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This paper presents a slew maneuver control design of three-axis rotational flexible spacecraft. 
The focus of the work is to investigate the nonlinear effect of the three axis maneuver for a 
flexible spacecraft when a vibration suppression technique for linear systems such as input 
shaping is used in the control design. A simple method of slewing three-axis rotational 
spacecraft using input shaping is proposed and the proposed technique is implemented on an 
experimental three-axis spacecraft simulator. 
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1. INTRODUCTION 

 
For spacecraft applications where rapid slew maneuvers for 
the acquisition of a target point are required, the interaction 
of flexible structures with the spacecraft attitude control 
system can significantly degrade performance in terms of 
pointing accuracy and acquisition time. With the current 
trend in spacecraft design of increased flexibility, multiple 
bodies, and stringent attitude control accuracy requirements, 
conventional control techniques may not be adequate to 
meet performance requirements of future spacecraft 
missions. Developing controls for flexible spacecraft is an 
especially challenging task. For point-to-point slew 
maneuvers for Line of Sight (LOS) spacecraft, the residual 
vibration at the end of the maneuver significantly degrades 
the pointing accuracy. This residual vibration also increases 
slewing time especially for spacecraft with large structures 
and low frequency modes. To properly design a slew 
maneuver control system, pre-planned feedforward control 
profiles and corresponding reference trajectories are 
required. Especially for fast slew  maneuvers of a flexible 
spacecraft, careful planning of slew trajectories and 
feedforward control input is a crucial element of the control 
design. The slew trajectories and feedforward control design 
is based on the mathematical model of a spacecraft. 
Therefore, accurate modelling of a spacecraft is also 
important. Traditionally, spacecraft are modelled as rigid 
bodies, and any vibration resulting from the flexible 
structures are considered to be disturbances. Therefore, 
traditional feedforward control is of the smooth bang-bang 
type, where rapid slew is obtained from the nature of the 
bang-bang control while the disturbance from the flexible 
structure excitation is reduced by smoothing the edges of the 
bang-bang control. It is generally known that there is a 
trade-off between the control actuation time and the level 

 

of flexible structure excitations with this approach. 
Therefore, it may require unnecessarily large control 
actuation time to obtain the required level of vibration 
suppression. Instead of reducing structural excitations with 
the smooth control profile, the input shaping technique 
attempts to cancel structural vibrations by convoluting a 
reference input with an impulse sequence. With the exact 
knowledge of the system frequencies, targeted structural 
frequencies at the end of the maneuver can be completely 
eliminated in a finite time. The input shaping technique was 
developed for linear systems and therefore, direct 
application to the three axis rotational flexible spacecraft 
problem is somewhat limited. For spacecraft problems with 
slow maneuvers, the non-linear coupling between three axes 
is relatively weak. Much previous work has utilized either 
linearization or small angular rate assumptions to apply 
input shaping techniques. Furthermore, the linear model can 
be decoupled (Eigen-axis rotation) and written in modal 
coordinates, which permits us to examine it as a single-axis 
rotational spacecraft problem. In this paper, we attempt to 
include a nonlinear coupling term between the three axes in 
the design of the reference feedforward control profiles. 
Input shaping technique is also redesigned for this coupled 
three-axis rotational spacecraft problem. The proposed 
technique is implemented on the experimental three-axis 
rotational spacecraft test-bed. 
 

2. BACKGROUND 
 

A rigid body spacecraft can be represented in the spacecraft 
body coordinates as 

J J Buω ω ω+ × =&                          (1) 
where J  is a inertia matrix, ω  is a angular rate, u  is a 
control input, and B is a control influence matrix. The cross 
product term in Equation 1 appears nonlinearly in the 
equation. For slew maneuvers with large angular rates 
during the maneuver, effect of the nonlinear term may 
become significant. Therefore, it may be useful to include 
the non-linear effect when designing control profiles for 
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three-axis rotational spacecraft.  A method to determine 
control profiles including the nonlinear coupling for rigid 
body spacecraft is previously proposed by Bell and Junkins 
(1994). The idea is to first design slew trajectories using 
linear model, then design a control profile which follow the 
trajectories. The nonlinear coupling is included when the 
control profile is determined. For designing slew trajectories 
as a first step, simple uncoupled linear model is used. The 
equation of motion of three-axis uncoupled rigid bodies is 
written as 

J Buθ =&&                     (2) 
where J  is a diagonal inertia matrix, B  is a diagonal control 
influence matrix, and θ  represents the state of the reference 
trajectory in the global coordinates. 

