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Abstract: Minimal movement time for open-loop rotation of the human forearm, along with the
associated input signal to the forearm muscles, is calculated using matrix multiplication. This
permits rapid evaluation of movement times across a four-dimensional mesh of initial conditions,
each moving to a common terminal state. The described discrete-time solution is based on the
continuous-time solution of Tanaka et al., and the minimum-variance theory of Harris and
Wolpert. Underlying algorithm concepts are discussed, and proofs of solution existence are
provided.
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1. INTRODUCTION

An infinite number of trajectories are available for any
reaching task. Yet humans easily select and execute one
particular trajectory each time they reach for a drinking
glass, or pick up a pen. These aimed movements display
stereotypical kinematic properties; the hand moves gen-
erally in a straight line toward the target, exhibiting a
bell-shaped velocity profile, with an interval of positive
acceleration followed immediately thereafter by a period
of deceleration (Khan et al. [2006]). This commonality in
human reaching suggests the utilization of optimization to
select a “best” path from among all the available options.

Finding time-optimal rotation of the human forearm is the
focus of this manuscript, although the methods described
herein have also been used to model rapid eye movements.
Experimental data for rapid forearm rotation can be
seen in Fig. 1. The smooth, but slightly skewed velocity
profile is typical of aimed movement in humans. Waviness
in the acceleration curve is believed due to corrective
submovements initiated en route to the target.

Harris and Wolpert described a minimal variance solution
for single-joint movement of the forearm, in which move-
ment time is fixed and positional variance is minimized
over some post-movement interval (Harris and Wolpert
[1998]). This method produces a trajectory that possesses
many of the characteristics of aimed human movement.
Fundamental to this approach is an assumption that the
neural control signal, which directs muscle movement, is
corrupted by a gaussian noise exhibiting a variance pro-
portional to the control signal magnitude. The resulting
trajectory agrees with with Fitts’ Law (Fitts [1954]), a
widely accepted expression of the tradeoff between speed
and accuracy in rapid point-to-point motion. Further work
by Feng et al. [2004] has demonstrated how the firing

patterns of neurons could accomplish minimal variance
movement.

One difficulty in applying the Harris method is that move-
ment duration must be assumed a priori. A potential
means for overcoming this shortcoming is to repeatedly
apply the convex programming solution utilized by Harris
and Wolpert, and vary movement time until the resulting
variance falls below a desired bound. However, this ap-
proach is relatively slow. Seeking a solution for optimal
movement duration, Tanaka et al. relate a time-optimal
solution in which movement time is minimized, while vari-
ance is bounded (Tanaka et al. [2006]). This results in an
equation that can be iteratively solved to determine the
duration of a time-optimal input, without having to solve
the optimal input problem as an intermediate step.

The Tanaka method solves the open-loop problem; a time-
optimal closed-loop solution is likewise available using a
linear quadratic gaussian (LQG) formulation. However,
human motion appears to use irregular, intermittent feed-
back, typically resulting in two or three discrete sub-
movements that comprise most aimed motions (Fishbach
et al. [2007]). To examine intermittent feedback, it was
desired to find the time-optimal combination of two open-
loop submovements, with the profile of the second sub-
movement based on the terminal state of the first. This
article describes computation of durations for the second
submovement, thus allowing for rapid evaluation of total
movement time once initial submovement duration and
terminal state are known.

A four-dimensional mesh (with axes for position, velocity,
acceleration, and jerk) is constructed to span a wide range
of second submovement initial states, with the optimal
movement duration to a common target associated with
each point. As the Tanaka approach requires continuous-
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Fig. 1. Forearm movement profile showing mean values of
30 trials for a single individual. Forearm rotation of
approximately 36◦ to a target of 2◦ width.

time integration, an alternative, computationally efficient,
algorithm was sought. In contrast to the Tanaka method,
the solution described herein calculates optimal movement
time using matrix multiplication; this is accomplished by
moving the computation to discrete-time. This paper also
provides proofs of applicability and details the underlying
theory. Nonetheless, Tanaka et al. must be credited for
doing much of the heavy lifting.

