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Abstract: Recursive subspace model identification (RSMI) has been developed for a decade.
Most of RSMIs are only applied for open loop data. In this paper, we propose a new recursive
subspace model identification which can be applied under open loop and closed loop data.
The key technique of this derivation of the proposed algorithm is to bring the Vector Auto
Regressive with eXogenous input (VARX) models into RSMI. Numerical studies on a closed
loop identification problem show the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Nowadays, subspace model identification (SMI) is recog-
nized to be very efficient to model multivariable systems.
In off-line SMIs, the extended observability matrix or the
estimation of state is derived from the singular value
decomposition (SVD) of a certain matrix made of given
input and output (I/O) data.

The recursive subspace identification problem has received
much attention in the literature (Gustafsson et al. [1998],
Oku & Kimura [2002], Mercère et al. [2007]). RSMI meth-
ods are mostly inspired by the off-line versions of subspace
model identification techniques. The larger the number
of I/O data is, the more computational complexity is
necessary to perform SVD. Most RSMI algorithms apply
certain updating techniques to avoid direct computation
of the SVD. The most representative algorithm is to use
the close relationship between SMI and sensor array signal
processing (SAP) problems. The idea of applying subspace
tracking algorithms to the RSMI problem was originally
introduced in Gustafsson [1997]. Under the assumption
that the order of the system to be identified is a priori
known, Gustafsson et al. [1998] presented recursive algo-
rithms which directly update an estimate of the extended
observability matrix. More precisely, the Projection Ap-
proximation Subspace Tracking (PAST) algorithm and its
instrumental variables version were applied and modified
to derive an effective update of the signal subspace.

Also, the identification of closed loop by subspace methods
has been an active research area in the past decade.
Recent work is presented in (Jansson [2003], Qin & Ljung
[2003], Chiuso & Picci [2005]). The work done by Jansson
and Qin has been regarded as a significant advance in

⋆ This work is supported by the National Natural Science Founda-

tion of China under grant No.60674086, the Scientific and Technical

Plan Project of Zhejiang Province under grant No.2007C21173.

subspace identification of feedback systems (Chiuso &
Picci [2005]). Due to the feedback control the future input
is correlated with past output measurement or past noise,
making the traditional SMIs biased. Therefore, most of
the closed-loop SMIs try to decouple these two terms.
The algorithms proposed by Jansson and Chiuso are based
on identification of a predictor model. Chiuso [2007] had
exploited the role which Vector Auto Regressive with
eXogenous input (VARX) models plays in the mentioned
algorithms.

As far as the author knows, there is no recursive (online)
algorithm of closed loop subspace model identification.
In this paper, we are concerned with on-line recursive
subspace state-space system identification based on VARX
model and PAST. The new algorithm is called ‘VPC’
by the meaning that the algorithm is based on VARX
modelling and PAST under Closed loop data. The key
point of this algorithm is to construct the same problem
with SAP by exploiting VARX models which decouples
the correlation between the future input and past output
measurement or past noise. This algorithm can also be
applied for open loop. Numerical studies on a closed
loop identification problem show the effectiveness of the
proposed algorithm.

This paper is organized as follows: in section 2, the problem
formulation and notation are introduced, in section 3, the
review of batch SMI for closed loop is described. Section
4 is dedicated to the main results that illuminate the new
recursive algorithm based on VARX model and PAST.
Finally, section 5 gives numerical examples to illustrate
the effectiveness of the proposed algorithm. And in section
6, the conclusion is presented.
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2. PROBLEM FORMULATION AND NOTATION

Consider an n-th order linear time-invariant system in
the innovation state space form which is equivalent with
process form:

xt+1 = Axt + But + Ket (1a)

yt = Cxt + Dut + et (1b)

Where yt ∈ Rl,ut ∈ Rm,xt ∈ Rn and et ∈ Rl are the system
output, input, state and innovation respectively. A, B, C
and D are system matrices with appropriate dimensions.
K is the Kalman filter gain.

The problem is to estimate recursively a state-space real-
ization from the updates of the disturbed I/O data u(t)
and y(t). We introduce the following assumption:
A1: (A,C) is observable.
A2: (A,[B K]) is controllabe.
A3: The eigenvalues of A−KC are strictly inside the unit
circle.
A4: The input u and innovation e are jointly stationary.
The input signal is sufficient persistently exciting order
Qin [2006]. For closed loop, there are

E[e(k)e(l)T ] = Reδkl, (2)

E[e(k)u(l)T ] = 0, k > l, (3)

where E is defined as in Ljung [1999] :

E{·} = lim
N→∞

1

N

N∑

k=1

E{·}

Which means that there is a feedback from u(t) to y(t).

