
Non-asymptotic Model Quality Assessment

of Transfer Functions at Multiple

Frequency Points ⋆

Sangho Ko ∗, Erik Weyer ∗∗, Marco C. Campi ∗∗∗

∗ School of Aerospace and Mechanical Engineering,
Korea Aerospace University, Goyang, Gyeonggi-do, 412-791,

Republic of Korea, ( e-mail: sanghoko@kau.ac.kr )
∗∗ Department of Electrical and Electronic Engineering,

The University of Melbourne, Parkville, VIC 3010, Australia
( e-mail: e.weyer@ee.unimelb.edu.au )

∗∗∗ Department of Electrical Engineering and Automation,
University of Brescia, Via Branze 38, 25123 Brescia, Italy,

( e-mail: marco.campi@ing.unibs.it )

Abstract: In this paper we develop methods for evaluating uncertainties in the frequency
response of a dynamical system based on finitely many input-output data points. We extend
the “Leave-out Sign-dominant Correlation Regions” (LSCR) algorithm to deliver confidence
regions with a guaranteed probability for the frequency response at multiple frequency points,
and we introduce a computationally efficient scheme which enables confidence regions to be
constructed separately at each frequency. Simulation examples illustrating the usefulness of the
developed algorithm are provided.

1. INTRODUCTION

In dynamical system identification, providing a description
of the uncertainties associated with the nominal system
model is as important as obtaining the nominal model
itself, especially for the synthesis of robust controllers. A
popular technique for evaluating the model quality is based
on constructing asymptotic statistical confidence regions.
This is a well-matured approach and the confidence regions
can be computed relatively easily (see Ljung (1999)).
However in some cases, using asymptotic theory may lead
to unreliable results (Garatti, Campi & Bittanti 2004)
when applied to a finite number of data points.

In this paper, we consider a non-asymptotic method based
on finitely many data points as, e.g., considered in Bayard
(1993), Goodwin, Gevers & Ninnes (1992), and Campi &
Weyer (2005). In Campi & Weyer (2005) and Campi &
Weyer (2006), the “Leave-out Sign-dominant Correlation
Regions” (LSCR) algorithm was introduced for construct-
ing confidence regions for system parameters with guaran-
teed probabilities.

In Ko, Weyer & Campi (2007), we extended the LSCR
technique to provide confidence regions for the frequency
response at multiple frequencies based on a finite num-
ber of (multi-sine) input-output data points. For this, a
priori information about the tail of the impulse response
sequence of the system, which cannot be deduced from
finitely many data points, was incorporated into the al-
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gorithm. Generally, since the confidence region at each
frequency is dependent on those of the other frequencies,
it is computationally prohibitive to construct the confi-
dence regions for the case of multi-sine inputs. In order
to substantially reduce this difficulty, we devise a fast
algorithm for the construction of the confidence regions
at each frequency.

In the next section, the general procedure for construction
of simultaneous confidence regions in case of multi-sine
input is presented. In Section 3, a computationally inex-
pensive algorithm is introduced. Two simulation examples
demonstrating the usefulness of the proposed approach are
given in Section 4. Section 5 concludes the study.

2. MAIN ALGORITHM

Here we extend the algorithm for discrete-time systems
introduced in Ko et al. (2007) to provide confidence
regions for a continuous-time transfer function at multiple
frequencies.

2.1 Problem definition

Data generating system and input: Consider the fol-
lowing linear continuous-time system with additive noise

y(t) =

∫ ∞

0

g0(τ)u(t − τ)dτ + v(t) (1)

where g0(τ) is the impulse response of the true system.
The transfer function is the Laplace transform of g0(τ)
and given by

G0(s) =

∫ ∞

0

g0(t)e−stdt.
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The following multi-sine input is applied to the system

u(t)=











L
∑

m=1

Am cosϕm(t)=

L
∑

m=1

Am cos(Ωmt+ψm), t>0

0, t<0.
(2)

We can express the output y(t) as

y(t)=

L
∑

m=1

Am

∫ t

0

g0(τ) cosϕm(t− τ) dτ +v(t)

=

L
∑

m=1

Am

[

a0
m cosϕm(t)−b0m sinϕm(t)+ȳm(t)

]

+v(t),

(3)
where

a0
m , Re

{

G0(jΩm)
}

, b0m , Im
{

G0(jΩm)
}

,

ȳm(t) , −Re
{

∫ ∞

t

g0(τ)e−jΩmτdτ · ejϕm(t)
}

.
(4)

Here ȳm(t) is the transients due to that u(t) = 0 for all
t < 0.