2. STATE-SPACE MODEL

To simulate rotation of the human forearm about the
elbow joint in a single plane, both Harris and Tanaka
adopt the “standard” model taken from van der Helm and
Rozendaal [2000]. A second-order linear model describing
muscle dynamics,

τ + (ta + te) τ̇ + (tate) τ̈ = u (1)

is appended to the second-order linear skeletal model,

Jθ̈(t) +Bθ̇(t) = τ(t) (2)

In (1), parameters ta and te represent the time constants
of muscle activation and excitation, J is the moment of
inertia, and B is intrinsic viscosity (damping). Forearm
position with respect to the upper arm is denoted by θ,
while τ represents the net muscle torque applied at the
joint, and u is the neural input signal to the muscle. Values
for the time constants are ta = 30 ms and te = 40 ms,
while J and B are set to 0.25 kg · m2 and 0.20 kg · m2/s,
respectively.

Repeatedly differentiating (2) with respect to time and
substituting into (1), it is possible to express the system
dynamics as

....
θ + α3

...
θ + α2θ̈ + α1θ̇ + α0θ = βu (3)

where

α3 =
B

J
+

(
1

ta
+

1

te

)

α2 =
1

tate
+

(
1

ta
+

1

te

)
B

J

α1 =
B

Jtate
; α0 = 0; β =

1

Jtate
(4)

The linear system of (3) can be expressed in continuous-
time state-space form as




θ̇

θ̈...
θ....
θ


 =




0 1 0 0
0 0 1 0
0 0 0 1

−α0 −α1 −α2 −α3




︸ ︷︷ ︸
Φ




θ

θ̇

θ̈...
θ


 +




0
0
0
β




︸︷︷︸
Ψ

u (5)

Letting the state vector be x =
[
θ θ̇ θ̈

...
θ
]T

, it is possible to

represent this relationship as

ẋ = Φx + Ψu (6)

where Φ and Ψ are the matrix and vector so denoted in
(5). It is desired, however, to express the system dynamics
in discrete-time notation; that is, in the form

x(n+ 1) = Ax(n) +Bu(n); n = 0, 1, 2, . . . (7)

where n is a non-negative integer representing the number
of uniform time periods, each of length T , that have
passed since n = 0. For a linear time-invariant system,
discretization of the continuous-time system is well-known
(see Chapter 4 of Franklin et al. [1997]):

A = eΦT ; B =

[∫ T

0

eΦξdξ

]
Ψ (8)

This conversion can become quite cumbersome when per-
formed by hand, so the Matlab command ‘c2d’ is utilized
to convert Φ and Ψ to their discrete-time equivalents, A
and B. Hereafter, the initial state, x(0), is denoted as x0,
and it is assumed that u(n)=0 for all n<0.

3. VARIANCE CALCULATION

Assume that the input signal u(n) is corrupted by a white,
zero-mean, gaussian noise, w(n). The system equation thus
becomes

x(n+ 1) = Ax(n) +B [u(n) + w(n)] (9)

It can be shown that the solution to (9) is

x(n) = Anx0 +

n−1∑

i=0

An−1−iB [u(i) + w(i)] (10)

With random noise added to the input signal, state vari-
able x(n) becomes a random vector. The covariance matrix
for x is expressed as

Σ = cov (x,x) = E
[
(x − E [x]) (x − E [x])T

]
(11)

Following the lead of Harris and Wolpert [1998], the white
noise variance, σ2

w, is assumed to be proportional to the
square of the input magnitude, such that

σ2
w = E

[
w(i)2

]
= k|u|2 (12)

Substituting (10) and (12) into (11) produces a covariance
matrix of

Σ(n) = k

n−1∑

i=0

(
An−1−iB

) (
An−1−iB

)T
u(i)2 (13)

Since the first element of state vector x is the angular
position θ, the (1,1) element of Σ contains the position
variance, σ2

θ . Let V represent the position variance held in
the (1, 1) element of the 4 × 4 covariance matrix,

V (n) = Σ(n)[1,1] (14)
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To allow for subsequent minimization, it is desired to
express the variance in quadratic matrix (convex) form
at each sample instant; that is,

V (n) = uT Q(n) u (15)

Suppose that

χ(n) =
[
An−1B

]
(16)

ρ(n) = χ(n) · χ(n)T (17)

Then ρ(i) is the (4 × 4) matrix multiplied by u(i)2 in the
summation of (13), and the (1,1) element of that matrix,
once multiplied by the variability coefficient, k, is

Γ(n) = kρ(n)[1,1] (18)

If Γ(n) values are placed into diagonal matrix Ω(n) =
diag {Γ(n),Γ(n− 1), . . . ,Γ(1)}, then the Q matrix of (15)
can be expressed as

Q(n) =

[
Ω(n) 0

0 0

]
(19)

Both Harris and Tanaka define two distinct intervals: a
period of movement from the initial to final state, tf , and a
post-movement period, tp, over which the post-movement
variance is either bounded (Tanaka), or minimized (Har-
ris). For a sample period of length T , the number of
movement periods is nf = [tf/T ], and the number of post-
movement periods is np = [tp/T ]. Thus, the length of the
input vector u is (nf + np), and Q must accordingly be a
square matrix of size (nf + np).