For the purpose of identifying, we introduce some nota-
tions:

yf (t) =
[
yT

t yT
t+1 · · · yT

t+f−1

]T

yp(t) =
[
yT

t−p yT
t−p+1 · · · yT

t−1

]T

Yf = [yf (t) yf (t + 1) . . . yf (t + N − 1)]

Yp = [yp(t) yp(t + 1) . . . yp(t + N − 1)]

where f > n and p > n are a user defined integer which
called future horizon and past horizon respectively. From
the same way, we can formulate the uf (t), ef (t), up(t) and
ep(t). Also, we have the similar expression Uf , Up, Ef and
Ep.

By iterating the system equations, it is straightforward to
get the extended state-space model (1), so an extended
input-output equation can be formulated as following:

yf (t) = Γfx(t) + Hfuf (t) + Gfef (t) (4)

For the Hankel matrix form of (4), we have

Yf (t) = ΓfX(t) + HfUf (t) + GfEf (t) (5)

Yp(t) = ΓpX(t − p) + HpUf (t) + GpEp(t) (6)

where

X(t) = [x(t) x(t + 1) · · · x(t + N − 1)]

X(t − p) = [x(t − p) x(t − p + 1) · · · x(t − p + N − 1)]

And Γf is the extended observability matrix of the system.
Hf and Gf are two lower triangular Toeplitz matrices. Γf ,
Hf and Gf are formed:

Γi =
[
CT CAT · · · (CAi−1)T

]T

Hi =





D 0 · · · 0
CB D · · · 0

CAB CB · · · 0
...

...
. . .

...
CAi−2B CAi−3B · · · D





Gi =





I 0 · · · 0
CK I · · · 0

CAK CK · · · 0
...

...
. . .

...
CAi−2K CAi−3K · · · I





By iterating (1), we also can obtain the following relation,

X(t) = Ap
kX(t − p) + L̄pZp(t) (7)

where Zp = [Y T
p UT

p ]T , Ak = A − KC, Bk = B − KD,

and L̄p =
[
Bk AkBk · · · Ap−1

k Bk

]
. For a large ‘p’, from

the assumption A3(Ap
k ≈ 0, for a stable system), we can

consider
X(t) ≈ L̄pZp(t) (8)

3. OVERVIEW OF BATCH CLOSED LOOP SMI

In the following, we briefly illustrate why most SMI
methods for open loop identification can not be applied
for closed-loop data. And how to solve this problem. The
details refer to Qin [2006]. For most SMIs, the basic
procedure is based on this projection:

Yf (t)Π⊥
Uf

= ΓfX(t)Π⊥
Uf

+HfUf (t)Π⊥
Uf

+GfEf (t)Π⊥
Uf

(9)

where Π⊥
Uf

represents the projection to the orthogonal

complement of Uf and

Π⊥
Uf

= I − UT
f (UfUT

f )−1Uf (10)

Furthermore, it’s obviously that,

UfΠ⊥
Uf

= Uf (I − UT
f (UfUT

f )−1Uf ) = 0 (11)

Under the open loop condition, The input u and innovation
e are uncorrelated. So the following comes into existence

EfΠ⊥
Uf

= Ef (I − UT
f (UfUT

f )−1Uf ) = Ef (12)

since
1

N
EfUT

f → 0 when N → ∞

Substitute (10) and (12) in (9), we can simply (9),

Yf (t)Π⊥
Uf

= ΓfX(t)Π⊥
Uf

+ GfEf (t) (13)

Right multiply ZT
p on both sides of (13),

Yf (t)Π⊥
Uf

ZT
p = ΓfX(t)Π⊥

Uf
ZT

p + GfEf (t)ZT
p (14)

Since e(t) is uncorrelated with past input and output,
where

1

N
EfZT

p → 0 as N → ∞

Formulation (14) become

Yf (t)Π⊥
Uf

ZT
p = ΓfX(t)Π⊥

Uf
ZT

p (15)

From the above equation , we can estimate Γf from a
SVD composition of Yf (t)Π⊥

Uf
ZT

p . Then we can estimate

the system parameters.