 
Figure 1: Smooth Bang-off-Bang Profile Example 
 
The control input can be designed to meet the slew angle 
required separately for each axis, which can be written as 

 max ( , , )fu u f t t α=             (3) 

where maxu is the maximum available control for control 
design and ( , , )ff t t α  is a function typically represent a 
smooth bang-off-bang type control as shown in Figure 1. 
The off period is due to momentum saturation (for 
momentum transfer actuators) or fuel consumption 
constraints (for jet thrustering actuators). This smooth bang-
off-bang is a function of smoothing parameter ( )α  the final 
time ( )ft . It is noted that the final feedforward control input 

may be larger than maxu  because the final control input is 
designed to follow the trajectories designed with assumed 
uncoupled linear model. Therefore, there should be some 
margin between maximum control input for control design 
and the actual maximum control input with this approach.  
 
With the control input shown in Equation 3, the reference 
angle and angular rate trajectories in the global coordinates 
for the uncoupled equation of motion become 
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For rest-to-rest maneuvers, the total maneuver angle 
becomes 

1
0 max 0 0

( , , )ft

f fJ Bu f t d d
τ

θ θ η α η τ−− = ∫ ∫    (5) 

The Equation 5 can be solved for the total maneuver time 
required for each axis denoted by 

1 2
,  f ft t , 

3f
t . For actual 

spacecraft with coupling between axes, the total maneuver 
time for all three axes should be identical; otherwise the 
boundary condition on slew angle and angular rate (zero for 
rest-to-rest maneuver) will not be satisfied for axes with 
smaller total maneuver time. The total maneuver time for all 
three axes is simply 

1 2 3
max( , , )f f f ft t t t=    (6) 

This total maneuver time is used to modify the control 
profile to meet the slew angle and angular rate boundary 
conditions. A simple method is to modify the maximum 
torque required on each axis, which can be computed as 
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It should satisfy the slew angle and angular rate constraints 
at the final time for all three axes when this modified control 
input, ( , , )R fu u f t t α= , is applied to Equation 2. The 
reference trajectories resulting from solving Equation 2 
becomes 
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Equation 8 has a common final time for all three axes 
whereas Equation 4 does not. The reference trajectories 
shown in Equation 8 are represented in the inertial frame. In 
order to convert the inertial frame reference into the 
spacecraft body frame where the control input is typically 
represented, the following relationship is used. 
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 (9) 

where, ( )refC θ  transforms the inertial angular rate ( )refθ&  
into the body angular rate ( )refω  with respect to the inertial 
frame. The reference control profile can be determined from 
rigid-body spacecraft model in Equation 1. 

( )1( )ref ref ref refu t B J Jω ω ω−= + ×&  (10) 

The resulting reference control input is used as a 
feedforaward control to the spacecraft. This reference 
control profile satisfies rest-to-rest maneuver boundary 
constraints for rigid spacecraft with nonlinear coupling. 
However, when the flexibility is present in the spacecraft, 
residual vibrations will remain at the final time. 
 

4. INPUT SHAPING DESIGN FOR THREE-AXIS 
ROTATIONAL FLEXIBLE SPACECRFT 
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It is previous shown in many literatures including Kim and 
Agrawal (2006) that input shaping techniques can improve 
the performance of slew maneuvers for single-axis flexible 
spacecraft simulator. With the input shaping technique, the 
reference control input is convoluted with a sequence of 
impulses to cancel vibrations from flexible modes. This is 
equivalent to cancelling the flexible poles by adding a time-
delay which has zeros at the flexible pole locations. For a 
three dimensional rotational spacecraft, the equation of 
motion becomes nonlinear and it is unable to determine the 
frequency of the system (i.e. eigenvalues). Therefore, the 
system must be linearized to apply the input shaping 
technique. The equation of motion of the system can be 
linearized with respect to the final state of the system 
proposed by T. Singh, and S.R. Vadali (1993), which has 
shown to be effective. Equation of motion of a flexible 
spacecraft can be written as  

0

TJ J D Bu
D

ω ω ω η
η η η ω

+ × + =
+ Γ +Λ + =

& &&

&& & &
             (11) 

where J  is the inertia matrix, ω is the angular rate of the 
spacecraft body, D  is a matrix representing rigid-elastic 
coupling, η  is the flexible state vector in generalized 
coordinates, Γ  is the diagonal damping matrix, and Λ is a 
diagonal matrix representing the frequencies of the flexible 
body. Equation 11 is written in hybrid coordinates. The 
linearized equation of motion is simply written as 