The magnitude and phase of the frequency response at a
frequency Ωm are given by

|G0(jΩm)|=
√

a02

m + b02

m ,

∠G0(jΩm)=tan−1
(

b0m/a
0
m

)

.
(5)

Let the input and output be sampled at time instants
t = kT for k = 0, 1, 2, . . . , N1 with sampling period T . We
collect input-output data

{

u(kT ), y(kT )
}

k=0,1,2,...,N1

.

Assumptions:

(A1) |g0(τ)| 6 Mge
−ρτ , for some 0< Mg <∞ and ρ> 0,

where Mg and ρ are known a priori.
(A2) The sampled noise v(kT ) is an independent random

variable with symmetric distribution around zero,
and all v(kT ) admit densities.

Due to the finite number of input-output data points we
cannot extract information about the tail of the impulse
response g0(τ) from the measured data and hence the only
way the effect of the tail can be taken into account is
via a priori information. Thus we assume that system
information (A1) is available. An iterative method for
estimating the bounds is proposed in de Vries & Van den
Hof (1995).

ȳm(t) in (4) which is due to the tail is unknown but we
can bound it using Assumption (A1)

|ȳm(t)|6

∣

∣

∣

∣

∫ ∞

t

g0(τ)dτ

∣

∣

∣

∣

6Mg

∫ ∞

t

e−ρτdτ=
Mge

−ρt

ρ
,γ(t).

(6)

In the case of non-zero initial conditions due to the
unknown past input u(t) for t < 0, we have the additional

term
∫ 0

−∞
g0(t− τ)u(τ)dτ in (3). To bound this unknown

term, we need a priori information about u(t), t < 0, e.g.,
|u(t)| 6 Mu, t < 0. However for simplicity in this paper
we consider only the case u(t) = 0, t < 0.

Objective: The goal is to provide guaranteed confidence

regions for θ
0 ,

[

a0
1, b

0
1, . . . , a

0
L, b

0
L

]T
using N1−ℓ input-

output data pairs {u(kT ), y(kT )}k=ℓ+1,...,N1
measured af-

ter waiting ℓ·T seconds to reduce the effect of the transient
response of the system. Confidence regions for the magni-
tude and phase can subsequently be obtained using (5).

2.2 Construction of confidence regions

This section describes the procedures for constructing con-
fidence regions for the parameter θ

0 using the correlation
between the output prediction error and the input.

Procedure for the construction of confidence re-
gions:

(P1) Compute the predictor and the corresponding predic-
tion error

ŷk(θ)=

L
∑

m=1

Am

[

am cosϕm(kT )−bm sinϕm(kT )
]

,

ǫk(θ)=y(kT )−ŷk(θ),θ ,
[

a1, b1, . . . , aL, bL
]T
,

(7)

for k = ℓ+ 1, . . . , N1.
(P2) Compute the correlation functions for r = 1, . . . , L

and k = ℓ+ 1, . . . , N1

fa
r,k(θ),ǫk(θ) cosϕr(kT ), f b

r,k(θ),ǫk(θ) sinϕr(kT ).
(8)

(P3) Select a positive integer M and construct M binary

(0,1) stochastic strings of length N,N1−ℓ as follows:
Let h0 = h0,ℓ+1, . . . , h0,N1

be the string of all zeros.
Every element of the remaining M−1 strings takes
the value 0 or 1 with probability 0.5 each, and the
elements are independent of each other. However,
if a string turns out to be equal to an already
constructed string, remove this string and construct
another string according to the same rule to be used
in its place. Name the constructed non-zero strings
h1,ℓ+1, . . . , h1,N1

;h2,ℓ+1, . . . , h2,N1
; . . . ;hM−1,ℓ+1, . . . ,

hM−1,N1
. Each of the constructed stochastic strings

determines a set of time indices to be used for
calculating the corresponding empirical correlation
functions in Step (P4).

