (ỹ2i)(j−1)

and obtain similar equations to (27) and (28), so that with
sufficiently large N̄i the dynamics of σi is finite-time stable,
|di|ζ+ > |y(r̃i)

2i |. Starting from some moment, ẽ remains
uniformly bounded, and the same is true with respect to
ē.

The convergence of the differential inclusion is a conse-
quence of Lemma 8.

The next equality is established in finite time
ỹ2i
˙̃y2i

...
ỹ
(r̃i−1)
2i

 =


vi1

vi2

...
vir̃i

 .

The finite time convergence of ṽ to Ũ2ẽ is ensured. The
vector v and the matrix U2 are selected as ṽ and Ũ2. Thus
with the appropriate selection of v and U2, the equality
v = U2ẽ holds after finite time.

Convergence ρd → Mdẽ. Consider the computation (23).
The application of the algorithm (22) to the coordinate
ρi could be seen as a particular case of (20) with r̃i = 2.
Hence the equality γi = ρ̇i is established in finite time.

It was proved that v → U1ẽ1, v̄ → U2ẽ, ρd → Mdẽ .
Now the finite time convergence of e1 and e2 is a direct
consequence.

3.6 Unknown input identification

Let the following assumption hold.
Hypothesis 9. The k-th order derivative of the unknown
input ζ

(k)
i (t) exists almost everywhere and is a bounded

Lebesgue-measurable function, |ζ(k)
i (t)| ≤ ζ+

1i.

Denote [
ê1

ê2

]
=

[
U1

Mn

]−1 [
v̄
ρn

]
(32)

where ê1 ∈ Rny1 and ê2 ∈ Rn−ny1 .

The unknown input can be identified by means of the
identity

ζ̂ =
[

Ẽ2

F3

]+

 ˙̂e2 −
[
Ã21 Ã22

] [
ê1

ê2

]
ỹ3 − [ C31 C32 ]

[
ê1

ê2

]
 . (33)

The vectors ê1, ê2 are known. The value of ˙̂e2 is computed
in two different forms according to the properties of the
unknown input, and the structure of the matrix Mn.

The value of ˙̂e2 is computed using the equality[ ˙̂e1
˙̂e2

]
=

[
U1

Mn

]−1 [
˙̄v

ρ̇n

]
.

The vector ˙̄v and the vector ρ̇n can be computed in two
different ways. The first method is applied if the unknown
input is discontinuous, and the second if the unknown
input satisfies Hypothesis 9.

The first method is to consider the vector

˙̃vi =


vi2
vi3
...

vin1i

filtered(v̇in1i
)

 . (34)

The term v̇in1i
is a high frequency component evaluated

in (20). The high frequency component should be filtered
out to obtain the component filtered(v̇in1i

).

Consider the last iteration applied to obtain Mn. Since the
value of ¨̂ρij is a high frequency term, it has to be filtered
to obtain an estimated value of ¨̂ρij , to form the matrix ρ̇n.

The second method to obtain the values of ˙̄v and ρ̇n is to
extend (18) from n1i components to n1i + k components:

v̇i,1 = wi,1 = −αri+kM1/(ri+k)|vi,1 − ẽy|(ri+k−1)/(ri+k)×
sign(vi,1 − ẽy) + vi,2,

v̇i,2 = wi,2 = −αri+k−1M
1/(ri+k−1)×

|vi,2 − wi,1|(ri+k−2)/(ri+k−2) sign(vi,2 − wi,1) + vi,3,
...
v̇i,ri = wi,ri = −αk+1M

1/(k+1)|vi,ri − wi,ri−1|(k)/(k+1)×
sign(vi,ri − wi,ri−1) + vri+1,

...
v̇i,ri+k = −α1M sign(vi,ri+k − wi,ri+k−1),

(35)

Define the vector ˙̃vi as

˙̃vi =


vi2
vi3
...

vin1i
+1

 ; (36)
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and define the extended vector ˙̃vextended = [ ˙̃vT
1 ... ˙̃vT

p1
]T .

Select the same rows, which have been chosen to form U1,
to form the vector ˙̄v. Note that ˙̄v = U1Ãẽ1.

If the unknown input satisfies Hypothesis 9, it is possible
to extend the order of (22) to the 2nd one:

˙̂ρij = β1N
1/3
ρij
|ρ̂ij − ρij |2/3sign(ρ̂ij − ˙̂ρij) +

∫
¨̂ρijdt

¨̂ρij = β2N
1/2
ρij
|
∫

¨̂ρijdt− ˙̂ρij |1/2sign(
∫

¨̂ρijdt− ˙̂ρij)

+
∫ ...

