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Abstract: In this paper, we propose a new recursive subspace model identification (RSMI)
based on regression and natural power method (NP) which is an array signal processing
algorithm with excellent convergence properties. We call this new algorithm as ‘R-NP’. The
basic idea of the algorithm is to utilize an unstructured least squares linear regression approach
at the updating observation vector step and the close relationship between RSMI with NP. This
algorithm has simpler procedures than other RSMI algorithms. A numerical example illustrates
that R-NP method is efficient and have a better performance in terms of transient behavior
with respect to EIVPAST. In this paper, we consider the case where the order of system to be
identified is a priori known.

Keywords: System identification; Subspace method; Recursive algorithm.

1. INTRODUCTION

Subspace model identification (SMI) has developed for
more than a decade. A number of papers about SMI
have been published. Several representative algorithms
have been proposed, e.g. CVA (Larimore [1990]), MOESP
(Verhaegen & Dewilde [1992]), N4SID (Van Overschee &
De Moor [1994]). All these SMIs fall into the unifying
theorem proposed by Van Overschee & De Moor [1995].
In the literature, these algorithms can be interpreted as
singular value decomposition just with different weighted
matrices.

Most of the past SMIs are considered for linear time
invariant (LTI) systems in off-line field. But most practice
systems are time variant, even nonlinear. It’s natural to de-
velop recursive SMI (RSMI) for identifying these systems.
RSMI has been an active research area for last decade(
Gustafsson [1997], Oku & Kimura [2002], Lovera [2003],
Mercère & Lovera [2007]). As we know, RSMI methods
are derived from the off-line versions of SMI. Most of
available SMI techniques are based on how to obtain the
extended observability matrix which is derived from the
singular value decomposition (SVD) of a certain matrix
consists of given input and output data. In order to esti-
mate recursively the observability matrix, it is necessary
to determine, at each time step, an accurate update of the
observation vector or matrix first. In Gustafsson [1997], the
author estimated the Toeplitz matrix of future input term
by utilizing the structure of the Toeplitz matrix and elim-
inate the future input term. Other methods (Gustafsson
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et al. [1998] Lovera [2003] Mercère et al. [2005]) were based
on RQ decomposition of MOESP to avoid estimating the
Toeplitz matrix. These methods made use of a sequence
of Givens rotations to eliminate the future input term and
obtained an observation matrix with the same information
of observation vector(Mercère et al. [2004]). Oku (Oku
& Kimura [2002]) provided the updating compressed I/O
data concept to updating the same information of obser-
vation vector. But these methods seems a little fussy and
complicated. In this paper, we introduce a new method
based on unstructured least squares linear regression ap-
proach to eliminate the future input term directly. This
thought derive from Jansson [2003].

The computation of the SVD has been the bottleneck in
RSMI. Gustafsson et al. [1998] presented recursive algo-
rithms to directly update an estimate of the extended
observability matrix when the order of a system to be
identified is a priori know. Updating a vector was to be fed
into the IV-PAST algorithm given by (Gustafsson [1998],
Gustafsson [1997]), Oku & Kimura [2002] had presented
another recursive algorithm using gradient type subspace
tracking. Mercère et al. [2005] proposed an algorithm
through another array signal processing called propagator
method (PM). The projection approximation subspace
tracking (PAST) was originally introduced into the array
signal processing by Yang [1995],Yang [1996]. The basic
idea of PAST is that a projection like unconstrained cri-
terion is approximated using a clever projection approx-
imation, which leads to a recursive least squares (RLS)-
like algorithm for tracking the signal subspace. However,
because of the approximation, an estimate converges to a
matrix whose column vectors span a slightly different sub-
space from the one obtained by the original minimization
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problem. Gradient type subspace tracking is a straight-
forward resolution for minimizing the unconstrained crite-
rion. PAST, and gradient type subspace tracking can all be
viewed as some heuristic variations of a classic method for
subspace computation, known as the power method Golub
et al. [1996]. In this paper, we adopt a natural version of
the power method (NP) to search the global minimizer.
The natural power method is shown to have the fastest
convergence rate among the power-based methods (Hua
et al. [1999]).

In this paper, we combine this unstructured least squares
linear regression approach and NP method to form a new
RSMI method called R-NP. A numerical example illus-
trates that R-NP has a good convergence rate and accurate
system parameters estimation. Its updating procedure is
simpler and more intuitionistic than other methods, and it
seems to have a better performance in the view of transient
behavior than the EIVPAST method.

