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Abstract: A novel maximum likelihood solution to the problem of identifying parameters of a
nonlinear model under missing observations is presented. An expectation maximization (EM)
algorithm, which uses the expected value of the complete log-likelihood function including the
missing observations, is developed. The expected value of the complete log-likelihood (E-step)
in the EM algorithm is approximated using particle filters and smoothers. New expressions for
particle filters and smoothers under missing observations are derived. The maximization step
(M-step) in the EM algorithm is performed using standard optimization routines. The above
nonlinear identification approach is illustrated through numerical examples.

1. INTRODUCTION

Many chemical processes can be modeled using nonlinear
stochastic differential equations arising from fundamen-
tal physical laws. These differential equations are usually
continuous in time, and various approaches exist for their
discretization (Yuz and Goodwin [2005]). For instance, the
dynamics of polymerization and other chemical reactors,
which are highly nonlinear, can be discretized and rep-
resented by the following general stochastic state space
model: xt+1 = f(xt, ut, θ) + wt, yt = g(xt, ut, θ) + vt,
where xt ∈ Rn is the n-dimensional state vector, ut ∈
Rs is the s-dimensional input vector, yt ∈ Rm is the
m-dimensional output or measurement vector, and wt,
vt are independent and identically distributed Gaussian
noise sequences of appropriate dimension, θ ∈ Rp is a
p-dimensional parameter vector and f(.), g(.) are known
nonlinear functions. A good model - in other words a good
estimate of θ in the above model structure - is required
for state estimation, control, performance monitoring and
assessment, fault detection and diagnosis of such processes.
This article focusses on parameter estimation of models
of the form presented above under missing observations
by combining expectation maximization algorithm with
particle filters.

Expectation maximization (EM) is a standard algo-
rithm for parameter estimation in state space models
(Shumway and Stoffer [2000]). It involves two steps, where
one estimates the joint probability density of the states and
the observations based on an initial estimate of parameters
in the first step, and maximizes the expected value of the
joint density in the second step to obtain a new estimate
of the parameter vector (Dempster et al. [1977]). These
two steps are repeated until the change in parameters
after each iteration is within a specified tolerance level.
For linear systems with Gaussian noise, the expectation
and maximization steps in the algorithm can be solved
analytically, and explicit recursive equations for parameter
estimation can be developed (Shumway and Stoffer [2000]).

On the other hand, for most nonlinear state space models
with Gaussian or non-Gaussian noise, the expectation and
maximization steps do not have explicit solutions.

A number of approximations of the expectation and
maximization steps have been proposed in the literature
for nonlinear processes. In Roweis and Ghahramani [2001]
an extended Kalman filter is used to approximate the
filtered states and the expected value of the complete likeli-
hood function. In Goodwin and Agüero [2005] a similar lin-
earized approximation of the process around a maximum
a posteriori estimate of the state vector is used. In Doucet
et al. [2001], Poyiadjis et al. [2005], Schön et al. [2006]
a particle approximation of the expectation step is used.
While linearization methods fail to perform well if the
nonlinearities are strong, particle filter approaches require
large number of particles for good approximation of the
expected likelihood function (Andrieu et al. [2004]). Most
particle based approaches use a state-path based density
function to approximate the likelihood function i.e., a
density function of the form p(x1, x2, · · · , xT ) (Andrieu
et al. [2004]). It is known that the variance of path-based
density functions increases rapidly with the data length, T
(Andrieu et al. [2004], Poyiadjis et al. [2005]). An approx-
imation based on point-wise state density functions for
affine parameter models is presented in Schön et al. [2006].
In this paper, a new approximation, based on point-wise
state density functions of the form p(xt), for non-affine
parametric models is proposed and extended to handle
missing data in the observations.