(P4) Compute the scaled empirical correlation functions
for i = 0, . . . ,M − 1

Ca
r,i(θ),

N1
∑

k=ℓ+1

hi,kf
a
r,k(θ), Cb

r,i(θ),

N1
∑

k=ℓ+1

hi,kf
b
r,k(θ),

(9)
which can be expressed as (10) on the top of the next
page.

(P5) For a fixed r ∈ {1, . . . , L} select an integer q in the

interval [1, (M + 1)/2) and find the region Θa
r (Θb

r)

such that for all θ ∈ Θa
r (θ ∈ Θb

r) at least q of
the empirical correlation estimates Ca

r,i(θ) (Cb
r,i(θ))

satisfy Ca
r,i(θ) − Γa

r,i < 0 and Ca
r,i(θ) + Γa

r,i > 0

(Cb
r,i(θ) − Γb

r,i < 0 and Cb
r,i(θ) + Γb

r,i > 0) where

Γa
r,i ,A

N1
∑

k=ℓ+1

hi,kγ(kT ) |cosϕr(kT )| ,

Γb
r,i ,A

N1
∑

k=ℓ+1

hi,kγ(kT ) |sinϕr(kT )| , A,
L

∑

m=1

Am.

Here γ(kT ) is evaluated at t = kT using (6).
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Ca
r,i(θ)=

L
∑

m=1

Am

{

(a0
m−am)

[ N1
∑

k=ℓ+1

hi,k cosϕm(kT ) cosϕr(kT )

]

−(b0m−bm)

[ N1
∑

k=ℓ+1

hi,k sinϕm(kT ) cosϕr(kT )

]}

+

N1
∑

k=ℓ+1

hi,k

L
∑

m=1

Amȳm(kT ) cosϕr(k)+

N1
∑

k=ℓ+1

hi,k v(kT ) cosϕr(kT ), i=0, . . . ,M−1

Cb
r,i(θ)=

L
∑

m=1

Am

{

(a0
m−am)

[ N1
∑

k=ℓ+1

hi,k cosϕm(kT ) sinϕr(kT )

]

−(b0m−bm)

[ N1
∑

k=ℓ+1

hi,k sinϕm(kT ) sinϕr(kT )

]}

+

N1
∑

k=ℓ+1

hi,k

L
∑

m=1

Amȳm(kT ) sinϕr(kT )+

N1
∑

t=ℓ+1

hi,k v(kT ) sinϕr(kT ), i=0, . . . ,M−1

(10)

The intuitive idea of Step (P5) is that for the true

parameter, i.e., θ = θ
0, the terms in the parenthesis {·} in

(10) disappear, and the next term after each parenthesis
can be bounded using (6)

∣

∣

∣

∣

N1
∑

k=ℓ+1

hi,k

L
∑

m=1

Amȳm(kT ) cosϕr(kT )

∣

∣

∣

∣

6 Γa
r,i

∣

∣

∣

∣

N1
∑

k=ℓ+1

hi,k

L
∑

m=1

Amȳm(kT ) sinϕr(kT )

∣

∣

∣

∣

6 Γb
r,i.

Then the empirical correlation functions for the true
parameter satisfy for i = 0, . . . ,M − 1

Ca
r,i(θ

0)−Γa
r,i 6

N1
∑

k=ℓ+1

hi,kv(kT ) cosϕr(kT )6Ca
r,i(θ

0)+Γa
r,i

Cb
r,i(θ

0)−Γb
r,i 6

N1
∑

k=ℓ+1

hi,tv(kT ) sinϕr(kT )6Cb
r,i(θ

0)+Γb
r,i.

