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Abstract: In this paper, we propose a new LMI-based method for robust state-feedback
controller synthesis of discrete-time linear periodic/time-invariant systems subject to polytopic
uncertainties. In stark contrast with existing approaches that are confined to static controller
synthesis, we explore dynamic controller synthesis and reveal a particular periodically time-
varying dynamical controller structure that allows LMI-based synthesis. In particular, we prove
rigorously that the proposed design method encompasses the well-known extended-LMI-based
design methods as particular cases. Through numerical experiments, we demonstrate that the
suggested design method is indeed effective to achieve less conservative results.
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1. INTRODUCTION

Robust controller synthesis against parametric uncertain-
ties of the plant has been a challenging topic in the
community of the control theory. In the past years, we
have observed drastic theoretical advances in this study
area, and we could say that linear matrix inequality (LMI)
plays an important role for such development. Since basic
approaches based on quadratic stability concept was estab-
lished (Bernussou et al. [1989]), intensive research effort
has been made to obtain LMI-based results that are less
conservative and computationally less demanding.

In the late 90’s, a striking contribution along this line was
made by de Oliveira et al. [1999], where the authors in-
vestigated robust static state-feedback stabilization prob-
lems of discrete-time linear systems subject to polytopic
uncertainties. More specifically, the authors provided an
“extended” LMI that characterizes Schur stability of a
matrix, which enables us to design robust controllers in
a less conservative fashion than the quadratic-stability-
based approaches. This result was successfully extended
to other control problems such as robust performance syn-
thesis (de Oliveira et al. [2002]), robust filtering (Geromel
et al. [2002]), robust stability and performance analysis
(Peaucelle et al. [2000], Henrion et al. [2003], Ebihara and
Hagiwara [2005]) and continuous-time robust controller
synthesis (Apkarian et al. [2001], Shimomura et al. [2001],
Ebihara and Hagiwara [2004]). Moreover, recent results
such as Leite and Peres [2003] succeeded in deriving
sharpened robustness analysis conditions. We could say
that LMI-based robustness analysis methods are now fully
matured, and those distinct approaches in Chesi et al.
[2005] and Scherer [2005] related to sum-of-squares de-
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composition of positive polynomials are also quite effective
for robustness analysis.

Unfortunately, however, these powerful LMI-based analy-
sis conditions do not preserve convexity when we deal with
robust controller synthesis problems. Due to this technical
reason, to the best of the authors’ knowledge, there is no
LMI-based synthesis methods that go beyond the original
results in de Oliveira et al. [1999, 2002]. Under these
situations, recently, Arzelier et al. [2005] and Farges et al.
[2007] showed an intriguing extensions of de Oliveira et al.
[1999, 2002] to robust controller synthesis of uncertain
periodic systems. Similarly to the LTI case, less conserva-
tive extended-LMI-based synthesis methods of periodically
time-varying static controllers were suggested.

Even though the approaches in de Oliveira et al. [1999,
2002], Arzelier et al. [2005] and Farges et al. [2007]
are promising, they are still conservative and leave some
rooms for improvement. Nevertheless, if we persist in
static controller synthesis, it should be hard to obtain
a systematic single-shot LMI-based design method that
outperforms these existing results. In view of these facts,
in this paper, we explore an LMI-based design method
of robust dynamical controllers for discrete-time uncertain
linear periodic/time-invariant systems. To achieve this, we
first consider a stability analysis problem of discrete-time
periodic systems that has a particular structure. Based on
this analysis, we next reveal a specific periodically time-
varying dynamical controller (PTVDC) structure that
allows us to carry out LMI-based synthesis. In the context
of robust stabilizing state-feedback controller synthesis,
it turns out that the suggested controller structure and
the associated LMI-based design method encompass the
extended-LMI-based methods as particular cases. From
numerical experiments, we demonstrate that the proposed
design method is surely effective to obtain less conservative
results than the extended-LMI-based approaches.
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We use the following notations in this paper. The symbols
1 and 0 stand for the identity and zero matrices of
appropriate dimensions, respectively. The set of symmetric
matrices and positive-definite symmetric matrices of the
size n are denoted by Sn and S+

n , respectively. For a real
square matrix A, we define He{A} := A+AT . The convex
hull of the collection of N elements A1, · · · , AN is denoted
by co{A1, · · · , AN}.
In this paper, we make extensive use of the next lemma.
The proof is given in the appendix section.
Lemma 1. For given P ∈ Sn, Q,S ∈ Sm, R ∈ Sl,
V ∈ Rn×m and W ∈ Rm×l, the following conditions are
equivalent.