0

TJ D Bu
D

ω η
η η η ω

+ =
+Γ +Λ + =

& &&

&& & &
  (12) 

The system frequencies for input shaping technique are 
determined from Equation 12. The first step for reference 
control profile design is to determine the reference 
trajectories. Starting with the uncoupled rigid body equation, 
J Buθ =&& , the reference trajectories can be similarly 
determined as shown as Equation 8 with a control input of 

( , , )R fu u f t t α= . One option is to compute the reference 
input as shown in Equation 10 first, and then shape the 
resulting reference input. However, if the input shaper is 
directly used to shape the reference input in Equation 10, 
considerable rigid body position and velocity error will 
remain at the final time, which leads to the system states 
drifting away from the desired final state. Instead of shaping 
the reference input directly, the proposed development will 
shape the control input of ( , , )R fu u f t t α= . This ensures 
that the resulting reference trajectories will satisfy the 
boundary constraints of a slew maneuver. The shaped torque 
profile becomes 

0
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n

shaped i i R f
i

u A t t u f t tδ α
=

= −∑            (13) 

where 
0

( )
n

i i
i

A t tδ
=

−∑  represents the impulse sequence for 

input shaping, and * represents the convolution operation.  
When the reference trajectory is created with the shaped 
control input, uncoupled rigid body equation, J Buθ =&& , can 
be used since it will still satisfy the constraints. However, it 

is more advantageous to use the linearized flexible 
spacecraft equation shown in Equation 12 to create a 
trajectory. The resulting reference trajectories from Equation 
12 and Equation 13 should still satisfy the boundary 
constraints of a slew maneuver while more closely represent 
the actual spacecraft system than simple uncoupled system. 
In addition, the reference trajectories results from Equation 
12 and Equation 13 will include flexible mode state (η ,η& ) 
trajectories. Using the same kinematic relationship as 
mentioned in the previous section, 
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the reference control profile including input shapers can be 
computed as 

( )1( ) T
ref ref ref refu t B J J Dω ω ω η−= + × +& &&     (15) 

In the development of reference trajectories and control 
profile, linearization of the system model and re-
computation of reference control from shaped control input 
will hinder from perfect cancellation of flexible modes. The 
robust version of the input shapers such as zero-vibration-
derivative (ZVD) shapers are highly desirable in the design. 
 

5. INPUT SHAPING SIMULATION 
 
The mathematical model of the flexible spacecraft is shown 
in Equation 11. The parameters used for simulation are 
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, and 

0.005ζ = . The slew requirements are 30 degrees for all three 
axes from a zero attitude. The first step is to design rest-to-
rest control profiles for the uncoupled rigid body problem. 
In order to exemplify the effect of flexibility, bang-bang 
control profile without smoothing is used in the simulation. 
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Figure 2: Bang-Bang Control for uncoupled axis rotation, 
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Figure 2 shows the bang-bang control profile for each axis 
when the final time is adjusted to have the same total 
maneuver time. When the rigid body spacecraft model is 
used, the reference control input is computed from Equation 
10. Figure 3 shows the resulting reference control input 
when the rigid body spacecraft model is considered in the 
design. The control input is modified from Figure 2 to 
satisfy the 30 degree slew maneuvers for all three axes using 
Equation 10. When this reference control designed for rigid 
spacecraft is applied to the flexible spacecraft, considerable 
residual vibration will result as shown in Figure 4. The 
maximum amplitude of the residual vibration at the end of 
the maneuver is close to 1 degree from yaw angle trajectory 
in Figure 4.  