(11)

Since v(kT ) is symmetrically distributed around zero, it is
unlikely that nearly all of Ca

r,i(θ
0)+Γa

r,i (or Cb
r,i(θ

0)+Γb
r,i)

take on negative values or nearly all of Ca
r,i(θ

0) − Γa
r,i

(or Cb
r,i(θ

0) − Γb
r,i) take on positive values. In Step (P5)

above we exclude the regions in parameter space where
all Ca

r,i(θ) + Γa
r,i’s (or Cb

r,i(θ) + Γb
r,i’s) are negative or all

Ca
r,i(θ) − Γa

r,i’s (or Cb
r,i(θ) − Γb

r,i’s) are positive except for

a small number q. We therefore expect that θ
0 ∈ Θa

r

(θ0 ∈ Θb
r) with high probability which is indeed the case

as shown in the following theorem.

Theorem 1. Under assumptions (A1) and (A2), the sets

Θa
r and Θb

r constructed above are such that

Pr{θ0 ∈ Θa
r} > 1 −

2q

M
and Pr{θ0 ∈ Θb

r} > 1 −
2q

M
.

Proof. See Ko, Weyer & Campi (2008) �

Since each one of the sets Θa
r and Θb

r can be unbounded
in some directions of the parameter space, we construct a
simultaneous confidence region for all frequency points by
intersecting all of the confidence regions

Θ̂2L =

L
⋂

r=1

(

Θa
r

⋂

Θb
r

)

.

The following theorem is immediate from Theorem 1 using
the Bonferroni inequality.

Theorem 2. Under assumptions (A1) and (A2),

Pr{θ0 ∈ Θ̂2L} > 1 − 2L ·
2q

M
.

Remark 1. (Classical correlation method). The cur-
rent method for constructing confidence regions is closely
connected to the classical frequency analysis by the cor-
relation method (Ljung 1999, p.171), where estimates of
of the frequency response are obtained by considering the
correlations between the output and cosines and sines of
the same frequency as the input signal. Here, in order to
evaluate the uncertainties of the frequency response, we
use the correlations between the output prediction error
and cosines and sines of the input frequency. �

3. COMPUTATIONAL ASPECT: DECOUPLING
STRING GENERATION

Using the procedure in the previous section, theoretically
we can construct non-asymptotic confidence regions for the
frequency response at multiple frequencies. However, each
of the empirical correlation functions (10) depends on the
whole set of parameters and thus the resulting confidence
region for each parameter is dependent on all the other
parameters. Therefore, constructing the simultaneous con-
fidence region Θ̂2L can be computationally prohibitive.

In this section we develop a method for the generation of
decoupling binary strings which enable us to construct the
confidence regions for a0

r and b0r at frequency Ωr indepen-
dent of the other parameters {am, bm}m=1,...,L (m 6=r) and

thus we have Ca
r,i(θ) = Ca

r,i(ar) and Cb
r,i(θ) = Cb

r,i(br).

Before generating such decoupling binary strings, we con-
duct the following experiment design:

(P0) Experiment design for uncorrelated confi-
dence regions:

(a) The allowable set of frequencies in the multi-sine
input (2) are integer multiples of a baseline frequency
Ω0

Ωm = im · Ω0 for im ∈ N, m = 1, 2, . . . , L. (12)

(b) The sampling period T is chosen such that we get
about 4·S samples per period of the highest frequency
present in the input signal. To be specific, choose a
positive integer S (which should be at least 2 or 3)
and calculate the sampling interval

T =
T0

S · 2P
, (13)
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where T0 = 2π/Ω0 is the period of the baseline
frequency and P is given by

P = ⌊log2(2 · imax)⌋ + 1. (14)

Here
imax = max

m=1,...,L
{im} (15)

and ⌊(·)⌋ denotes that the number (·) is rounded to
the nearest integer towards zero. With this notation,
imax is expressed as