(1) There exists X ∈ Sm such that[
P V
V ∗ Q + X

]
≺ 0,

[
S −X W
W ∗ R

]
≺ 0. (1)

(2) The following condition holds:[
P V 0
V ∗ Q + S W
0 W ∗ R

]
≺ 0. (2)

2. PTVDC SYNTHESIS FOR
DISCRETE-TIME PERIODIC SYSTEMS

2.1 Stability Analysis of Periodic Systems of Particular
Structure

First of all we describe our underlying ideas for PTVDC
synthesis. To this end, let us consider the stability anal-
ysis problem of discrete-time periodic systems that has a
particular structure. For simplicity, we confine our discus-
sion to the 2-periodic case for the time being. Thus, the
difference equation for the system of interest will be

xk+1 = A1,1xk,
xk+2 = A2,2xk+1 + A2,1xk,
xk+3 = A1,1xk+2,
xk+4 = A2,2xk+3 + A2,1xk+2,

...

(3)

where A1,1, A2,2, A2,1 ∈ Rn×n. Contrary to the standard
state-space description of periodic systems, here we in-
troduced the matrix A2,1. This may seem strange, but
does not violate the causality of the system. As we see
in the sequel, the introduction of A2,1 plays a key role for
PTVDC synthesis to be presented.

To assess the stability of the system (3), let us denote
the “hidden” state by ξk and rewrite (3) in the standard
state-space form as follows:[

xk+1

ξk+1

]
=

[
A1,1 0
1 0

] [
xk

ξk

]
,[

xk+2

ξk+2

]
=

[
A2,2 A2,1

0 0

] [
xk+1

ξk+1

]
,

...

(4)

Then the monodromy matrix of the system (4) becomes

Φ2 =
[

A2,2 A2,1

0 0

] [
A1,1 0
1 0

]
=

[
A2,2A1,1 + A2,1 0

0 0

]
.

Hence, from Bittanti and Colaneri [2000], we can conclude
that the system (3) is stable if and only if A2 := A2,2A1,1+
A2,1 is Schur stable. What is important here is that the
Schur stability of A2 can be characterized via LMI that
preserves the matrix structure of (3). Namely, we see that
A2 is Schur stable if and only if there exists X1 ∈ S+

n and
F ∈ R2n×3n such that[−X1 0 0

∗ 0 0
∗ ∗ X1

]
+ He

{[
A2,2 A2,1

−1 A1,1

0 −1

]
F

}
≺ 0. (5)

This result follows immediately from Elimination Lemma
(Skelton et al. [1997]) if we note[

A2,2 A2,1

−1 A1,1

0 −1

]⊥

= [ 1 A2,2 A2 ] .

We see that, similarly to Ebihara et al. [2005], the LMI (5)
is affine with respect to A1,1, A2,2 and A2,1, even though
the monodromy matrix A2 involves a product among A1,1

and A2,2.

2.2 Stabilization of Periodic Systems via PTVDC

To move on to PTVDC synthesis, let us consider the
“standard” 2-periodic system described by

xk+1 = A1xk + B1uk,
xk+2 = A2xk+1 + B2uk+1,
xk+3 = A1xk+2 + B1uk+2,
xk+4 = A2xk+3 + B2uk+3,

...

(6)

For this system, the controller discussed in Arzelier et al.
[2005] is the static 2-periodic state-feedback controller of
the form
uk = K1xk,
uk+1 = K2xk+1,

...
(7)

The closed-loop system is represented by

xk+1 = (A1 + B1K1)xk,
xk+2 = (A2 + B2K2)xk+1,

...
(8)

From Arzelier et al. [2005], we see that the closed-loop
system (8) is stable if and only if there exists Xi ∈ S+

n and
Gi ∈ Rn×n (i = 1, 2) such that[−Xi+1 (Ai + BiKi)Gi

∗ Xi − Gi − GT
i

]
≺ 0, X3 = X1. (9)

This result basically comes from extended Lyapunov
Lemma (Bittanti et al. [1985]), in conjunction with the
extended LMI results using extra variables (de Oliveira
et al. [1999], Peaucelle et al. [2000]).