But if the data are acquired under closed-loop condition.
From assumption A4, we know that The input u and
innovation e are correlated one way, this means 1

N
EfUT

f 6=
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0 as N → ∞. Then obviously we will derive a biased
estimation of Γf from (15).

Most subspace identification for closed loop are trying
to avoid the direct projection on Uf . The algorithms
proposed by Jansson [2003], Chiuso & Picci [2005] are
based on predictor model. Let us first rewrite (1) as
follows:

xt+1 = Akxt + Bkut + Kyt (16a)

yt = Cxt + Dut + et (16b)

it is also clear that:

yf (t) = Γ̄fx(t) + H̄fuf (t) + Ḡfyf (t) + ef (t) (17)

where
Γ̄i =

[
CT CAT

k · · · (CAi−1

k )T
]T

H̄i =





D 0 · · · 0
CB D · · · 0

CAkBk CB · · · 0
...

...
. . .

...
CAi−2

k Bk CAi−3

k Bk · · · D





Ḡi =





0 0 · · · 0
CK 0 · · · 0

CAkK CK · · · 0
...

...
. . .

...
CAi−2

k K CAi−3

k K · · · 0





and from (8), x(t) = L̄pzp(t) then

yf (t) − H̄fuf (t) − Ḡfyf (t) ≈ Γ̄f L̄pzp(t) + ef (t) (18)

The main idea of these approaches is first to estimate
CAi

k[Bk K](i = 0, 1, . . . , f − 2) by exploiting VARX.
Then form the H̄f and Ḡf . The detail is described in
later section. After the estimation, system parameters
can be derived similar as CCA (Jansson [2003]). As we
can see that the most important trick for closed loop
identification is that estimating the Toeplitz matrices
H̄f and Ḡf to decouple the correlation between uf (t)
and ef (t). In recursive algorithm, the same philosophy is
applied in a similar way.

4. RSMI BASED ON VARX AND PAST

The most important step in RSMI is the recursive update
of the observability subspace (Gustafsson et al. [1998],
Oku & Kimura [2002], Mercère et al. [2007]). The basic
idea of solving this procedure is to use the close rela-
tionship between SMI and sensor array signal processing
(SAP) problems. The idea of applying subspace tracking
algorithms to the RSMI problem was originally introduced
in Gustafsson [1997]. More precisely, the PAST algorithm
(Yang [1995]) and its instrumental variables modification
IVPAST (Gustafsson [1998]) were applied and modified to
derive an effective update of the signal subspace.

In the array signal processing field, several adaptive al-
gorithms were suggested as SVD alternatives to estimate
the signal subspace. These techniques are based on the
following data generation model,

rt = S(t)mt + nt (19)

In the above equation, the n × 1 vector rt denotes the
observation, S(t) is a deterministic n × p matrix, mt is a
random p×1 vector which denotes the source vector and nt

stands for noise. In the array signal processing field, several
adaptive algorithms were suggested to estimate the signal
subspace recursively.

Projection Approximation Subspace Tracking (PAST) al-
gorithm Yang [1995] was proposed by Yang to deal with
array signal processing problem.In this method, Yang in-
troduced an unconstrained criterion to estimate the range
of A(t) as follows :

V (W ) = E‖r − WWT r‖2 (20)

where the matrix argument W ∈ Rn×p and n > p. ‖ · ‖
is the Euclidean vector norm and E[·] is the expectation
operator.

Yang had proved the global minimum of V (W ) is attained
if and only if W = QT where Q contains the n dominating
eigenvectors of Rr = E[rrT ]. Here T is an arbitrary uni-
tary matrix. Furthermore, all other stationary points are
saddle points. From the minimization of (20), it provides
an expression particular basis of S(t). The expectation
operator in (20) is replaced with exponentially weighted
sum to obtain a recursive update.

V (W ) =
t∑

k=1

λt−k ‖ r(k) − W (t)WT (t)r(k) ‖2 (21)

where λ is a forgetting factor(0 < λ < 1). And replace Rr

with Rr(t) =
∑t

k=1
λt−kr(k)rT (k). The key idea of PAST

is to replace WT (k)r(k) with

h(k) = WT (k − 1)r(k) (22)

This is so-called projection approximation. Substitute (22)
for WT (t)r(k) in (21),

V̄ (W (t)) =
t∑

k=1

λt−k ‖ r(k) − W (t)h(k) ‖2 (23)

then V (W ) can be minimized by

W (t) = Rrh(t)R−1

h (t) (24)

In Yang [1995] ,an efficient recursive RLS-like algorithm
with O(np) complexity has been given.