0 10 20 30 40 50 60
-20

0

20

u x

0 10 20 30 40 50 60
-20

0

20

u y

0 10 20 30 40 50 60
-20

0

20

u z

Time (sec)  
Figure 3: Reference Feedforward Control Profile Based on 

Rigid Body Spacecraft Model 
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Figure 4: Resulting Trajectories with Reference 

Feedforward Control in Figure 3 
 
Figure 5 shows the shaped input from Figure 2 using the 
frequencies of the system. The frequencies of the system 
will be different from the frequencies in Λ  matrix since the 
system frequency is computed from the whole system 
represented in Equation 11. The total maneuver time has 
increased as a result since each frequency in the system will 
add half of the damped period to the maneuver time. Figure 
6 shows the reference control profile when the shaped bang-

bang control in Figure 5 is modified to satisfy boundary 
conditions using Equation 15. The resulting trajectories 
showed good results with very little residual vibration 
(maximum residual vibration amplitude of 0.03 degree) and 
very little rigid body angular and angular rate errors. 
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6. EXPERIMENT WITH THE SPACECRAFT 
SIMULATOR 

 

 
Figure 8: NPS Three-Axis Spacecraft Simulator 2 

 
Figure 8 shows the current three-axis spacecraft simulator, 
which is an experimental test-bed for the Bifocal Relay 
Mirror Spacecraft. The key components of the spacecraft 
simulator include Spherical Air-Bearing, PC104 Onboard 
Computer with TCP/IP Ethernet Port, Serial Port, Analog 
I/Os, and Digital I/Os, Matlab/Simulink (via xPC Target) 
Real-Time Control Interface, IMU with integrated 3-Axis 
Fiber Optic Laser Gyros, Reconfigurable Control Moment 
Gyroscope (CMG) Array, a IR sensor, a Magnetometer and 
2 inclinometers, an Automatic Mass Balancing System, and 
Passive Safety bumpers. Three flexible mass simulators are 
also installed on the test-bed, which provide low frequency 
vibration (~0.1Hz) for all three axes and comprise about 9% 
of the principal moment of inertia. A detailed drawing of 
each flexible mass is shown in Figure 11. An adjustable 
length torsional rod provides stiffness for the flexible 
masses. The flexible masses can be securely locked to 
simulate rigid body spacecraft when desired. Before 
performing slew maneuver experiments, system 
identification of the spacecraft should be performed. When 
the flexible mass simulators are locked in places, the rigid 
spacecraft has an inertia matrix of  

287.58 40.25 2.91
40.25 262.70 19.09
2.91 19.09 427.65

J
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

           (16) 

The value of the inertia matrix is determined using least 
square method using momentum balance equation. It has 
been assumed that the rigid-elastic coupling is zero simply 
because it is currently not available. All three flexible 
masses have frequencies very close to 0.1Hz with damping 
values of around 1%. Applying these values into Equation 
11 provides the mathematical model of the current 
spacecraft simulator. Because we ignored the rigid-elastic 
coupling, it is expected that additional error will be present 
for slew maneuver control. Initial attitude is [ ]0 0 0 T  

degrees and the final attitude is [ ]0 0 17 T  degrees for 
slew maneuver experiments. First step for slew control 

design is to determine control profile and trajectories for a 
simple uncoupled system. In the current spacecraft test-bed, 
three Control Moment Gyroscopes (CMGs) are used as 
primary actuators. This CMG array will exhibit a 
singularity state for certain geometric configurations of 
gimbal angles. For an agile maneuver, it is highly desirable 
to utilize the full momentum envelop of the CMG array 
without encountering singularity problems. The CMG 
steering law is written as 

1( )   ( )h A A hδ δ δ δ −= → =& && &     (16) 
where h&  is the torque from the CMG array, δ&  is the 
gimbal rate vector, and ( )A δ  is the Jacobian matrix 
determining the gimbal steering law. The singularity 
condition corresponds to the case where the matrix ( )A δ  
becomes singular. When the matrix ( )A δ  is singular, the 
gimbal rate cannot be determined from the amount of torque 
required. In addition, the maximum control torque from the 
CMG will be limited by the gimbal rate such that 

max max( )h A δ δ=& &           (17) 
Since the matrix ( )A δ  is time-varying, the maximum 
available torque is not constant and Equation 3 cannot be 
used. Instead of using Equation 3 to determine the control 
torque for uncoupled system, simple parameter optimization 
routine is formulated to determine the gimbal rate which 
satisfies the slew boundary conditions. Gimbal rates of three 
CMGs are parameterized as versine profiles. The uncoupled 
system used for optimization ignores the flexibility and the 
cross coupling. 