At this stage, to smoothen our subsequent discussions, we
rewrite (9) into a conformable form to (5). It can be readily
seen from Lemma 1 that (9) holds if and only if there exists
X1 ∈ S+

n , Gi ∈ Rn×n (i = 1, 2) such that
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⎡⎣−X1 (A2 + B2K2)G2 0
∗ −G2 − GT

2 (A1 + B1K1)G1

∗ ∗ X1 − G1 − GT
1

⎤⎦ ≺ 0 (10)

or equivalently,[−X10 0
∗ 0 0
∗ ∗X1

]
+ He

{[
A2 + B2K2 0

−1 A1 + B1K1

0 −1

][
0 G2 0
0 0 G1

]}
≺0. (11)

Thus, by Lemma 1, we can eliminate the variable X2 and
also reduce the size of the LMI 1 .

The matrix inequalities in (9) can be reduced into LMIs
via change of variables Yi = KiGi (i = 1, 2) and used for
state-feedback controller synthesis (Arzelier et al. [2005],
Farges et al. [2007]). In particular, when we deal with
polytopic-type uncertain systems, these LMIs enable us to
design state-feedback via parameter-dependent Lyapunov
functions so that less conservative results can be achieved
(see the discussion in Subsection 2.3). The inequality (11)
indicates that we can obtain exactly the same result with
reduced computational burden.

Even though the approaches in Arzelier et al. [2005] and
Farges et al. [2007] are promising for robust static state-
feedback controller synthesis, they are still conservative
and leave some rooms for improvement. Nevertheless, if
we persist in static controller synthesis, it should be hard
to obtain systematic LMI-based design methods that go
beyond these existing results. This motivates us to explore
dynamical state-feedback controller synthesis. In particu-
lar, motivated by the analysis results in Subsection 2.1, we
are interested in the PTVDC of the form
uk = K1,1xk,
uk+1 = K2,2xk+1 + K2,1xk,
uk+2 = K1,1xk+2,
uk+3 = K2,2xk+3 + K2,1xk+2,

...

(12)

This controller leads to the closed-loop system described
by

xk+1 = (A1 + B1K1,1)xk,
xk+2 = (A2 + B2K2,2)xk+1 + B2K2,1xk,

...
(13)

From the discussion in Subsection 2.1, it is obvious that
this closed-loop system is stable if and only if Acl,2 :=
(A2 + B2K2,2)(A1 + B1K1,1) + B2K2,1 is Schur stable. In
addition, from (5), we see that Acl,2 is Schur stable if and
only if there exist X1 ∈ S+

n and F ∈ R2n×3n such that[ −X1 0 0
∗ 0 0
∗ ∗ X1

]
+He

{[
A2 + B2K2,2 B2K2,1

−1 A1 + B1K1,1

0 −1

]
F
}

≺ 0.(14)

Consequently, we can assess the stability of the closed-loop
system by this LMI.

Unfortunately, the inequality (14) is not suitable for con-
troller synthesis due to the multiple bilinear terms between
the variables K1,1,K2,2,K2,1 and F . To get around this
difficulty, we restrict the variable F as follows:

1 Note that the total size of the LMIs in (9) is 4n.

[ −X1 0 0
∗ 0 0
∗ ∗ X1

]
+ He

{[
A2 + B2K2,2 B2K2,1

−1 A1 + B1K1,1

0 −1

]
G
}

≺ 0,

G =
[
02n,n block-diag(G2, G1)

]
, Gi ∈ Rn×n (i = 1, 2).

(15)

It follows that the closed-loop system is stable if there
exist X1 ∈ S+

n and Gi (i = 1, 2) such that (15) holds. We
see that (15) can be reduced into an LMI via change of
variables Yi,i = Ki,iGi (i = 1, 2) and Y2,1 = K2,1G1.

2.3 Robustly Stabilizing Controller Synthesis

Now we are ready to state the advantage of the controller
(12) over the conventional form (7). Let us consider the
case where the system (6) is subject to the polytopic
uncertainties as follows:[

A1 B1

A2 B2

]
∈ co

{[
A

[1]
1 B

[1]
1

A
[1]
2 B

[1]
2

]
, · · ·

[
A

[L]
1 B

[L]
1

A
[L]
2 B

[L]
2

]}
.