The second step in the EM algorithm involves max-
imization of the expected complete likelihood function
with respect to the parameter vector. For most nonlinear
processes, this maximization step does not have an explicit
solution. However, in some special cases, such as bilinear
models (Gibson et al. [2005]) or processes defined by radial
basis functions (Roweis and Ghahramani [2001]), it is
possible to find an explicit solution. Depending on the
structure of the nonlinear process, any of the above men-
tioned approaches or any standard optimization approach,
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can be used with the method proposed in this article.
Missing observations are commonplace in the chemi-

cal industry. For linear systems, EM algorithm has been
adapted to handle missing observations (Shumway and
Stoffer [2000], Isaksson [1993]), and also applied in prac-
tice (Raghavan et al. [2006]). Other approaches for lin-
ear systems based on lifting techniques (Li et al. [2003])
and continuous time identification (Wang and Gawthrop
[2001]) have also been reported. While the importance of
estimating nonlinear processes under missing observations
has long been recognized (Gudi et al. [1995], Tatiraju
et al. [1999]), to the best knowledge of the author, no
work has been reported for nonlinear stochastic processes.
The published work on parameter estimation for nonlinear
systems treats only states as missing data. In this paper
the EM algorithm is adapted to also handle nonlinear
processes with missing observations.

2. EXPECTATION MAXIMIZATION ALGORITHM

Expectation Maximization is an elegant optimization
algorithm that constructs a complete likelihood function
including the hidden states and missing observations,
and maximizes the likelihood function of observed data
through iterations. A brief description of the EM algorithm
is presented in this section to facilitate the development of
the proposed algorithm in later sections.

For the state-space model described in this article,
let p(y1:T |θ) 1 denote the joint likelihood function of the
observed data. The maximum likelihood estimate of the
parameter vector is obtained by maximizing this observed
data likelihood function. For certain classes of state-space
models, such as linear systems, it is possible to derive an
explicit expression for this joint density. However, for the
model considered in this paper, it is difficult to develop
such an expression. Instead, using the Markov property of
the model it is straightforward to develop an expression for
the complete (including states and observations) likelihood
function, p(x1:T , y1:T |θ). In light of this feature of the
Markovian state-space model, the joint probability den-
sity function of the states and observations is iteratively
maximized to obtain a maximizing θ for p(y1:T |θ). This
maximization approach is called EM algorithm and can be
summarized in four steps: (1). Choose an initial guess of
the parameter vector θ0 ∈ Ω. (2). Estimate the states given
the parameter vector and the observations and evaluate
Q(θi, θ) =

∫

log[p(x1:T , y1:T |y1:T , θ)]p(x1:T |y1:T , θi)dx1:T .
(3). Maximize Q(θi, θ) with respect to θ. Call the maxi-
mizing value θi+1. (4). Repeat the above two steps until the
change in parameter vector is within a specified tolerance
level. The second step in the above algorithm is called E-
step and the third step is called M -step. The likelihood
function increases monotonically through these iterations.

3. THE Q FUNCTION

In this section an approximation of the Q function that
is free from the dimensionality problems explained earlier,
and that can handle missing observations, is developed
using the Markovian property of the state-space model.

1 y1:T denotes the set {y1, · · · , yT }.

3.1 Full Data Case

In the rest of this article, it is assumed that the
inputs are known and all the density functions of the
form p(.|., ., u1:T ) are denoted by p(.|., .) without explicitly
showing the input dependence. Consider the case where all
the observations {y1, · · · , yT } and the inputs {u1, · · · , uT }
are available. Then, using the Markov property of the
state space model, the joint density function of states and
outputs can be written as

p(x1:T , y1:T |y1:T , θ) =

= p(x1|y1:T , θ)
T

∏

t=2

p(xt|xt−1, θ)
T

∏

t=1

p(yt|xt, θ)

Performing the integrations in the expression for Q, the
following form of Q function can be obtained

Q(θi, θ) =

∫

log[p(x1|y1:T , θ)]p(x1|y1:T , θi)dx1

+

T
∑

t=2

∫

log[p(xt|xt−1, θ)]p(xt−1:t|y1:T , θi)dxt−1:t

+

T
∑

t=1

∫

log[p(yt|xt, θ)]p(xt|y1:T , θi)dxt. (1)

From the above expression, notice that approximations
of the density functions p(x1|y1:T , θi), p(xt−1:t|y1:T , θi),
p(xt|y1:T , θi) would allow one to approximate the Q func-
tion.