This paper is organized as follows: in section 2, the prob-
lem and notation are introduced, in section 3, the basic
estimation method is described. Section 4 is dedicated to
the main results that illuminate the new algorithm based
on regression and NP method. Finally, section 5 gives a
numerical example to illustrate that our algorithm and
compare these two results. And in section 6, the conclusion
is presented. A detail of R-NP algorithm is provided in
appendix.

2. PROBLEM AND NOTATION

Consider an n − th order linear time-invariant system in
the innovation state space form which is equivalent with
process form:

xt+1 = Axt + But + Ket (1a)

yt = Cxt + Dut + et (1b)

Where yt ∈ Rl, ut ∈ Rm, xt ∈ Rn and et ∈ Rl are the
system output, input, state and innovation, respectively.
A, B, C and D are system matrices with appropriate
dimensions. K is the Kalman filter gain.

The problem is to estimate recursively a state-space real-
ization from the updates of the disturbed I/O data u(t)
and y(t). To establish the statistical consistency of the
SIM under open-loop condition, we have the following
assumptions :
A1: (A,C) is observable.
A2: (A,[B K]) is controllabe.
A3: The eigenvalues of A−KC are strictly inside the unit
circle.
A4: The input u and innovation e are jointly stationary.
And

E[e(k)e(l)T ] = Reδkl, (2)

E[e(k)u(l)T ] = 0,∀k, l (3)

where E is defined as in Ljung [1999] :

E{·} = lim
N→∞

1

N

N∑

k=1

E{·}. (4)

A5: The input signal is persistency-of-excitation (PE) of a
sufficient order.
A6: The order n of system (1) is priori known.

For the propose of identifying, we introduce some nota-
tions by convention:

yf (t) =
[
yT

t yT
t+1 · · · y

T
t+f−1

]T

where f > n is a user defined integer which is called
future horizon. From the same way, we can formulate the
uf (t), wf (t), and ef (t). We also denote that the extended
observability matrix of the system:

Γf =
[
CT CAT · · · (CAf−1)T

]T

Then we can obtain an extended input-output equation:

yf (t) = Γfx(t) + Hfuf (t) + Gfef (t) (5)

where Hf and Gf are two lower triangular Toeplitz ma-
trices.

Hf =




D 0 · · · 0
CB D · · · 0

CAB CB · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D




Gf =




I 0 · · · 0
CK I · · · 0

CAK CK · · · 0
...

...
. . .

...
CAf−2K CAf−3K · · · I




We know the procedure of subspace identification ap-
proach is: first, the (Kalman filter) states or observability
matrix are estimated directly from input-output data, then
the system matrices can be obtained (Van Overschee & De

Moor [1996]). As long as we know the estimation Γ̂f of the

observability matrix, we can estimate Â, Ĉ, B̂, D̂, K̂ up
to within a similarity transformation, and R̂. The main
subject of RSMI is to work out an approach to compute
the estimation of a basis for the column subspace of matrix
Γf with a reduced computational cost.

For most RSMIs, the first step is to obtain the new
vector or matrix called observation vector or matrix which
contain the new information of system (Mercère et al.
[2004]). It seems natural to consider zf (t) = yf (t) −
Hfuf (t) as the observation vector.

3. ESTIMATION METHOD

As in the introduction, we have shown that there are some
methods to obtain the observation vector or matrix. In
Gustafsson [1997], it pointed out that the first block of Hf

at t time can be approximately given by [D̂T (t−1)(Γ̂f (t−

1)(1:p(f−1),:)B̂(t−1)T ]T which D̂T (t−1) and B̂(t−1) is the
previous step estimated D, B. Here, we adopt the notation
used in the MATLAB. For example, X(1:l,:) denotes the
first l rows of a matrix X. Similarly, we can form the
entire Hf at t time from the structure of Hf . From the
procedure, it’s easy to show that asymptotic properties
is not good enough, since the next step updating using
the last estimated system parameters. Other methods are
based on RQ decomposition of MOESP to avoid estimat-
ing the Toeplitz matrix. Through the Givens rotations of R
matrix of RQ decomposition to eliminate the future input
term (more details see, e.g.Gustafsson et al. [1998], Lovera
[2003], Mercère et al. [2005], and the references therein).
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The algorithms proposed in Oku [2000] are the ways of
compressing given I/O data recursively into a matrix with
a fixed size, not the ones of updating an estimate of the
extended observability matrix directly. These methods are
not intuitionistic enough and a little complicated. And
most algorithm are only based on MOESP. In this section,
we propose a simple and effective way to achieve the
update step.