To design robustly stabilizing static controllers, several
LMI-based methods are suggested in Arzelier et al. [2005].
Among them, the result in Theorem 5 of Arzelier et al.
[2005] is essentially equivalent to solving the LMIs:⎡⎣−X

[p]
1 0 0

∗ 0 0

∗ ∗ X
[p]
1

⎤⎦
+He

⎧⎨⎩
⎡⎣A

[p]
2 G2 + B

[p]
2 Y2,2 0

−G2 A
[p]
1 G1 + B

[p]
1 Y1,1

0 −G1

⎤⎦[
0 1 0
0 0 1

]⎫⎬⎭ ≺ 0.

(16)

Here, p ∈ {1, · · ·L}. If (16) is feasible, the robustly
stabilizing feedback gains of the form (7) are given by
Ki = Yi,iG

−1
i (i = 1, 2).

On the other hand, it is clear from (15) that we can design
robustly stabilizing PTVDC of the form (12) by solving⎡⎣−X

[p]
1 0 0

∗ 0 0

∗ ∗ X
[p]
1

⎤⎦
+He

⎧⎨⎩
⎡⎣A

[p]
2 G2 + B

[p]
2 Y2,2 B

[p]
2 Y2,1

−G2 A
[p]
1 G1 + B

[p]
1 Y1,1

0 −G1

⎤⎦[
0 1 0

0 0 1

]⎫⎬⎭ ≺ 0,

p ∈ {1, · · ·L}.

(17)

By comparing (16) and (17), it is obvious that if (16) holds,
then (17) holds with the same X

[p]
1 , Gi, Yi,i (i = 1, 2)

and Y2,1 = 0. Hence, in the context of robust stabilizing
controller synthesis for polytopic-type uncertain systems,
we can obtain no more conservative results by (17). In fact,
the controller synthesis based on (17) is surely effective as
wee see in the next numerical examples.

Numerical Examples: To illustrate the effectiveness of
the suggested method, we solved the problem discussed in
Arzelier et al. [2005] 2 . More precisely, we solved the
2-periodic case problem in Example 1 of Arzelier et al.
[2005], where our goal is to maximize a properly defined
stability margin (i.e., the allowable maximal absolute value
of an uncertain parameter). It was shown that the LMIs
in (16) ensures the stability margin ᾱmax = 0.80. On the

2 In this paper, every LMI-related computation is carried out with
SeDuMi and Matlab, on PC with CPU Pentium IV 3.6 GHz.
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other hand, maximizing the stability margin subject to
(17), we obtained ᾱmax = 0.90. The resulting gains are

K1,1 = [ 2.8218 −2.0095 ] ,
K2,2 = [ 1.2485 −1.7025 ] , K2,1 = [ 0.3700 0.0008 ] .

Since the suggested controller is dynamic, the resulting
control performance could depend on the timing of the
implementation. To examine this point, we solved the same
problem by regarding (A1, B1) as (A2, B2) and vice versa.
Then, we obtained ᾱmax = 0.84 and the gains

K1,1 = [ 1.1770 −1.6873 ] ,
K2,2 = [ 3.1063 −2.2083 ] , K2,1 = [ 0.3446 −0.0861 ] .

Thus, irrespective of the timing of the implementation,
we can confirm the effectiveness of the PTVDC structure
(12) when dealing with robust stabilization problems of
polytopic-type uncertain systems.

2.4 Extension to the N -periodic Case

To extend the preceding results to general N -periodic case,
let us consider the N -periodic system described by

xk+1 = A1,1xk,
xk+2 = A2,2xk+1 + A2,1xk,

..

.
xk+N = AN,Nxk+N−1 + AN,N−1xk+N−2 + · · · AN,1xk,
xk+N+1 = A1,1xk+N ,

..

.