3.2 Missing Data in Output

Suppose that only a portion of the output measure-
ments at time instants {t1, · · · , tγ} are available and that
they are not available at time instants {s1, · · · , sβ}. In
other words only {yt1 , · · · , ytγ

} out of {y1, · · · , yT } are
available. For notational simplicity, it is also assumed that
y1 and yT are available. Then the Q function can be
written as

Q(θi, θ) =

∫

log[p(x1|yt1:tγ
, θ)]p(x1|yt1:tγ

, θi)dx1

+
T

∑

t=2

∫

log[p(xt|xt−1, θ)]p(xt−1:t|yt1:tγ
, θi)dxt−1:t

+

tγ
∑

t=t1

∫

log[p(yt|xt, θ)]p(xt|yt1:tγ
, θi)dxt

+

sβ
∑

t=s1

∫

log[p(yt|xt, θ)]p(xt, yt|yt1:tγ
, θi)dxtdyt (2)

In order to approximate the Q functions, approxi-
mations of the following density functions are required:
Full data case - p(xt|y1:T , θ), p(xt−1, xt|y1:T , θ). Missing
data case - p(xt|yt1:tγ

, θ), p(xt−1, xt|yt1:tγ
, θ), p(xt, yt|

yt1:tγ
, θ) for t /∈ {t1, · · · , tγ}. Notice that the maximum di-

mensionality of the above density functions is max(2n, n+
m), and hence the accuracy of these density functions
does not deteriorate with increase in the size of available
measurements as is the case with the method suggested in
Andrieu et al. [2004].
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4. BAYESIAN FILTERING AND SMOOTHING

In this section, Bayesian algorithms to generate approx-
imations of the above density functions are presented.

4.1 Filtering

Full Data The density function of the states given the
past and current outputs, p(xt|y1:t, θ) is called a filter.
Applying Bayes’ rule in a straightforward manner, one
can derive recursive expressions for the density function
of the filter. The following predictor density function can
be derived using Bayes’ rule,

p(xt|y1:t−1, θ) =

∫

p(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1(3)

Now using the predictor, one can write the following
expression for the filter,

p(xt|y1:t, θ) =
p(yt|xt, θ)p(xt|y1:t−1, θ)

∫

p(yt|xt, θ)p(xt|y1:t−1, θ)dxt
(4)

The filter density can be evaluated recursively by sub-
stituting (3) in (4). The above integrals needed to esti-
mate the filter density are often intractable, and need to
be approximated. Although numerous approximations are
available, in this paper a particle filter approach is used.
The basic idea behind particle filters is to approximate
a density function using dirac-delta functions. The filter
density at t − 1, could be approximated as

p(xt−1|y1:t−1, θ) =
N

∑

i=1

w
(i)
t−1|t−1δ(xt−1 − x

(i)
t−1) (5)

where w
(i)
t−1|t−1 are weights proportional to the filter

density at x
(i)
t−1 and δ(.) is a dirac-delta function. Sub-

stituting (5) in (3), an approximation of the predictor can
be obtained as follows,

p(xt|y1:t−1, θ) =
N

∑

j=1

p(xt|x(j)
t−1, θ)w

(j)
t−1|t−1 (6)

Similarly, substituting (6) in (4), one can approximate
the filter density function (Poyiadjis et al. [2005])

p(xt|y1:t, θ) =
N

∑

i=1

w
(i)
t|t δ(xt − x

(i)
t ) (7)

where x
(i)
t are chosen from an importance sampling

function p(xt|y1:t−1, θ), and therefore weights are given by

w
(i)
t|t =

p(yt|x(i)
t , θ)

N
∑

j=1

p(yt|x(j)
t , θ)

(8)

Particle Filter Algorithm - Full Data: (1). Ini-
tialization : Generate N samples of the initial state x1

from an initial distribution, p(x1). Set w
(i)
1|1 = 1

N for

i ∈ {1, · · · , N}. Set t = 2. (2). Prediction : Sample N

values of xt from the distributions p(xt|x(i)
t−1, θ) for each i.

(3). Update: Using (8), find the weights of filter density,

w
(i)
t|t . (4). Resampling : Resample N particles from the set

{x(1)
t , · · · , x

(N)
t } with the probability of picking x

(i)
t being

w
(i)
t|t . Assign w

(i)
t|t = 1

N for all i. (5). Set t = t + 1. Repeat

the above steps (2), (3), and (4) for t ≤ T .