4. COST FUNCTION

Since a time-optimal response is desired, define a cost
function that is equivalent to the number of movement
periods:

J = nf (20)
Given the desired point-to-point motion, there are two
relevant constraints. First, the expected state must reach
the target state, xf , by the conclusion of the movement
period, and remain there throughout the post-movement
interval. Thus,

xf = E [x(n)] ; nf ≤ n ≤ (nf + np) (21)

Second, a bound must be placed on post-movement vari-
ance. To simplify computation, Tanaka et al. chose to
enforce a bound on average variance during the post-
movement interval. The resulting mean post-movement
variance is defined as

Vpm(nf ) =
1

np

nf +np∑

i=nf +1

V (i) =
1

np

uTH(nf )u (22)

where

H(nf ) =

nf +np∑

i=nf +1

Q(i) (23)

Let Ṽ represent the variance bound to be enforced. Then,
using the method of Lagrangian multipliers (see Chapter
3 of Stengel [1994]), augment the cost function with the
aforementioned variance and position constraints,

J = nf+λ

[
Ṽ −

uTH(nf )u

np

]
+

nf+np∑

i=nf

µT (i) {xf − E [x(i)]}

(24)
The reasoning of Tanaka in evaluating the average post-
movement variance is now evident; just a single multiplier,

λ, is required to enforce the variance constraint after the
movement is completed. To simplify the cost function so
that, likewise, only a single (1 × 4) costate vector µT is
needed, let the input u(n) be constant throughout the
post-movement interval, so that

u(n) = uf =
α0θf

β
; (nf ≤ n ≤ nf + np)

with α0 and β as defined in (3). This input serves to
counteract any “springback” present in the system.

Given the constant post-movement input, uf , it is neces-
sary to enforce the target position only at time nf , when
the motion comes to a stop. As a result, the cost function
can be simplified to

J = nf +λ

[
Ṽ −

uTH(nf )u

np

]
+µT {xf − E [x(nf )]} (25)

This produces the desired single vector for µT. In addition
to reducing the number of multipliers required, a constant
post-movement input can also simplify numeric computa-
tion of a time-optimal input — there is no need to calculate
the post-movement input, as it is already known. However,
a bit of equation manipulation is required to make use of
this computational advantage.

With a fixed value for uf , the input vector can be sepa-
rated into movement and post-movement portions, so that

u =
[
uT

m uT
pm

]T
, where um =

[
u1 u2 . . . unf

]T
is an nf -

vector, and upm = [uf uf . . . uf ]T is an np-vector. Using
this notation, the Q(n) matrix of (15) and (19) can be
segmented such that

V (n) =
[
uT

m uT
pm

]
[
F (n) 0

0 P (n)

]
[
uT

m uT
pm

]T
(26)

where F (n) is the (nf × nf ) upper left hand submatrix of
Q(n), and P (n) is the (np×np) lower right hand submatrix
of the same. Expanding (26),

V (n) = uT
m F (n)um + uT

pm P (n)upm (27)

When n≥(nf +1), then P (n)=diag {Γ(n−nf) . . .Γ(1) 0}.
Thus,

V (n) = uT
m F (n)um +

n−nf∑

i=1

Γ(i)uf
2 (28)

Substituting this result into the mean variance of (22),

Vpm(nf ) =
1

np

[
uT

mHm(nf )um +Hpm(nf )u2
f

]
(29)

where

Hm(nf ) =

nf +np∑

i=nf+1

F (i) (30)

and

Hpm(nf ) =

nf +np∑

i=nf+1





i−nf∑

j=1

Γ(j)



 (31)

Inserting this result into the cost function of (25),

J = nf +λ

{
Ṽ −

1

np

[
uT

mHm(nf )um+Hpm(nf )u2
f

]}

+ µT {xf − E [x(nf )]}
(32)

An optimal value for this cost function can now be deter-
mined using the calculus of variations.
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5. OPTIMAL SOLUTION

Two parameters influence cost J ; the movement period
input vector, um, and the length of that vector, nf . To
determine the optimal values for these parameters, the first
variation of cost is examined:

∆J =
∂J

∂nf

∆nf +
∂J

∂um

∆um (33)

It is desired to have ∂J
∂nf

and ∂J
∂um

go to zero, so that any

changes in nf or um will produce no change in cost J .