( ) h( )dJ Aω δ δ ω δ= − − ×&&             (18) 
It is noted that the non-diagonal elements of the inertia 
matrix is also ignored to formulate a simpler problem. The 
resulting gimbal rate profile which satisfies the constraints 
are shown in Figure 9. The maximum gimbal rate is limited 
by 0.5 rad/s. The gimbal rate cannot be parameterized as 
bang-bang in real systems since CMG system cannot change 
the rate instantaneously. Therefore, versine profile is used 
instead. 
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Figure 9: Gimbal Rate Profile for Uncoupled System 
 
The corresponding control torque profile for Figure 9 is 
shown in Figure 10. This control profile is used to create 
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reference trajectories of the system. When only the rigid 
body is considered, the reference control torque profile is 
computed as shown in Figure 11. In order to apply this 
control to our spacecraft simulator with CMGs, the required 
torque should be converted into a required gimbal rate 
command. Figure 12 shows the required gimbal rate when 
steering law in Equation 16 is used. At around 4 seconds in 
Figure 12, gimbal rate command showed a very large value 
which indicates that the system is singular. 
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Figure 10: Control Torque for Uncoupled System 

0 5 10 15 20 25 30
-1

0

1

u re
fx

0 5 10 15 20 25 30
-1

0

1

u re
fy

0 5 10 15 20 25 30
-10

0

10

u re
fz

Time (sec)  
Figure 11: Reference Control Torque Based on Rigid Body 

Spacecraft Model 
 
Therefore, this gimbal rate command cannot be used in its 
current form. In fact, when the optimization problem is 
solved to determine the gimbal rate profile in Figure 9, the 
gimbal trajectories also undergoes singular states. However, 
no inversion is necessary to solve the optimization problem, 
and smooth control profile can be obtained. On the other 
hand, solving for gimbal rate from the control torque cannot 
be simply determined. For experiments, gimbal rate for 
uncoupled system will be used for residual vibration 
demonstration purpose. Figure 13 shows input shaped 
control profiles using ZVD at 0.1 Hz from the control torque 
in Figure 10. The slew trajectories were generated and the 
resulting control torque profile is shown in Figure 14. 
Luckily, when the reference control torque profile shown in 
Figure 14 is used to determine the reference gimbal rate 

profiles, no singularity has encountered. This is due to the 
fact that the amplitude of the control has decreased as a 
result of input shaping and the gimbal system stayed within 
the singularity-free momentum space. The resulting 
reference gimbal rate profile with input shaping is shown in 
Figure 15. 
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Figure 12: Gimbal Rate Profile for Generating Control 

Torque in Figure 11 
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Figure 15: Gimbal Rate Profile with Input Shaping 
 
For comparison purposes, two different control profiles 
shown in Figure 9 and Figure 15 are applied to the 
spacecraft simulator. Only feedforward control is applied 
because feedback control may create singularity problems 
near singular states. In order to close a feedback loop about 
the reference trajectories, the control profile could be 
redesigned to stay within the singularity-free region. 
However, with small usage of momentum space, maneuver 
will be slow and flexibility and non-linear effect will not be 
exemplified  
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Figure 16: Spacecraft Simulator Attitude Trajectories with 

Gimbal Rate shown in Figure 9 
 
Figure 16 Shows the attitude trajectory of the spacecraft 
simulator when the gimbal rate shown in Figure 9 is applied 
to the experimental test-bed. It showed a residual vibration 
(maximum amplitude of around 1 deg) at the end of the 
maneuver. Figure 17 shows the results when the gimbal rate 
shown in Figure 15 is applied. Even though the rigid-elastic 
coupling is ignored in the spacecraft model, the residual 
vibration is almost completely eliminated. Figure 16 showed 
a large steady-state angular error in yaw angle since the 
trajectories are based on the rigid spacecraft. Figure 17 
shows some residual rigid body angular rate in yaw angle 
due to zero elastic-rigid coupling assumption. 

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

ro
ll 

(d
eg

)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

ya
w

 (d
eg

)

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

pi
tc

h 
(d

eg
)

 
Figure 17: Spacecraft Simulator Attitude Trajectories with 

Gimbal Rate shown in Figure 15 
 

6. CONCLUSION 
In this paper, input shaping technique is applied to the 
flexible nonlinear spacecraft problems. First control profile 
is designed by ignoring nonlinear and flexible terms in the 
equation of motion. This control input is used for input 
shaping. The resulting shaped input is further modified to 
include the nonlinear and coupling effect. It has shown in 
the simulation and experiments that this method can be 
effective in designing slew trajectories for flexible 
spacecraft. Further study is necessary to compare 
performances with other leading alternative techniques for 
slew maneuvers and complete demonstration of the 
techniques using the spacecraft simulator. 
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