Missing Data For the missing data case, the prediction
equation is used recursively until an observation is avail-
able. Once an observation is available, the update equation
is also used. If an observation is not available at time
t, then the following filter equation (ideally it should be
called a predictor since no observation is available at time
t. However, to be consistent with the full data case, it is
called a filter) is used

p(xt|yt1:tα
, θ) =

∫

p(xt|xt−1, θ) · · ·

p(xtα+1|xtα
, θ)p(xtα

|yt1:tα
, θ)dxtα:t−1 (9)

where tα is the last observation available up to time t. Now
assuming that the following approximation of the filter at

time tα is available, p(xtα
|yt1:tα

, θ) =
∑N

i=1 w̄tα|tα
δ(xtα

−
x

(i)
tα

) one can write an approximation of (9) at time t, as

p(xt|yt1:tα
, θ) =

∑N
i=1 p(xt|x(i)

t−1, θ) · · · p(x
(i)
tα+1

|x(i)
tα

, θ)w̄tα|tα

which can be represented using particles as follows

p(xt|yt1:tα
, θ) =

N
∑

i=1

w̄
(i)
t|t δ(xt − x

(i)
t ) (10)

where w̄
(i)
t|t = 1

N , and if an observation is available at time

t, then the filtered density is

p(xt|y1:t, θ) =

N
∑

i=1

w̄
(i)
t|t δ(xt − x

(i)
t ) (11)

where w̄
(i)
t|t are given by (8) and x

(i)
t are drawn from the

density function p(xt|y1:tα
, θ).

Particle Filter Algorithm - Missing Data: (1). Ini-
tialization : Generate N samples of the initial state x1

from an initial distribution, p(x1). Set w̄
(i)
1|1 = 1

N for

i ∈ {1, · · · , N}. (2). Prediction : Sample N values of

xt from the distributions p(xt|x(i)
t−1, θ) for each i. (3). Up-

date: If yt is available, using (8), find the weights of filter

density, w̄
(i)
t|t . If not, use the density in (10) as the filtered

density. (4). Resampling : Resample N particles from the

set {x(1)
t , · · · , x

(N)
t } with the probability of picking x

(i)
t

being w̄
(i)
t|t . Assign w̄

(i)
t|t = 1

N for all i. (5).Set t = t + 1.

Repeat the above steps (2), (3), and (4) for t ≤ T .

4.2 Smoothing

Full Data The density function of a state given the
past and future observations is called a smoother. In
the above expressions for the Q-function, p(xt|y1:T , θ) is
the smoothed density functions of the states. There are
many approaches to estimate the density function of the
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smoothed states (Klaas et al. [2006]). A forward-backward
smoother algorithm, which is explained below, is used in
this paper. The smoothed density can be factored as

p(xt|y1:T , θ) =

∫

p(xt+1|y1:T , θ)p(xt|xt+1, y1:t, θ)dxt+1

= p(xt|y1:t, θ)

∫

p(xt+1|y1:T , θ)p(xt+1|xt, θ)
∫

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt
dxt+1

(12)

Hence the smoothed density function can be obtained as a
function of filtered state density at time t, smoothed den-
sity at t + 1 and the state prediction density p(xt+1|xt, θ).
Clearly, this approach to smoothing involves a forward
filtering step and a backward smoothing step. Assuming
that the smoothed density function at time t, can be
approximated using the following particle approximation

p(xt|y1:T , θ) =
∑N

i=1 w
(i)
t|T δ(xt − x

(i)
t ) one can derive the

following recursive particle approximation of the smoothed
density function Klaas et al. [2006],

w
(i)
t|T = w

(i)
t|t





N
∑

j=1

w
(j)
t+1|T

p(x
(j)
t+1|x

(i)
t , θ)

∑N
k=1 w

(k)
t|t p(x

(j)
t+1|x

(k)
t , θ)



(13)

Particle Smoother Algorithm - Full Data: (1). Fil-
tering : For t = 1 to t = T perform filtering according to
the algorithm in the previous section and obtain weights

w
(i)
t|t for all i. (2). Initialization : Initialize the smoother

weights at t = T to w
(i)
T |T = 1

N for all i. (3). Smoothing :

Find the smoothed weights recursively using (13).