5.1 Movement Length Variation

The partial derivative of cost with respect to movement
duration is
∂J

∂nf

= 1 −
λ

np

(
uT

m

∂Hm(nf )

∂nf

um +
∂Hpm(nf )

∂nf

u2
f

)

− µT

(
∂E [x(nf )]

∂nf

) (34)

If integer value nf increments upward by one, then the
value of Hm(nf ) increases to Hm(nf + 1). Thus,

∂Hm(nf )

∂nf

≈ Hm(nf + 1) −Hm(nf ) (35)

Substituting (30) into the prior result,

∂Hm(nf )

∂nf

≈

nf+np+1∑

i=nf +2

F (i) −

nf+np∑

i=nf+1

F (i)

= F (nf + np + 1) − F (nf + 1)

(36)

Taking a similar tack with the post-movement mean vari-
ance matrix of (31),

∂Hpm(nf )

∂nf

≈ Hpm(nf + 1) −Hpm(nf ) = 0 (37)

Since the expected terminal state is fixed at E [x(nf )] =

xf , the partial derivative
∂E[x(nf )]

∂nf
is zero. Thus, (34)

simplifies to
∂J

∂nf

= 1 −
λ

np

(
uT

m Fpm(nf ) um

)
(38)

where

Fpm(nf ) = F (nf +np+1) − F (nf +1) (39)

For an optimal solution, ∂J
∂nf

, must be zero. Making this

substitution in (38), it is possible to rearrange the equation
to express a relationship, albeit indirect, between the
movement duration, nf , and optimal input, um:

np

λ
= uT

m Fpm(nf ) um (40)

Next, the influence of input vector variation on cost is
examined.

5.2 Input Vector Variation

Utilizing the expected value of state vector x(nf ), the cost
equation of (32) can be expanded as

J = nf +λ

{
Ṽ −

1

np

[
uT

mHm(nf )um+Hpm(nf )u2
f

]}

+ µT



xf −Anf x0 −

nf−1∑

i=0

Anf−1−iBu(i)




(41)

Taking the partial derivative of cost with respect to the
input vector,

∂J

∂um

=
−λ

np

(
uT

m

{
Hm(nf ) +Hm(nf )T

})

− µT



 ∂

∂um





nf−1∑

i=0

Anf−1−iBu(i)








(42)

Relying on (16), create a (4 × nf ) matrix

S(nf ) = [ χ(nf ) χ(nf − 1) . . . χ(1) ] (43)

Then
nf−1∑

i=0

Anf−1−iBu(i) = S(nf )um (44)

and

∂

∂um





nf−1∑

i=0

Anf−1−iBu(i)



 =

∂

∂um

{S(nf )um} = S(nf )

(45)

Since Hm(nf ) is a diagonal matrix, Hm(nf ) = Hm(nf )
T
,

and (42) becomes

∂J

∂um

=
−λ

np

{
2uT

mHm(nf )
}
− µTS(nf) (46)

To achieve optimality, set ∂J
∂um

= 0. Then

uT
mHm(nf ) = −

1

2

(np

λ

)
µTS(nf ) (47)

This optimal condition, along with that of (40), allows
a solution to be developed. In preparation for that step,
however, the invertibility of matrix Hm(nf ) is first exam-
ined.

5.3 Invertibility of Hm

To guarantee invertibility of matrix Hm(nf ), each of its
diagonal elements must be non-zero. It can be seen from
(30) that Hm(nf ) is a summation of matrices F (nf + 1)
through F (nf +np). Each diagonal element of F (n) is Γ(j),
where j = n, n−1, . . . , 1. These values, in turn, comes from

the (1,1) element of matrix product
[
Aj−1B

] [
Aj−1B

]T
,

as evident from (18). From (8), it can be seen that the B
vector will have non-zero elements in the same locations
as the Ψ vector. In other words, only the fourth element
of B will be non-zero; let that value be represented as b4.
Allowing the (1,4) element of matrix Aj−1 to be denoted
by a14, it can be shown that the (1,1) element of product[
Aj−1B

] [
Aj−1B

]T
is (a14b4)

2
. Thus, Γ(j) is never nega-

tive. For it to be non-zero, the (1,4) element of Aj−1 must
be likewise non-zero. Unfortunately, discrete-time matrix
A is not directly available; it must be evaluated using
continuous-time dynamic matrix Φ and the conversion of
(8). Using the Cayley-Hamilton theorem, however, is it
possible to expand the definition for Aj−1 into a linear
combination of Φn, where n ∈ {0, 1, 2, 3}.