(18)

We denote the associated transition matrix from xk to
xk+N by AN . In addition, we denote the transition matrix
from xk+p (p = 1, · · · , N − 1) to xk+N in the case of
Ai,j = 0 (i = p + 1, · · · , N, j = 1, · · · , p) by AN,p. Under
these notations, the next lemma follows.
Lemma 2. For the the N -periodic system (18), let us
define ÂN ∈ R(N+1)n×Nn by

ÂN :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AN,N AN,N−1 · · · · · · · · · AN,1−1 AN−1,N−1 AN−1,N−2 · · · · · · AN−1,1

0 −1
. . .

. . .
.
..

.

..
. . .

. . .
. . .

. . .
.
..

...
. . .

. . . A2,2 A2,1

...
. . . −1 A1,1

0 · · · · · · · · · 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Then, we have Â⊥
N = [ 1 AN,N−1 · · · AN,1 AN ] .

Proof 3. From the definition of AN,p (p = 1, · · · , N − 1),
we see that
AN,N−1 = AN,N ,

AN,p = AN,p+1 +

N−1∑
i=p+1

AN,iAi,p+1 (p = 1, · · · , N − 2),

AN = AN,1 +

N−1∑
i=1

AN,iAi,1.

It follows that

Â⊥
N = [ 1 AN,N AN,N−1 + AN,NAN−1,N−1 · · · · · · · · · ]

= [ 1 AN,N−1 AN,N−2 · · · AN,1 AN ] .

This completes the proof. �

As in the 2-periodic case, we can confirm that the system
(18) is stable if and only if AN is Schur stable. With this
fact and Lemma 2, we can obtain the next result.
Theorem 4. The N -periodic system (18) is stable if and
only if there exist X1 ∈ S+

n , F ∈ RNn×(N+1)n such that

block-diag(−X1,0(N−1)n,(N−1)n,X1) + He{ÂNF} ≺ 0.

Based on Theorem 4, we next consider to design N -
PTVDCs. To this end, let us consider the “standard” N -
periodic system described by

xk+1 = A1xk + B1uk,
xk+2 = A2xk+1 + B2uk+1,

.

..
xk+N = ANxk+N−1 + BNuk+N−1,
xk+N+1 = A1xk+N + B1uk+N ,

.

..

(20)

For this system, we design the N -PTVDC of the form

uk = K1,1xk,
uk+1 = K2,2xk+1 + K2,1xk,

...
uk+N−1 = KN,Nxk+N + KN,N−1xk+N−1

+KN,N−2xk+N−2 + · · · + KN,1xk

uk+N = K1,1xk+N ,
...

(21)

Then, the closed-loop system can be described by

xk+1 = (A1 + B1K1,1)xk,

xk+2 = (A2 + B2K2,2)xk+1 + B2K2,1xk,
.
..

xk+N = (AN + BNKN,N )xk+N−1

+BNKN,N−1xk+N−1 + · · · + BNKN,1xk,

xk+N+1 = (A1 + B1K1,1)xk+N ,
.
..

(22)

Thus, from Theorem 4, we can obtain the next results.
Theorem 5. For the N -periodic system (20) and N -
PTVDC (21), let us define Âcl,N ∈ R(N+1)n×Nn as given
at the top of the next page. Then, the closed-loop system
constructed from (20) and (21) is stable if and only if there
exist X1 ∈ S+

n , F ∈ RNn×(N+1)n such that

block-diag(−X1,0(N−1)n,(N−1)n,X1) + He{Âcl,NF} ≺ 0.

Corollary 6. The closed-loop system constructed from
(20) and (21) is stable if there exist X1 ∈ S+

n , Gi ∈
Rn×n (i = 1, · · · , N) such that

block-diag(−X1,0(N−1)n,(N−1)n,X1) + He{Âcl,NG} ≺ 0
(24)

where G = [ 0Nn,n block-diag(GN , · · · , G1) ]. The matrix
inequality (24) can be reduced into an LMI via change of
variables Yi,j = Ki,jGj (i = 1, · · · , N, j = 1, · · · , i).
As we have seen, the particular structure (21) allows us
to carry out LMI-based controller synthesis. We note that
(24) with Ki,j = 0 (i �= j) is essentially equivalent to the
condition given in Theorem 5 of Arzelier et al. [2005],
even though here we have succeeded in eliminating N − 1
Lyapunov matrices and reducing the size of the LMIs. In
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Âcl,N :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AN + BNKN,N BNKN,N−1 · · · · · · · · · BNKN,1

−1 AN−1 + BN−1KN−1,N−1 BN−1KN−1,N−2 · · · · · · BN−1KN−1,1

0 −1
. . .