From the above equation(5), it is easy to show that we
can subtract Hfuf (t) from yf (t) if the matrix Hf was a
priori known. And then compute SVD of the term zf (t) to
estimate Γf (t). Let us rewrite (1) as follows:

xt+1 = Akxt + Bkut + Kyt (6a)

yt = Cxt + Dut + et (6b)

where Ak = A − KC, Bk = B − KD. From (6), it is also
clear that:

x(t) =

p−1∑

i=0

Ai
k [Ky(t − i − 1) Bku(t − i − 1)] + Ap

kxt−p

(7)
And since assuming Ak is stable according A3, if choosing
p large enough, we can consider that Ap

k ≈ 0. Then we can
estimate the state by a linear combination of past inputs
and outputs as follows:

x̂(t) = Lp(t) (8)

where L is unknown expression of Ak, Bk and K. p(t) is a
vector which consist of delayed inputs and outputs p steps
back:

p(t) =
[
yT (t − 1) · · · yT (t − p) uT (t − 1) · · ·uT (t − p)

]T

Substitute x̂(t) for x(t) in (5), we can obtain:

yf (t) ≈ ΓfLp(t) + Hfuf (t) + Gfef (t) (9)

This above equation indicates that yf (t) is regressed on

p(t) and uf (t). So we can estimate unstructured form Γ̂fL

and Ĥf of ΓfL and Hf . Because Hf is a lower triangular
matrix. We could use a constrained linear square regression
to estimate Hf . This guarantees the form of Hf . We denote

zf (t) = yf (t) − Ĥfuf (t) then as follows:

zf (t) ≈ Γfx(t) + Gfef (t) (10)

The first step of RSMI can be easily solved by (9). For
improving the statistical properties of estimated Hf , we
must utilize the past samples as many as possible. At
the time t + i, new data samples yf (t + i + f − 1) and
uf (t+ i+ f − 1) are acquired, then we can reconstruct (9)
as follows:

[yf (t) · · · yf (t + i)] ≈ L [p(t) · · · p(t + i)]+

Hf [uf (t) · · · uf (t + i)] + Gf [ef (t) · · · ef (t + i)]
(11)

Then we can get the new observation vector:

zf (t + i) = yf (t + i) − Ĥfuf (t + i) (12)

and the new input-output equation become:

zf (t + i) ≈ Γfx(t + i) + Gfef (t + i) (13)

From (11)-(13), we can obtain the new observation vector
zf (t+i), then we have to compute the SVD decomposition
from zf (t + i) to estimate the column subspace spanned
by Γf .

[Remark 1] This method can provide an accurate estima-
tion of observation vector. But it seems having a lumber-
some computation on least squares linear regression. This

is a trade-off between accuracy and computation burden.
For a LTI system, we don’t have to compute least squares
linear regression every step, just as the past horizon p in
(7) is enough, we could obtain an accurate estimation of
Hf .

4. RECURSIVE SMI BASED ON NATURAL POWER
METHOD

Most important calculation is to compute the SVD of
recursive observation vector zf (t) in RSMI. But if we
did it at each step time, it would cost lots of computa-
tion, obviously it’s not suitable for online implementation.
Thus, we have to develop new techniques to avoid the use
of such burdensome computation. Here, we introduce a
new algorithm to update SVD based on subspace tracking
algorithm. The observation model generally assumed in
antenna array signal processing has the following form :

rt = A(t)st + nt (14)

In the above equation, the n × 1vector rt denotes the
observation, A(t) is a deterministic n × p matrix, st is a
random p×1 vector which denotes the source vector and nt

stands for noise. In the array signal processing field, several
adaptive algorithms were suggested to estimate the signal
subspace recursively.

4.1 Review of IVPAST

Projection Approximation Subspace Tracking (PAST) al-
gorithm Yang [1995] was proposed by Yang to deal with
array signal processing problem.In this method,Yang in-
troduced an unconstrained criterion to estimate the range
of A(t) as follows :

V (W ) = E‖r − WWT r‖2 (15)

where the matrix argument W ∈ Rn×p and n > p. ‖ · ‖
is the Euclidean vector norm and E[·] is the expectation
operator.