2 · imax = 2P−1 +Q

with 0 6 Q = 2imax − 2P−1 < 2P−1. We denote
the number of the samples within one period of the
baseline sinusoid as

N0 = S · 2P . (16)

(c) Choose a positive integer n for the total length of the
samples N

N , N1 − ℓ = n ·N0. (17)

In order to compute the confidence regions for each pa-
rameter separately, it can be seen from (10) that we need
for m, r = 1, . . . , L with r 6= m

N1
∑

k=ℓ+1

hi,k cosϕm(kT ) cosϕr(kT )=0,

N1
∑

k=ℓ+1

hi,k sinϕm(kT ) sinϕr(kT )=0,

and for m, r = 1, . . . , L
N1
∑

k=ℓ+1

hi,k sinϕm(kT ) cosϕr(kT )=0,

where ϕm(kT ) = imΩ0kT + ψm. Expressing each product
of two trigonometric functions in terms of a sum of two
trigonometric functions, we find that the highest frequency
generated from these products of trigonometric functions
is Ωmax = 2·imax ·Ω0. For the decoupling-string generation,
it suffices to find a set of time indices {kj} ⊂ {ℓ + 1, ℓ +
2, . . . , N1} such that
∑

{kj}

sin(imΩ0Tkj) = 0 for all im ∈ {1, . . . , 2·imax}. (18)

For this, instead of Step (P3) in Section 2.2 we use the
following new step (P3′) for generating a set of decoupling
binary strings.

(P3′) Algorithm for decoupling string generation:
The idea for generating the decoupling strings is as follows:
We divide each period of the baseline sinusoid into 2P

equal segments consisting of S time indices each. Since
we have n periods of the baseline sinusoid, we get n ·
2P segments. For the first segment in each period, we
randomly select a set of time indices (out of the S time
indices), and we denote these sets as K1,p for p = 1, . . . , n.
We determine the binary string corresponding to K1,p and
then use this string for all the 2P−1 remaining segments
in the p-th period. This way we obtain one binary string
for the whole sample length. This procedure is repeated
M − 2 times and a binary string of all zeros is added. The
procedure is summarized below.

(1) Determine n index sets K1,p for p = 1, . . . , n such
that each index set K1,p consists of the elements from

{(p−1)N0+1, . . . , (p−1)N0+S} by randomly choosing
with distribution

{

k ∈ K1,p, with probability 0.5
k /∈ K1,p, with probability 0.5

(19)

for all k ∈ {(p−1)N0+1, . . . , (p−1)N0 +S}.
Let K1,p = {k1,p, . . . , kqp,p} with qp 6 S and

Kj,p =
{

k1,p + (j−1)S, k2,p + (j−1)S,

. . . , kqp,p + (j−1)S
} (20)

for j = 2, . . . , 2P and p = 1, . . . , n. Then, construct

Jp =
{

K1,p, K2,p, K3,p, . . . , K2P ,p

}

(21)

for p = 1, . . . , n. By concatenating the sets Jp, we
generate

J1 =
{

J1, J2, . . . , Jn

}

. (22)

This is a set of time indices which satisfies the
decoupling requirement (18) (for the proof see Ko
et al. (2008)).

(2) By repeating Step (1) M − 2 times and adding a null
set J0 = ∅, we construct the set

J =















J0

J1

...
JM−1















. (23)

However, if an index set turns out to be equal to an
already constructed set, remove this set and construct
another set according to Step (1) to be used in its
place. From J , construct the corresponding binary
(0,1) strings hi = hi,ℓ+1, hi,ℓ+2, . . . , hi,N1

of length N
such that

{

hi,ℓ+k = 1, if k ∈ Ji

hi,ℓ+k = 0, if k /∈ Ji
(24)

for k = 1, . . . , N and i = 0, 1, . . . ,M − 1.

Remark 2. (Theorem 1 and 2). It can be easily shown
that even if we use the procedure (P3′) for generating the
binary strings, the results in Theorem 1 and 2 still hold.