Missing Data It is easy to see that the backward recur-
sion of the smoothing algorithm does not depend on the
observations while the forward recursion depends on the
observations. Therefore, the only modification needed in
the smoothing algorithm is usage of missing data weights
of the filtering density. The algorithm is summarized for
the sake of completeness.

Particle Smoother Algorithm - Missing Data: (1).
Filtering : For t = 1 to t = T perform filtering according
to the algorithm in the previous section and obtain weights

w̄
(i)
t|t for all i. (2). Initialization : Initialize the smoother

weights at t = T to w̄
(i)
T |T = 1

N . (3). Smoothing : Find the

smoothed weights using (13) by replacing w
(i)
t|t by w̄

(i)
t|t .

4.3 Joint Distribution of xt, xt+1

The joint density function between xt and xt−1 can be
obtained by using (12)

p(xt, xt+1|y1:T , θ) =

= p(xt|y1:t, θ)
p(xt+1|y1:T , θ)p(xt+1|xt, θ)

∫

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt
(14)

Substituting particle approximations of p(xt|y1:t, θ) and
p(xt+1|y1:T , θ) in (14), the following approximation of the
joint distribution can be obtained, p(xt, xt+1|y1:T , θ) =
∑N

j=1

∑N
i=1 w

(ij)
t,t+1δ(xt−x

(i)
t )δ(xt+1−x

(j)
t+1) where w

(ij)
t,t+1 =

w
(i)
t|t w

(j)
t+1|T

p(x
(j)

t+1
|x

(i)
t ,θ)

∑

N

k=1
w

(k)

t|t
p(x

(j)
t+1

|x
(k)
t ,θ)

. The above approxima-

tion is found to be computationally very expensive,
and hence it is replaced with the following approxi-
mation that has fewer particles, p(xt, xt+1|y1:T , θ) =
∑N

i=1 w
(i)
t,t+1δ(xt − x

(i)
t )δ(xt+1 − x

(i)
t+1). where w

(i)
t,t+1 =

η
(i)
t

∑

N

i=1
η
(i)
t

, and η
(i)
t = w

(i)
t|t w

(i)
t+1|T

p(x
(i)

t+1
|x

(i)
t ,θ)

∑

N

k=1
w

(k)

t|t
p(x

(i)
t+1

|x
(k)
t ,θ)

.

Similarly, for the missing data case simply replace
the weights of the filter in the above equation by those
corresponding to missing data.

4.4 Joint Distribution of xt, yt

The joint distribution, p(xt, yt|yt1:tγ
, θ), is required at

sample times where the observations are missing. One can
write p(xt, yt|yt1:tγ

, θ) = p(yt|xt, θ)p(xt|yt1:tγ
, θ). In this

expression, the first term on the right hand side, p(yt|xt, θ),
is the density function of the observations given the state,
and the second term, p(xt|yt1:tγ

, θ), is the smoother. Since
yt is missing, it is possible to obtain an estimate of yt for
a given xt from the density function p(yt|xt, θ). Therefore,
one can obtain the following particle approximation of
p(yt|xt, θ)

p(yt|xt, θ) ∼
N

∑

i=1

p(y
(i)
t |x(i)

t , θ)δ(xt − x
(i)
t )δ(yt − y

(i)
t ).(15)

It is in place to mention that a better approximation
of p(yt|xt, θ) can be obtained by using more than one

estimate of yt for every x
(i)
t . While this approach increases

the accuracy, it comes at an increase in computational
burden, and hence the approximation in (15) is used. The
required joint distribution can now be approximated as

p(xt, yt|yt1:tγ
, θ) =

∑N
i=1 w̄

(i)
t|xδ(xt −x

(i)
t )δ(yt − y

(i)
t ), where

w̄
(i)
t|x =

p(y
(i)
t |x

(i)
t ,θ)p(x

(i)
t |yt1:tγ ,θ)

∑

N

i=1
p(y

(i)
t |x

(i)
t ,θ)p(x

(i)
t |yt1:tγ ,θ)

.