Yang Yang [1995] have proved the global minimum of
V (W ) is attained if and only if W = QT where Q contains
the n dominating eigenvectors of Rr = E[rrT ]. Here T is
an arbitrary unitary matrix. Furthermore, all other sta-
tionary points are saddle points. From the minimization of
(15), it provides an expression particular basis of A(t). The
expectation operator in (15) is replaced with exponentially
weighted sum to obtain a recursive update.

V (W ) =

t∑

k=1

λt−k ‖ r(k) − W (t)WT (t)r(k) ‖2 (16)

where λ is a forgetting factor(0 < λ < 1). And replace Rr

with Rr(t) =
∑t

k=1 λt−kr(k)rT (k). The key idea of PAST
is to replace WT (k)r(k) with

h(k) = WT (k − 1)r(k) (17)

This is so-called projection approximation. Substitute (17)
for WT (k)r(k) in (16),

V̄ (W (t)) =
t∑

k=1

λt−k ‖ r(k) − W (t)h(k) ‖2 (18)

then V (W ) can be minimized by

W (t) = Rrh(k)R−1
h (t) (19)
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In Yang [1995] an efficient recursive RLS-like algorithm
have been given. An IV generalization of PAST has been
proposed in Gustafsson [1998]. IVPAST use an instrumen-
tal variable vector ξ ∈ Rγ×1 to deal with the situation in
which the measurements of r(t) are affected by noise with
arbitrary and unknown covariance matrix. This algorithm
is similar to PAST , except replace r with Rrξ in (15),

where Rrξ =
∑t

k=1 λt−kr(k)ξT (k).

[Remark 2]Theoretically, the columns V (W ) minimizing
the criterion V (W ) are orthonormal. But the minimization
of V̄ (W ) leads to a matrix having columns that are not
exactly orthonormal. This can be interpreted as a slow
change of basis. And it might arise a problem in the
estimation of the state space system parameters (Mercère
et al. [2004]).

4.2 Natural power method

In this paper, we bring a new subspace tracking algorithm
into RSMI. The data under consideration is a sequence
of n × 1 random vector {r(t)}. The correlation matrix of
the sequence is denoted by R(t) = E[r(t)r(t)T ], which is
always assumed positive definite. The principal subspace
spanned by the sequence, of dimension p < n, is defined to
be the span of the p principal eigenvector of the correlation
matrix can be obtained by the classic power method as
follows Hua et al. [1999]:

w(t + 1) = Rw(t) (20)

where the n × 1 weight vector w(t) is the estimate of the
first principal eigenvector at the tth iteration.

A natural choice of the scaling can be obtained as

w(t + 1) = Rw(t)(wT (t)R2w(t))−1/2 (21)

where the added scaling term guarantees that w(i + 1) is
normalized to prevent w(i) from becoming too large or
too small. And the correlation matrix R can be replaced
recursively as:

R(t + 1) = αR(t) + r(t + 1)r(t + 1)T (22)

where α is a forgetting factor which range will be 0.99 ≤
α ≤ 1. For computing a principal subspace of dimension
p,the generalized matrix version of (21) can be summarize
:

W (t+1) = R(t+1)W (t)(WT (t)R2(t+1)W (t))−1/2 (23)

From the above equations, one can gets a simple NP
algorithm for subspace tracking as follow:

Choose the initial value W (0) which is positive definite.
Assume the parameter α satisfies 0.99 ≤ α ≤ 1. Suppose
the R(t),r(t + 1),W (t) have already known, the (t + 1)th
estimate of W (t + 1) can be updated recursively as:

R(t + 1) = αR(t) + r(t + 1)rT (t + 1) (24a)

Z(t + 1) = WT (t)R2(t + 1)W (t) (24b)

W (t + 1) = R(t + 1)W (t)Z(t + 1)−1/2 (24c)

If the covariance matrix R remains constant, and the pth
and (p + 1)th eigenvalues of the covariance matrix are
distinct, and the initial weight matrix W (0) meets a mild
condition.Then the natural power algorithm 1 globally
and exponentially converges to the principal subspace. An
O(np) implementation of algorithm 1 and a detailed proof

of convergence property have been proposed in Hua et al.
[1999].

[Remark 3] We can obviously see that if we choose
an initial weight matrix W (0) which satisfies positive
definite(WT (0)R2W (0) > 0), then from the iteration
(21), we can obtain an always orthogonal basis because
of W (t) remains orthonormal. This is an advantage over
PAST. But we must see that IVPAST can deal with more
complicated noise. From Hua et al. [1999], the restrictions
on the noise seems loose. And a more detailed analysis
should be considered. This is further work to be done.