. . .
..
.

.

..
. . .

. . .
. . .

. . .
.
..

..

.
. . .

. . . A2 + B2K2,2 B2K2,1

.

..
. . . −1 A1 + B1K1,1

0 · · · · · · · · · 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

———————————————————————————————————————————————————-

the context of robust stabilizing controller synthesis for
polytopic-type uncertain systems, it is obvious that we can
obtain no more conservative results than Arzelier et al.
[2005] by means of (24).

Numerical Examples: To illustrate the effectiveness
of the suggested robust controller synthesis method, we
solved the 3-periodic case problem in Example 1 of Arzelier
et al. [2005]. Maximizing the stability margin subject to
(24), we obtained ᾱmax = 0.63 and feedback gains

K1,1 = [ 3.1022 −2.2131 ] ,
K2,2 = [ 1.1555 −2.1051 ] , K2,1 = [ 0.2791 −0.0092 ] ,
K3,3 = [−2.4095 −2.4242 ] , K3,2 = [−0.3164 0.0178 ] ,
K3,1 = [−0.0406 0.1783 ] .

This result surely goes beyond the stability margin ᾱmax =
0.49 obtained in Arzelier et al. [2005]. When we change
the timing of implementation, we obtained ᾱmax = 0.67
and ᾱmax = 0.57, respectively.

3. APPLICATION TO LTI SYSTEM SYNTHESIS

In this section, we clarify that the suggested PTVDC
structure and the associated LMI-based design method are
promising when dealing with LTI systems as well. It is of
course meaningless to consider the complicated controller
structure (21) for nominal system stabilization. However,
when we consider robust stabilization problems of poly-
topic uncertain systems (de Oliveira et al. [1999]) to which
definite solution is not currently available, the PTVDC
brings some improvements over the existing methods (at
the expense of complicated controller structure).

Let us consider the polytopic-type uncertain LTI system
described by

xk+1 = Axk + Buk. (25)

where [A B] ∈ co
{

[A[1] B[1]], · · · , [A[L] B[L]]
}

. By regard-
ing this LTI system as N -periodic (i.e, Ai = A, Bi =
B (i = 1, · · · , N) in (20)), we see from (24) that the closed-
loop system constructed from (25) and (21) is robustly
stable if there exist X

[p]
1 ∈ S+

n , Gi ∈ Rn×n (i = 1, · · · , N)
such that

block-diag(−X
[p]
1 ,0(N−1)n,(N−1)n,X

[p]
1 )

+He{Â[p]
cl,NG} ≺ 0,

p ∈ {1, · · ·L}.
(26)

Here, Â[p]
cl,N is defined by (23) with Ai, Bi (i = 1, · · · , N)

replaced by A[p], B[p], respectively. As before, the inequal-
ity (26) can be used for controller synthesis via change of
variables Yi,j = Ki,jGj (i = 1, · · · , N, j = 1, · · · , i).

The advantage of (26) can be stated in light of the
extended LMI given as follows (de Oliveira et al. [1999]):[−X [p] A[p]G + B[p]Y

∗ X [p] − G − GT

]
≺ 0, p ∈ {1, · · ·L}. (27)

If (27) holds, we can confirm that the uncertain system
(25) can be robustly stabilized via time-invariant static
state-feedback uk = Kxk where K = Y G−1.

When comparing these two LMI conditions, we see again
from Lemma 1 that if (27) holds, then (26) holds with
Gi = G (i = 1, · · · , N), X

[p]
1 = X [p] (p ∈ {1, · · ·L}),

Yi,i = Y (i = 1, · · · , N) and Yi,j = 0 (i �= j). Thus, again, it
is ensured that we can obtain no more conservative results
by means of (26). In fact, from numerical examples shown
below, we can confirm that it is surely possible to reduce
the conservatism of de Oliveira et al. [1999] by designing
PTVDCs.
Remark 7. Note that we cannot expect improvement of
control performance over de Oliveira et al. [1999] if we
design N -periodically time-varying static controllers. To
see this, let us consider the case where we regard the orig-
inal LTI polytopic system as 2-periodic and consider the
following LMIs for 2-periodic static controller synthesis:[
−X