�

Remark 3. (Shape of the confidence regions). With
the use of decoupling binary strings, each correlation
function depends only on one parameter, i.e., Ca

r,i(θ) =

Ca
r,i(ar), C

b
r,i(θ) = Cb

r,i(br). This means that each corre-
lation function determines the maximum and minimum
values of the corresponding parameter in the confidence
regions. Hence the shape of confidence regions at each
frequency is rectangular, as illustrated in a simulation
example in Section 4.1. �

Remark 4. (Magnitude and phase formulation).
The procedures in the previous sections for the construc-
tion of confidence regions in terms of the real and imagi-
nary parts of the frequency response can be easily modified
to produce confidence regions for the magnitude and phase
by expressing the predictor in terms of the magnitude and
phase instead of (7), as remarked in Ko et al. (2007).
However, the magnitude and phase at each frequency
cannot be decoupled as above when calculating the empir-
ical correlation functions. Therefore, computationally it is
better to construct confidence regions for the magnitude
and phase by converting the confidence regions for the real
and imaginary parts by using (5). �
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4. SIMULATION EXAMPLE

4.1 Two-frequency case

Suppose that the true system is given by (1) with the
transfer function

G0(s) =
2.5

s+ 2.5
. (25)

G0(s) is of course unknown to the user and may be a
system of very high order as far as the user is concerned. In
order to construct confidence regions at Ω1 = 1 and Ω2 = 2
rad/sec (in this case the baseline frequency corresponds to
Ω0 = Ω1 = 1 rad/sec), we first determine the sampling
time period T = 0.0262 second using (13) with imax = 2,
P = 3, and S = 30. The number of the samples within one
period of the baseline sinusoid is N0 = 240. By choosing
n = 4, the total length of the samples to be used for the
confidence regions is n ·N0 = 4 × 240 = 960.

By applying the following input signal to the system

u(t) =

{

cosΩ1t+ cosΩ2t, t > 0
0, t < 0

and gathering the output measurements {y(kT )}, we con-
struct confidence regions for the frequency responses at
the two frequencies. In order to avoid the transient phase,
we wait ℓ · T = 3.93 seconds (ℓ = 150) and then collect
960 samples of input-output data such that N1 = 1110.
The sampled noise v(kT ) is a zero-mean gaussian white
noise sequence with variance of 0.162. This information
about the noise is given for completeness of description
but unknown to the user except for the fact that v(kT ) is
a white noise sequence with symmetric distribution around
zero.

The parameter vector is θ
0 = [a0

1 b01 a0
2 b02]

T with a0
i =

Re{G0(jΩi)} and b0i = Im{G0(jΩi)}. The parameters
bounding the tail are Mg = 3.8 and ρ = 0.8. The predictor
and prediction error are given by

ŷk(θ) =
2

∑

m=1

[

am cos(ΩmkT )− bm cos(ΩmkT )
]

ǫk(θ) = y(kT )− ŷk(θ), for k = 151, . . . , 1110,

and we calculate

fa
r,k(θ)=ǫk(θ) cos(ΩrkT ), f b

r,k(θ)=ǫk(θ) sin(ΩrkT )

for r = 1, 2 and k = 151, . . . , 1110.

Now in order to construct uncorrelated confidence regions
for the parameters, we generate decoupling binary strings
by following the steps in (P3′) of Section 3: we generate
n = 4 index sets K1,p for p = 1, . . . , 4 according to (19)
with S = 30. And then we generate Kj,p for j = 1, . . . , 8
and p = 1, . . . , 4 as in (20). Jp is then constructed as

Jp =
{

K1,p, K2,p, . . . , K8,p

}

, for p = 1, . . . , 4

and finally we construct

J1 =
{

J1, J2, J3, J4

}

.

By repeating this procedure 798 times and adding the null
set J0, we obtain the set J in (23) with M = 800 and the
corresponding binary strings {h0;h1; . . . ;hM−1} are given
by (24).