4.3 Recursive SMI based on regression and NP

RSMI is dealt with the recursive estimation system pa-
rameters from the updates of the input-output data u(t)
and y(t). So Recursive SMI has two main procedures:
a) update the observation vector zf (t).
b) compute SVD of zf (t) to estimate Γf .
From the above analysis, we can obviously establish a anal-
ogy between (13) and (14). From this analogy, the algo-
rithm described in section 4.2 can be applied to model(13).
So we can easily estimate the column space spanned by the
extended observability matrix and the system parameters
recursively as following steps:

Algorithm: Suppose the new input-output sample data
uf (t+ i) and yf (t+ i) are acquired. The (t+ i)th estimate
of the system parameters can be obtain recursively as
following steps:
Step1: From (11)-(12), estimate Ĥf to attain zf (t + 1) .
Step2: Substitute zf (t + i) for r(t + i) in (23), and with
the known Γf (t + i − 1) to compute Γf (t + i) which has

the estimated basis of Γ̂f .
Step3: Estimate the corresponding system parameters. A,
B, C, D, K and R from Γ̂f and state space model (1).
A detail of this algorithm is proposed:

Γf (t + i) = R(t + i)Γf (t + i − 1)Z(t + i − 1)−1/2

Z(t + i − 1) = ΓT
f (t + i − 1)Γf (t + i − 1)

R(t + i) = αR(t + i) + zf (t + i)zT
f (t + i)

zf (t + i) = yf (t + i) − Ĥf (t + i)uf (t + i)

Ĥf (t + i) = Γ̂fLHf (t + i)(:,f(l+m)+1:f(2m+l))

Γ̂fLHf (t + i) = [yf (t) yf (t + 1) · · · yf (t + i)] /

[p(t) p(t + 1) · · · p(t + i) uf (t) uf (t + 1) · · · uf (t + i)]

5. NUMERICAL SIMULATION

In this Section, the performance of the NP are illustrated
with an MIMO system simulation study. In particular,
the identification of a time invariant system of the R-NP
method is compared with the EIVPAST algorithm and
discussed.

Consider the 4th order linear time invariant system de-
scribed by the equations:
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x(t + 1) =




0.603 0.603 0 0
−0.603 0.603 0 0

0 0 −0.603 −0.603
0 0 0.603 −0.603


x(t)

+




1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971


u(t) + v(t)

y(t) =

[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]
x(t)

+

[
−0.1356 −1.2704
−1.3493 0.9846

]
u(t) + w(t)

The input u(t) is the sum of a zero mean white noise
sequence (variance = 1) filtered with a second order
Butterworth filter (cutoff 0.5 times the Nyquist frequency,
sampling Time T = 1) and v(t) and w(t) are zero mean
white noise sequence of variance 0.1.

The above system has been used in order to carry out a
comparison between the algorithms proposed in this paper
(R-NP) and the EIVPAST algorithm Gustafsson [1998].
For the sake of completeness, we choose the future horizon
as 8. The forgetting factor is fixed as 0.99. And the sample
number is 1060. Both algorithms are the same parameters
setting.

Fig.1 illustrates the comparison between the R-NP method
and the EIVPAST method in estimating the eigvalues
of system parameter A. Fig.2 shows the comparison in
the view of the principal angles between the extended
observability matrix and its estimate. As can be seen from
these figures, R-NP and EIVPAST can yield consistent
estimates. And the subspace angles between the estimate
and the true the extended observability matrix also can
converge to 0 which means the estimate subspace converge
to the true ones. But we also can see all these converge
trajectories, it seems the R-NP method show a better
performance than the EIVPAST.

6. CONCLUSION

In this paper, a new recursive subspace model identifi-
cation algorithm called R-NP have been proposed. We
simply the procedure of estimating the Toeplitz matrix,
and introduce a new array signal processing into RSMI.
Furthermore, the performance of the R-NP and EIVPAST
method have been compared by two simulation examples.
The results show that the R-NP method can estimate
consistent system parameters and have a fast global con-
vergence property. We also compare the R-NP method
with the EIVPAST method. From the results, we can
see that the R-NP method have a better performance.
Future work will aim at further exploring the issues related
with the convergence of the class of RSMI algorithms and
extend the algorithm R-NP to the RSMI for closed-loop
data.
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Fig. 2. The principal angles calculated by R-NP and
EIVPAST method. MIMO case
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