5. IDENTIFICATION ALGORITHM

By combining the equations for the filter, smoother
and the joint density functions, one can approximate the
Q function. Once an approximation of the Q function is
available, it is possible to maximize it with respect to the
parameter vector and obtain the next iterate of the EM
algorithm. The approximate Q function can be written as

Q(θ′, θ) ≈
N

∑

i=1

w̄
(i)
1|1 log[p(x

(i)
1 |yt1:tγ

, θ)] +

T
∑

t=2

N
∑

i=1

w̄
(i)
t,t−1

log[p(x
(i)
t |x(i)

t−1, yt1:tγ
, θ)] +

tα
∑

t=t1

N
∑

i=1

w̄
(i)
t|T log[p(yt|x(i)

t , θ)]

+

sβ
∑

t=s1

N
∑

i=1

w̄
(i)
t|x log[p(y

(i)
t |x(i)

t , θ)]

(16)

Then the EM algorithm can be summarized as
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(0). Initialization: Initialize the parameter vector to θ0.
Set i = 0. (1).Expectation: Evaluate the approximate
Q function according to (16) using θ′ = θi. (2). Maxi-
mization: Maximize the Q function with respect to θ and
call the maximizing parameter, θi+1. Maximization can
be performed using any standard optimization algorithm.
Then set θ = θi+1. (3). Iterate: Repeat steps 1 and 2
until the change in parameter vector is within a specified
tolerance level.

6. EXAMPLES

In this section, two examples are presented to illustrate
the algorithms developed in this article. The first example
is taken from Goodwin and Agüero [2005] and the second
example is a chemical reactor from Morningred et al.
[1992].
Synthetic: Consider the following nonlinear process
(Goodwin and Agüero [2005]) xt+1 = axt + but + wt, yt =
c cos(xt) + vt where wt ∼ N (0, Q), vt ∼ N (0, R), and
a = 0.9, b = c = 1, Q = R = 0.1. In order to compare the
results from the proposed algorithm with those reported
in (Goodwin and Agüero [2005]), similar simulation condi-
tions are used to the extent possible. As in (Goodwin and
Agüero [2005]), the following initial parameter estimates

are used â = b̂ = ĉ = 0.5, Q̂ = R̂ = 0.05 with a white
input variance of unity. In the first simulation experiment,
T = 100 measurements are collected, and all the available
data is used in the algorithm with N = 150 particles.
The model parameters converged to a neighborhood of the
true parameters in about 100 iterations. The trajectory of
the parameters is shown in figure 1(a). The trajectory of
the Q-function 2 is shown in figure 1. In the original form
of EM algorithm, the likelihood function is expected to
increase after each iteration. However, as seen in figure 1,
the likelihood function is not a monotonically increasing
function. This feature of the approximate EM algorithm
proposed in this article is due to the fact that only an
approximation of the expectation algorithm is used and
not the exact expected value of the complete likelihood
function. In the second experiment on this model, 10%
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Fig. 1. Synthetic Example.

of the available measurements are removed randomly. In
other words, an observation is taken if a uniformly dis-
tributed random variable, l, in the interval [0, 1] is less than
0.1. Similar experiments are conducted with 25% and 50%
of the data missing. The trajectories of the log-likelihood
function are shown in figure 1. The parameter values after

2 The variable plotted is proportional to the average log-likelihood
function

Table 1. Parameter values after 100 iterations

Parameter % missing data

0% 10% 25% 50%

a 0.8985 0.8969 0.8936 0.8972

b 1.0366 1.0353 1.0511 0.9997

c 0.9712 0.9763 1.0043 0.9819

Q 0.0992 0.0968 0.1082 0.0942

R 0.0817 0.0859 0.0769 0.0772

100 iterations from each of these experiments are shown
in table 1. In all the experiments, estimated parameters
settled into a neighborhood of the true parameters. As
the percentage of missing data increases, the algorithm
takes lot more iterations to settle close to the true pa-
rameters (see figure 1). In fact, the experiment with 50%
missing data does not settle into a neighborhood of the
true log-likelihood even after 100 iterations. The relatively
noticeable variance in the Q-function is due to the small
data length. In the next example, a much larger data set
is chosen resulting in smaller variance in the Q-function.
Adiabatic CSTR: The governing equations of a popular
CSTR are given below (Henson and Seborg [1997])