According to Cayley-Hamilton, any power j ≥ n of (n× n)
matrix M can be expressed as a summation of lower
powers of M , such that

M j =
n−1∑

i=0

cjM
n (48)
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Relying on the textbook equation for an exponential
matrix, it is possible to expand the definition for A given
in (8) as

A = eΦT = I + TΦ +
T 2

2!
Φ2 +

T 3

3!
Φ3 + . . . (49)

Since any power of Φ greater than three can be expressed
as in (48), the (j − 1) power of A can be stated as

Aj−1 =
(
eΦT

)j−1
= e(j−1)ΦT

= ψ0I4 + ψ1Φ + ψ2Φ
2 + ψ3Φ

3
(50)

where each ψx value is a constant scalar coefficient. Ex-
amining the (1,4) element in each right hand side matrix,

I[1,4] = 0; Φ[1,4] = 0

Φ2
[1,4] = 0; Φ3

[1,4] = 1
(51)

Thus, for Aj−1 to have a non-zero (1,4) element, coefficient
ψ3 must be non-zero. To determine specific coefficient
values, diagonalize (50), such that

e(j−1)ΛT = ψ0I4 + ψ1Λ + ψ2Λ
2 + ψ3Λ

3 (52)

where Λ = diag (λ1, λ2, λ3, λ4). Note that diagonaliza-
tion requires distinct eigenvalues. If ψ3 = 0, then (52) is
equivalent to



1 λ1 λ
2
1

1 λ2 λ
2
2

1 λ3 λ
2
3

1 λ4 λ
2
4




︸ ︷︷ ︸
L′



ψ0

ψ1

ψ2




︸ ︷︷ ︸
C′

=




e(j−1)λ1T

e(j−1)λ2T

e(j−1)λ3T

e(j−1)λ4T




︸ ︷︷ ︸
E

(53)

Given distinct eigenvalues, matrix L′ will have full column
rank, and there can be only one solution for C′ — a
solution that must exist to satisfy (50). That solution,
of course, is that two rows of L′ are identical, resulting
in two rows of E being likewise identical. This, however,
contradicts the assumption of distinct eigenvalues. Thus,
ψ3 cannot be zero if matrix A has distinct eigenvalues, and
matrix Hm is therefore invertible. What if Φ has repeated
eigenvalues? Using the Jordan form of Φ, it can be shown
that Hm is always invertible when np is greater than the
number of repeated eigenvalues.

5.4 Optimal Input

Having discussed the invertibility of Hm(nf ), rearrange
(47) to solve for um:

uT
m =

(np

2

)(
−µT

λ

)
S(nf )Hm(nf )

−1
(54)

Joining (21) and (44) with the expected value of (10), the
final position constraint is

xf = E [x(nf )] = Anf x0 + S(nf )um (55)

Taking the transpose,

xT
f = xT

0 A
nf T + uT

mS(nf )T (56)

Substituting (54) into the previous result,

xT
f = xT

0 A
nf T−

[(
npµ

T

2λ

)
S(nf )Hm(nf )

−1

]
S(nf )T (57)

Rearranging to isolate the ratio between Lagrangian mul-
tipliers,(
µT

λ

)
=

(
−2

np

)
[xf −A

nf x0]
T [
S(nf)Hm(nf )−1S(nf )T

]

(58)
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Fig. 2. Calculated open-loop, time-optimal input and asso-
ciated forearm response. Rotation angle matches that
of the experimental data shown in Fig. 1.

Dropping this result into (54), an optimal input is pro-
duced:

uT
m = [xf −A

nf x0]
T
γ(nf)−1S(nf )Hm(nf )

−1
(59)

where
γ(nf) = S(nf )Hm(nf )−1S(nf )T (60)

A complete optimal input vector, u, is produced by ap-
pending the terminal input, uf , to movement vector um

a total of np times, producing an optimal input vector of
length (nf +np). Before continuing, though, the invertibil-
ity of γ(nf ) needs to be considered.