Fig. 1 illustrates the generation of decoupling time indices:
if a time index k0 is randomly chosen in the first segment,

then 7 additional time indices are chosen in the remaining
7 segments, each of which is separated by S = 30 samples
from the other. It can be observed that these eight time
indices satisfy the requirement (18) for all 4 frequencies
respectively.

0 30 60 90 120 150 180 210 240
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

Solid: sin(ω
0
t), Dashed: sin(2ω

0
t), Dotted: sin(3ω

0
t), Dash−Dot: sin(4ω

0
t)

time index
k

0
 

s = 30 

k
0
 + s

Fig. 1. Generation of a set of decoupling time indices

Now using the generated binary strings we calculate the
scaled empirical correlation functions for r = 1, 2 and
i = 0, . . . , 799

Ca
r,i(θ)=

1110
∑

k=151

hi,tf
a
r,k(θ), Cb

r,i(θ)=

1110
∑

k=151

hi,tf
b
r,k(θ).

Then we construct the confidence region Θa
r by discarding

those values of θ = [a1 b1 a2 b2]
T for which at most four

empirical correlation functions satisfy Ca
r,i(θ) − Γa

r,i < 0

or Ca
r,i(θ) + Γa

r,i > 0. The construction for Θb
r is similar.

Then following Theorem 2, θ
0 belongs to the simultaneous

region Θ̂4 = ∩2
r=1(Θ

a
r ∩ Θb

r) with probability at least
1 − 2 · 2 · 2 · 5/800 = 0.95 with L = 2 and q = 5.

These results are shown in Fig. 2 and Fig. 3 where the
blank areas are the confidence regions at each frequency
and the true values are marked with ⋆. The regions
where at most four Ca

r,i(θ) − Γa
r,i functions were negative

are marked with �, and the regions where at most four
Ca

r,i(θ)+Γa
r,i were positive are marked with ©. Likewise ×

and + represents the regions where at most four values of
Cb

r,i(θ)−Γb
r,i and Cb

r,i(θ)+Γb
r,i were negative and positive,

respectively. As we can see, each step in the construction
of the confidence region excludes a particular region.

4.2 Ten-frequency case

Consider the same system as in (1) and (25) in the
previous subsection. Our task is now to construct a
simultaneous confidence region with 95% probability
for the frequency response at ten frequencies Ω =
0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8 rad/sec (the baseline fre-
quency is Ω0 = 0.1 rad/sec) from which we obtain P = 8.
Choosing S = 4 requires the sampling time T = 0.0614
second.
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Fig. 3. Confidence region for G0(jΩ2)

We apply the Schroeder-phased multi-sine input (Bayard
1993) with the ten frequencies. The amplitude and phases
are given by

Am =
√

2/L, ψm = 2π

m
∑

r=1

rA2
r/2 (26)

for m = 1, . . . , 10. After waiting ℓ = 1000 samples,
we gather 4096 samples which corresponds to n = 4
periods of the baseline sinusoid, and calculate 4000 scaled
empirical correlation functions after generating decoupling
binary strings. Note here that the sampled noise sequence
v(kT ) is a white noise sequence uniformly distributed on
[−0.25, 0.25] with variance of 0.0208.

Fig. 4 shows the constructed simultaneous confidence
region (converted using (5)) with probability at least 1 −
2 ·10 ·2 ·5/4000 = 0.95 with L = 10, M = 4000, and q = 5.

5. CONCLUSION

In this paper, we have extended the LSCR algorithm in-
troduced in Campi & Weyer (2005) to the problem of con-
structing guaranteed confidence regions of the frequency
response at multiple frequencies using a finite number of
input-output data points. No information about the tail of
the impulse response can be obtained from a finite number
of data points, and hence a priori information must be
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Fig. 4. True frequency response (blue line) and simultane-
ous 95% confidence region (red vertical lines)

used in order to bound the effects of the tail. In order
to reduce the amount of computations required for imple-
menting the general algorithm, a fast numerical method
with decoupling binary strings was developed, and the
efficiency of the developed algorithm was demonstrated
in two simulation examples with multi-sine inputs.
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