ρ̂ ijdt (37)

...
ρ̂ ij = β3Nρij

sign(
∫ ...

ρ̂ ijdt− ¨̂ρij)

Two theorems are obtained for the asymptotic identifi-
cation of the unknown input and for the case when the
unknown input is a smooth function.
Theorem 10. Let Hypothesis 3 hold. Then the exact value
of the unknown input ζ of the system (1) is estimated
asymptotically by the algorithm (12), (13), (18), (20), (33),
(34).
Theorem 11. Let Hypothesis 3 and 9 hold. Then the
algorithm (12), (13), (18), (20), (33), (36). guarantees the
identification of the unknown inputs in finite time.

3.7 Fault detection

Consider the case when the unknown inputs represent
faults on the system. Consider the following system subject
to faults in actuators and sensors:

ẋ = Ax + Bu + Eaζa
y = Cx + Du + Fsζs

(38)

where x ∈ Rn are the system state, y ∈ Rp are the system
output, u ∈ Rq0 are the control inputs, ζa ∈ Rma are
the actuators faults, ζs ∈ Rms are the sensors faults. Let
m = ma + ms and m ≤ p.

Denote

ζ =
[

ζa
ζs

]
. (39)

It is possible to rewrite the system in the form
ẋ = Ax + Bu + Eζ
y = Cx + Du + Fζ

.

That is the general form (1) for unknown input observa-
tion, but here the matrixes E and F are defined as

E = [Ea 0p×(m−ma)], F = [0p×(m−ms) Fs]. (40)
The condition

rank

[
E
F

]
= m

holds by definition.
Theorem 12. Consider system (38) with faults, and let
Hypothesis 3 hold. Algorithm (33) guarantees the finite
time reconstruction of the vector faults in the form (39).

Proof. The vector faults are reconstructed as unknown
inputs. The proof of the identification of the unknown
inputs was presented in the theorem 10.

Corollary 13. If system (38) satisfies Hypothesis 3, then
algorithm (33) guarantees the finite time reconstruction
of discontinuous faults in sensors.

Proof. The reconstruction of actuator faults is an alge-
braic operation with the known variables ỹ3, ê1, ê2. As the
resulting reconstruction is algebraic, even discontinuous
faults can be identified.

4. EXAMPLE

The effectiveness of the observation and fault detection
algorithm is tested on an example. Consider a linear time
invariant system

ẋ = Ax + Eζ
y = Cx + Fζ

,

where ζ = [ζT
a ζT

s ]T is a faults vector with ζa being
actuator faults, and ζs representing sensor faults. The
values of the matrixes A, E, C, F are as follows:

A =


0 1 0 0 0
0 0 1 0 0
−1 1 1 0 0
0 0 0 0 1
1 4 3 −1 2

 , E =


0 0
1 0
0 0
0 0
2 0


C =

[ 1 0 0 0 0
1 0 1 0 0
0 0 0 1 0

]
, F =

[ 0 0
0 1
0 0

]
.

The eigenvalues of A are −1, 1, 1, 1, 1. Note that the
system is unstable.

Let the actuators’ fault be given by ζa(t) = 0.5 sin(2t) +
0.43 appearing at t = 7. Let the sensor fault be a
discontinuous signal that appear at t = 10.

The matrixes F⊥ and F⊥⊥ are obtained as

F⊥ =
[

1 0 0
0 0 1

]
, F⊥⊥ = [ 0 1 0 ]

The system in the form (8), (9) takes on the form

ξ̇2 =


0 1 0 0 0
0 0 1 0 0
−1 1 1 0 0
0 0 0 0 1
1 4 3 −1 2

 ξ2 +


0 0
1 0
0 0
0 0
2 0

 ζ

[
y21

y22

y31

]
=

[ 1 0 0 0 0
0 0 0 1 0
1 0 1 0 0

]
ξ2 +

[ 0 0
0 0
0 1

]
ζ

The vector of partial relative degrees is (2, 2, 0).

Since the matrix A is unstable, the Luenberger gain L is
chosen as

L =

[ 7 19 31 0 0
0 0 0 11 41
0 0 0 0 0

]T

.

The eigenvalues of the matrix Ã22 are−1, −2, −3, −4, −5.