[p]
i+1 A[p]Gi + B[p]Yi

∗ X
[p]
i − Gi − GT

i

]
≺0, i = 1, 2, X

[p]
3 =X

[p]
1 . (28)

Then, we see that if (28) holds, then (27) holds with
X [p] = X

[p]
1 + X

[p]
2 (p ∈ {1, · · ·L}, G = G1 + G2 and

Y = Y1 + Y2. This implies that if we can find a robustly
stabilizing 2-periodic static controller by (28), it is always
possible to find a time-invariant static robustly stabilizing
controller by (27). Thus, for the improvement of control
performance, it is essential to make the controllers to be
dynamic.

In the above discussions, we have clarified the advantage
of PTVDCs by regarding LTI polytopic systems as N -
periodic. When dealing with No-periodical polytopic sys-
tems, we can state a similar advantage in the following way.
Namely, suppose we regard the original No-periodic system
as rNo-periodic and assume that the robust version of the
LMI (24) corresponding to N = rNo is feasible. Then, the
robust version of (24) obtained by regarding the system as
sNo-periodic is always feasible if s is a multiple of r.

Numerical Examples: To illustrate the effectiveness of
the suggested design method, we first solved the robust
state-feedback stabilization problem for polytopic-type
uncertain LTI systems discussed in Section 4 of de Oliveira
et al. [1999]. By regarding the system as N -periodic, we
maximized the stability margin γN . Then, we obtained
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γ1 = 0.88 (this is obtained in de Oliveira et al. [1999]),
γ2 = 0.90, γ3 = 0.98, γ4 = 1.02, γ5 = 1.04 and γ6 = 1.04.
The CPU time were 0.34, 0.40, 0.53, 0.74, 1.00 and 1.34
[sec], respectively.

We next solved the 2-periodic case problem in Example 1
of Arzelier et al. [2005], by regarding the system as 2-
periodic, 4-periodic and 6-periodic. Maximizing the sta-
bility margin subject to (24), we obtained ᾱmax

2 = 0.9,
ᾱmax

4 = 0.93 and ᾱmax
6 = 0.94. The CPU time were 0.29,

0.38 and 0.50 [sec], respectively.

Finally we solved the 3-periodic case problem in Example 1
of Arzelier et al. [2005], by regarding the system as 3-
periodic and 6-periodic. Maximizing the stability margin
subject to (24), we obtained ᾱmax

3 = 0.63 and ᾱmax
6 = 0.69.

The CPU time were 0.37 and 0.52 [sec], respectively.

4. CONCLUSION

In this paper, we proposed an LMI-based design method
of periodically time-varying dynamical state-feedback con-
trollers for robust stabilization of discrete-time uncertain
linear periodic/time-invariant systems. Through numeri-
cal experiments, we confirmed that the suggested design
method is indeed effective to obtain less conservative re-
sults. The suggested controller structure and the asso-
ciated LMI-based synthesis method work effectively in
other control problems, for which definite solutions are not
available in the current state of the art. We will report this
result elsewhere in the near future.
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Appendix A. PROOF OF LEMMA 1

Proof 8. 1.→2. It is obvious that (1) holds if and only if⎡⎢⎣ P V 0 0
V ∗ Q + X 0 0
0 0 S −X W
0 0 W ∗ R

⎤⎥⎦ ≺ 0. (A.1)

Thus we have[1n 0 0 0
0 1m 1m 0
0 0 0 1l

] ⎡⎢⎣ P V 0 0
V ∗ Q + X 0 0
0 0 S −X W
0 0 W ∗ R

⎤⎥⎦ [1n 0 0 0
0 1m 1m 0
0 0 0 1l

]T

=

[
P V 0
V ∗ Q + S W
0 W ∗ R

]
≺ 0.

2.→1. If (2) holds, then we have[
P V
V ∗ Q + S − WR−1W ∗

]
≺ 0. (A.2)

It follows that there exists ε > 0 such that[
P V
V ∗ Q + S − WR−1W ∗ + ε1m

]
≺ 0. (A.3)

If we let X = S −WR−1W ∗ + ε1m ∈ Sm, we see that the
two inequalities in (1) follow. This completes the proof. �
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