dCA

dt
=

q

V
(CAi − CA) − k0CAe−EA/T

dT

dt
=

q

V
(Ti − T ) − ∆H

ρCp
k0CAe−EA/T − ρcCpc

ρCpV
qc

(1 − e
− hA

qcρcCpc )(T − Tc)

where CA is the concentration of the reactant in the
reactor, T is the temperature in the reactor, q is the
flow rate, V is the volume of the reactor, CAi and Ti

are inflow concentration and temperature, k0CAe−EA/T

is the reaction rate, ∆H is the reaction heat, ρ and ρc

are the densities of the reactant and the cooling fluid
respectively, Cp and Cpc are the corresponding specific
heats, h and A are the effective heat transfer coefficient
and area respectively, Tc and qc are the temperature and
flow rate of the cooling fluid. The parameters and
operating conditions of this CSTR are given in Henson and
Seborg [1997] 3 . For simulation purposes, the above differ-
ential equations are discretized and noise is added. The
CSTR is operated around a steady state corresponding
to CA = 0.1mol/L and T = 438.54K with the following
noise covariance matrices Q = 2.5 × 10−7[0.1 0; 0 1] and
R = 2.5 × 10−5[0.1 0; 0 1] and discretizing sample time,
∆t = 0.02 is chosen. In order to reduce the number of pa-
rameters, the state and measurement covariance matrices
are parametrized as follows: Q = q2×10−5[0.1 0; 0 1] and
R = r2×10−3[0.1 0; 0 1]. The initial guess for the param-
eter vector is θ1 = 6×1010, θ2 = 14.4×1012, θ3 = 6×102,
q =

√
0.05, and r =

√
0.05. This example posed a couple of

unforeseen challenges. It is found that ‘large’ levels of noise
in the state equation lead to an unstable system. On the
other hand, it is well-known that small noise levels result
in an EM algorithm that is extremely slow at converging
(Petersen et al. [2005]). In fact during simulations, the Q-
function barely changes even after 20 iterations. Therefore,
in order to speed up the EM algorithm, an overrelaxed EM
algorithm (Salakhutdinov et al. [2003]) is implemented.
The idea behind overrelaxed algorithm is to hasten the
movement of parameter vector in the direction in which it
3 not reproduced in this paper to save space
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Table 2. Parameter values after 300 iterations

Parameter % missing data

0% 10% 25% 50%

θ1 × 10−10 7.2001 7.1996 7.1999 7.2019

θ2 × 10−12 14.4031 14.4065 14.4067 14.4069

θ3 × 10−2 8.6 45.25 13.56 8.92

q 0.1629 0.1657 0.1624 0.1795

r 0.1601 0.1587 0.1585 0.1594

is moving by taking steps larger than those suggested by
the EM algorithm. If these large steps result in a decrease
in the value of Q-function, then the corresponding value of
θ is thrown away and the basic version of EM algorithm is
started again from the previous value of parameter vector.

A plot showing the Q-function as a function of the
iterations is shown in figure 2. As in the previous example,
as the percentage of missing data increases, the algorithm
gets slower. The parameter values after 300 iterations are
shown in table 2. All the parameters, except θ3, converge
to a neighborhood of the true parameter values. It is
found that the sensitivity of the estimated log-likelihood
function to changes in θ3 is smaller than its variance. This
is supported by the fact that the theoretical average Q-
function is 24.2631, while the Q-function in the simulations
converges to a neighborhood of this true value (about 24.1
from figure 2) even though θ3 is not in the neighborhood
of its true value.
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Fig. 2. The trajectory of the Q-function for different
experiments.

7. CONCLUSIONS

An identification algorithm based on Expectation Max-
imization is developed for nonlinear state-space models to
handle missing observations. The expectation step in the
EM algorithm is performed by using particle approxima-
tions of state filter, smoother, and a joint density function
between the state and observations. The convergence of
EM algorithm depends on the percentage of missing ob-
servations. The higher the missing observations, the slower
the EM algorithm. The proposed algorithm is compu-
tationally intensive, however, this problem is mitigated
to an extent by using fast computational algorithms for
evaluation of sum of exponential functions.
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