The matrix U2 is given by

U2 =

 1 0 0 0 0
−7 1 0 0 0
0 0 0 1 0
0 0 0 −11 1
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The 2nd order differentiator is applied to the components
of the output y2:

˙̄vi1 = w1 = −α3N
1/3
i |v1 − ỹ2i |2/3 sign(v1 − ỹ2i) + v2,

˙̄vi2 = w2 = −α2N
1/2
i |v2 − w1|1/2 sign(v2 − w1) + v3,

˙̄vi3 =−α1Ni sign(v3 − w2).
Here Ni, i = 1, 2 take the values N1 = 1, N2 = 8.5 and the
gains of the differentiator are α1 = 1.1, α2 = 1.5, α3 = 2.
The vector v̄ is obtained as

v̄ =

 v̄11

v̄12

v̄21

v̄22

 .

The matrix M1 and the vector ρ1 are given by

M1 = [ 1 18 1 −1 −9 ] , ρ̃11
= [−2 1 0 ]


v̄12

v̄22∫ t

0

y3dt


The first order differentiator (22) is applied to ρ̃11

:

β̇11
= α2N̄

1/2
1 |β11

− ρ̃11
|1/2sign(β11

− ρ̃11
) + γ11

γ̇11
= α1N̄1sign(γ11

− β̇11
)

The matrix Mn and the vector ρn are given by

Mn =


1 0 0 0 0
−7 1 0 0 0
0 0 0 1 0
0 0 0 −11 1
1 18 1 −1 −9

 , ρn =


v̄11

v̄12

v̄21

v̄22

γ11


According to Theorem 7 the estimation error is presented
in figure 1.

Fig. 1. Estimation error x− x̂.

The estimation of the states x1, x5 is demonstrated in
figure 2. The instability of the states are presented in figure
3.

Fig. 2. Estimation of x1 and x5.

Finally, the fault is reconstructed after the convergence of
the observer, the fault reconstruction is shown in figure 4.
Note that the sensor fault is discontinuous.

Fig. 3. System states.

Fig. 4. Actuator fault reconstruction (above). Sensor fault
reconstruction (below).

5. POSSIBLE GENERALIZATIONS AND
APPLICATIONS

5.1 Observer design for Strongly Detectable Systems

In this case the weakly unobservable subspace V∗ has
non-zero dimension. The design of the observers for this
case is considered in the works by Bejarano et al. [2007b],
Bejarano et al. [2007a], Fridman et al. [2007b].

5.2 Unknown input identification for not strongly detectable
systems

The sufficient and necessary conditions for the identifi-
cation of the unknown input, even for the case when the
system is not strongly detectable are presented in Bejarano
et al. [2007a] and Fridman et al. [2007b].

5.3 Mechanical Systems

The main restriction for the generalization of the High-
Order Sliding-Mode observer technique for the nonlinear
systems is the necessity of the Boundary-Input Boundary-
State (BIBS) properties. On the other hand the majority
of mechanical systems satisfy the BIBS condition. It allows
to design the second order sliding mode observers for
mechanical systems. The equivalent output injection of
the sliding mode technique is applied for perturbation
and parameters’ identification in the papers Davila et al.
[2005], Davila et al. [2006].

5.4 Nonlinear case

Local High-Order Sliding Mode observers for nonlinear
systems with unknown inputs and with well defined vector
relative degree were designed in Fridman et al. [2007c].
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5.5 Applications.

HOSM observers are used in various applications.

In Merzouki et al. [2007] second order sliding mode ob-
servers based on the modified super-twisting algorithm by
Davila et al. [2005] are applied for backlash identification.

A feedback linearization-based controller with a high order
sliding mode parallel observer is applied in Benallegue
et al. [2007] to a quadrotor unmanned aerial vehicle. The
model of the system has a vector relative degree (4, 4, 4, 2)
with respect to the measurable outputs. A HOSM observer
estimates the effects of the external disturbances, like a
wind, for example.

In Rabhi et al. [2006], Bouteldja et al. [2006], Imine and
Fridman [2007], Shraim et al. [2006], Shraim et al. [2007]
HOSM observers are used for the estimation of vehicle and
heavy cars parameters, such as stiffness, side sleep angles
contact and vertical forces, tires longitudinal forces, road
profile, etc.

The effectiveness of higher order sliding mode observers
for fault detection was shown in Chen and Saif [2007],
Fridman et al. [2007b], Bejarano et al. [2007a]. The ap-
plication of HOSM observers to the faults reconstruction
in a leader/follower spacecraft system is considered by
Edwards et al. [2007].

It is very important for control of bipeds to have the
observers converging to exact values of legs and body
velocities during the steps and finite time converging
controllers. As it is shown in Lebastard et al. [2006] HOSM
observers provide for the reasonable estimation of the
bipeds variables.
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