5.5 Invertibility of γ(nf )

Inversion of γ(nf ) is possible when the matrix possesses
full rank. To examine the conditions under which this
occurs, take a singular value decomposition of real matrix
S(nf ), such that S(nf ) = UDV T , where U and V are
orthogonal matrices, and D is a (4 × nf ) diagonal matrix
containing the singular values of S(nf ). Then

γ(nf ) = UDV THm(nf )−1V DTUT (61)

Orthogonal matrices U and V are full rank, as is Hm(nf ).
Thus, by virtue of the matrix property that rank(AB) ≤
rank(A) · rank(B), it is necessary that rectangular matrix
D have a full row rank of r = 4 for γ(nf ) to be invertible.
As a result, all the singular values of S(nf ) must be non-
zero. Recalling that the number of non-zero singular values
is indicated by matrix rank, it is necessary that S(nf )
display full row rank. Since S(nf) has four rows, this is
equivalent to requiring that the matrix possess at least
four independent columns.

By the definition of (43), the four rightmost columns
of S(nf), where nf ≥ 4, are χ(4), χ(3), χ(2), and χ(1).
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Each χ value, as set forth in (16), can be expressed in
terms of the four ψx values from (50), as well as the
dynamic system coefficients from (4). Converting the four
indicated χ vectors to their reduced-row form reveals
that they are linearly independent when ψ3, α1, α2,
α3, and β are non-zero, as is necessary for the system
dynamics to be relevant. When S(nf ) has fewer than four
columns, it retains full rank. Hence, γ(nf ) can always
be inverted, as long as Hm(nf ) remains invertible (as
discussed previously).

5.6 Optimal Movement Duration

Substituting (59) and (60) into the average variance of
(29), while dropping the (nf ) notation momentarily,

Vpmnp ={
[xf −A

nf x0]
T (
SHm

−1ST
)−1

SH−1
m

}
Hm

{
H−1

m ST
{(
SH−1

m ST
)−1

}T

[xf −A
nf x0]

}

+Hpm u2
f

(62)

Using the definition for γ(nf) given in (60), simplify as

Vpm(nf )np =

[xf −A
nf x0]

T γ(nf ) [xf −A
nf x0] +Hpm(nf )u2

f

(63)

As noted in Appendix B of Tanaka et al. [2006], the initial

state is x0 = [θ0 0 0 0]
T

for point-to-point movement, so

xf −A
nf x0 = θf − θi = Θ (64)

When α0 = 0, the terminal input is zero, and

Vpm(nf )np = γ(nf )[1,1]Θ
2 (65)

This equation is slightly easier to solve than (63), but is
only valid for point-to-point motion. The more general
form of (63) permits the calculation of remaining move-
ment duration for a motion already in progress.

6. IMPLEMENTATION

A shortcoming in the application of (63) or (65) is the
inability to solve directly for movement duration. It is
necessary to iteratively solve for Vpm(nf ), first assuming
some value for nf , then comparing the resultant average
variance to the established variance bound. Mathemati-
cally,

nf = arg min
nf

|Ṽ − Vpm(nf )| (66)

An appropriate value for Ṽ can be determined by setting
an acceptable probability that the final position will fall
inside a desired target. Referencing a standard normal z-
table, a value of r = 1.96 corresponds with a 95% chance
that the forearm will land inside the desired target width,
W . Therefore, the desired variance bound is set as

Ṽ = W/r2 (67)

All matrices needed to compute an optimal duration can
be generated and stored as Matlab variables prior to mesh
generation, as all matrices are functions of movement time,
nf , and not a particular initial state. Computation of (66)
is then rapidly executed for each movement configuration
by selecting the proper matrices for each evaluation of a
potentially optimal nf . Since memory and performance

concerns require an upper limit on the number of stored
matrices, it may be necessary to adjust T to cover the
entire range of movement durations. Point-to-point fore-
arm rotation resulting from a calculated input is shown
in Figure 2. In comparing these results with Fig. 1, it
is evident that the velocity and acceleration profiles are
characteristic of human motion.

Using a personal computer capable of 550 MFLOPs, the
algorithm described above made six passes through nearly
a half-million different movement configurations, increas-
ing T by a factor of four with each pass, and calculated
movement durations ranging from 2 ms to 512 s, with an
upper limit of 250 on nf . This computation was accom-
plished in 52 minutes, at an overall average of 146.6 solu-
tions per second. Although larger matrices are associated
with increasing values of nf , individual evaluations of any
particular movement duration consistently took less than
one millisecond, will little change due to matrix dimension.

7. CONCLUSION

Rapid computation of second submovement durations al-
lows a fine mesh to be searched for minimal response time.
Work is underway to describe the computation of an initial
submovement, as well as the timing of a single feedback
instant to produce an overall time-optimal movement.
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