[Remark 1] We note that the PAST algorithm is derived
by minimizing the modified cost function (23) instead of
the original one (22).Hence, the columns of W (t) are not
exactly orthonormal. From the simulation results seen,
this doesn’t matter the estimation. If necessary , we can
reorthonormalize W (t) after each update.

Then the problem we are concerned with is how to trans-
form the RSMI to the SAP problem. Denote zf (t) =
yf (t) − H̄fuf (t) − Ḡfyf (t), then rewrite (18),

zf (t) ≈ Γ̄fx(t) + ef (t) (25)

The analogy between (25) and (19) is also obvious, then
we can estimate Γ̄f as following two steps:

Step1 : the update of the observation vector zf (t) from the
input-output measurements as (25)

Step 2: the estimation of a basis of Γ̄f from this observation
vector as (19).

If the estimation of a basis of Γ̄f had been obtained
from the above steps, we can estimate the states and
the system parameters A,B, C, D, K by some ordinary
procedure which is described in van Overschee (1996).
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Unfortunately, this matrix H̄f and Ḡf is unknown. How-
ever, most MOESP algorithms are not suitable for closed
loop identification. So these RSMIs are not suitable to
extend to closed loop identification. In this paper, we
will propose a new approach to update observation vector
zf (t).

In this section, a direct recursive estimation method for
closed-loop data is described. We call this algorithm as
‘VPC’. Though we utilize the VARX model as Jansson’
method, but totally in a different way. In this scenario
for recursive estimation, the order n of a system to be
identified is a priori known. For identifiability reasons we
assume that D = 0, i.e. there is no direct feed through
from u to y.

Iterating (1), the state space model can be recovered to
the high order model as follows:

yt
.
=

q∑

i=1

CAi
k[Bk K]zk−i + Dut + et (26)

Where zk = [uT
k yT

k ]T . From above equation, we rewrite it
as one long VARX model.

yf (t)
.
=

q∑

i=1

CAi
k[Bk K]zp(t − i) + Duf (t) + ef (t) (27)

From the long VARX model, we can estimate the (unstruc-
tured) estimates of CAi

k[Bk K](i = 0, 1, . . . , q). note that
q is large than f. Then form H̄f and Ḡf from the large
estimates.

It’s obviously if we have estimated H̄f and Ḡf ,

yf (t) − ̂̄Hfuf (t) − ̂̄Gfyf (t) ≈ Γ̄fx(t) + ef (t) (28)

and denote zf (t) = yf (t) − ̂̄Hfuf (t) − ̂̄Gfyf (t),

zf (t) ≈ Γ̄fx(t) + ef (t) (29)

From the connection between the RSMI problem and
PAST algorithm, we can obtain the estimation of Γ̄f

recursively. After the Γ̄f have been estimated, it’s easy to
obtain the Kalman state x(t). And according to Katayama
[2005], we can obtain the system parameters matrices from
least square algorithm.

Using the recursive update of the zf (t) shown in the
previous subsection, the recursive algorithm proposed in
this paper is derived as follows.

The state space model under closed loop data can be esti-
mated recursively according to the procedure as follows.

1) Using the equation (22) to estimate CAi
k[Bk K](i =

0, 1, . . . , q) . Form H̄f and Ḡf from the above estimates.

2) Update the observation vector zf (t) = yf (t)− ̂̄Hfuf (t)−
̂̄Gfyf (t).

3) From the last estimates of Γ̄f (t − 1) to update the t
time Γ̄f (t).

4) Estimate x(t) from (36) if we have obtained the estimate

of Γ̄(t) ,then x(t) = zf (t)̂̄Γf (t)†. where (·)† represent
Moore-Penrose pseudo-inverse.

5) The corresponding system parameters A, B, C, D, K
and R can be estimated from X(t) and state space model
(1), similar as Katayama [2005].

A detail of this algorithm is proposed in Appendix A.

[Remark 2] From the update procedure, the system
parameters can be estimated recursively. But it has to
point that for this algorithm only use of PAST algorithm
not EIV-PAST as shown in Gustafsson et al. [1998].
Subspace tracking estimators typically require that the
noise covariance matrix is proportional to the identity
matrix. The noise e(t) in the predictor model satisfies this
condition only if it is spatially white. How to improve this
strict condition is the main object of future research.

5. NUMERICAL EXAMPLES

In this section, the results of a numerical simulation
are presented to illustrate the performances of the new
recursive algorithm. The simulation example is a first order
SISO system under closed-loop operation,

y(k) − ay(k − 1) = u(k − 1) + e(k) + 0.9e(k − 1)

The feedback has the following structure:

u(k) = −λy(k) + r(k)

where λ = 0 and λ = 0.6 for open and closed-loop
operations respectively. And in this simulation we assume
a = 0.9. The excitation signal r(k) is a moving average
process:

r(k) = (1 + 0.8q−1 + 0.6q−2)r0(k)

where r0(k) is zero mean white noise with unit variance.
The process innovation e(k) is zero mean white noise with
standard deviation σe = 1.2. Monte-Carlo experiments are
conducted with 30 runs. Each run generates 1000 samples.

In this simulation, We choose the parameter β = 0.99.
The future horizon and past horizon are chosen 10 and
25 for these three algorithms respectively. We will apply
the following representative subspace algorithms in the
literature: closed-loop algorithm by Chiuso & Picci [2005],
a classical subspace algorithms CVA (MATLAB N4SID
with CVA weighting).

As a result of the 30 simulation runs, for open loop case,
Fig.1 illustrate the averages of estimated of a, respectively.
Fig.2, illustrate the average of the 30 estimated frequency
response of the transfer function of process. For closed
loop case, Fig.3 illustrate the averages of estimated of
a, respectively. Fig.4 illustrate the average of the 30
estimated frequency response of the transfer function of
process.

As can be seen from these figures, VPC can yield consistent
estimates for the process under closed-loop data. And from
the bode plot, the VPC can give a satisfactory result and
better performance than CVA algorithm, and has a similar
result as the directly PBSID-opt algorithm. This illustrate
the effectiveness of the proposed algorithm.

6. DISCUSSION AND CONCLUSION

In this paper, a new recursive subspace model identifi-
cation algorithm for closed-loop data called VPC have
been proposed. This algorithm is based on VARX model
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Fig. 1. Estimation results on a, show the average after 30
Monte Carlo trials. The dot lines represent the true
value of a. Open loop case
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Fig. 2. Comparison of batch identification results w.r.t. the
transfer function. Open loop case
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Fig. 3. Estimation results on a, show the average after 30
Monte Carlo trials. The dot lines represent the true
value of a. Closed loop case

and PAST method. The VARX model plays a key role in
deriving the recursive algorithm for closed loop data. The
effectiveness of the proposed algorithm has been demon-
strated by a numerical simulation. The future work will be
improving the VPC for time-varying system and nonlinear
system.
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Fig. 4. Comparison of batch identification results w.r.t. the
transfer function. Closed loop case
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Appendix A. VPC ALGORITHM

In this appendix the recursive updating formulas for VPC
algorithm are given. Choose P (0) and Γ̄f (0) suitably,
assume Γ̄f (t − 1) and P (t − 1) known. Assume the new
data sample (uf (t), yf (t)) is acquired, and from yt

.
=∑q

i=1
CAi

k[Bk K]zk−i+Dut+et, we obtain the estimation
̂̄Hf and ̂̄Gf .

zf (t) = yf (t) − ̂̄Hfuf (t) − ̂̄Gfyf (t)

y(t) = Γ̄f (t − l)T r(t)

h(t) = P (t − 1)y(t)

g(t) = h(t)/[β + yT (t)h(t)]

P (t) =
1

β
Tri(P (t − 1) − g(t)hT (t))

e(t) = r(t) − Γ̄f (t − 1)y(t)

Γ̄f (t) = Γ̄f (t − 1) + e(t)gT (t)

x(t) = zf (t)Γ̄f (t)
†

f

The operator Tri(·) indicates that only the upper (or
lower) triangular part of P (t) = R−1

y (t) is calculated and
its Hermitian transposed version is copied to the another
lower (or upper) triangular part. Then from (1), use LS
regression to estimate A,B,C,D,K.
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