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Abstract: This paper investigates the problem of stability analysis for a polytopic system with time-
varying delay via parameter-dependent Lyapunov functions. By a relaxation approach with slack matrices 
and a descriptor model transformation, a new robust delay-dependent stability criterion is expressed as a 
set of linear matrix inequalities (LMIs) with less computational burden. This criterion combined with fault 
tolerant techniques can be employed for robust reliable controller synthesis for an aircraft dynamic system 
with multiple operating points. The resulting flight control system remains stable when actuator faults 
occur. The simulation results illustrate the effectiveness of the proposed approach.  

 

1. INTRODUCTION 

During the past years, the robust stability analysis of linear 
systems subject to time-invariant uncertainties has attracted 
considerable attention. For polytopic uncertainty the Edge 
theorem provides stability conditions. Undoubtedly, the 
Lyapunov theory is one of the main approaches to deal with 
such systems. However, the quadratic stability, which uses a 
single or parameter-independent Lyapunov function for 
testing the stability, may lead to conservativeness when 
uncertain parameters are time-invariant. Motivated by this 
fact, Lyapunov functions depending on uncertain parameters 
have been proposed to reduce quadratic stability 
conservatism. Sufficient conditions for the existence of an 
affine parameter-dependent Lyapunov function have been 
introduced in (Ramos and Peres, 2002; Vesely, 2003; Cao 
and Lin, 2004) for polytopic uncertainty. In (Ramos and 
Peres, 2002), sufficient conditions for robust stability of a 
polytopic system are proposed based on a set of constraints. 
The constraints, however, may produce conservativeness. In 
(Vesely, 2003), by replacing the unity matrix with a positive 
definite matrix a less conservative result is presented as the 
modification of that of (Ramos and Peres, 2002). But 
unfortunately, the modified constraints give rise to 
conservativeness likewise. Besides, the results of (Gahinet et 
al., 1996; Ramos and Peres, 2002; Vesely, 2003) are not 
applicable for controller synthesis. By introducing a slack 
variable, (Cao and Lin, 2004) recently established a new 
condition for robust stability of uncertain systems. Beside the 
reduced conservatism, the conditions do not involve any 
product of the matrices in the parameter dependent Lyapunov 
function and system matrices. As such, this stability 
condition can be adapted for controller synthesis. 

Time-delay is a source of performance degradation and 
instability in many cases. Therefore, the stability problem of 

time-delay systems is of theoretical and practical importance. 
Several results on robust control of time-delay systems 
subject to polytopic uncertainties have been reported in 
(Souza and Li, 1999; Xia and Jia, 2003; Yu, 2004; Fridman 
and Shaked, 2003). In (Souza and Li,1999), the authors 
examine the problem of H∞ control for uncertain systems 
with a constant time delay. The obtained results can be easily 
extended to polytopic systems. Although simulation 
examples are presented to demonstrate the potentials of the 
proposed method, the result derived remains conservative. In 
(Xia and Jia, 2003; Yu, 2004), problems of robust stability 
and stabilization for polytopic systems with a constant time-
delay are considered via parameter-dependent Lyapunov 
functionals. However, the proposed criterion depends on 
extra and positive scalar parameters, which increases 
computational burden and produces conservativeness. In 
(Fridman and Shaked, 2003), a sufficient condition is 
proposed for stability of polytopic systems, which ensures a 
larger upper bound for time-varying delays. But 
unfortunately, a nonlinear matrix inequality is obtained when 
this condition is employed for controller synthesis. 
Consequently, extra scalars that must be positive are 
introduced to secure a stabilizability condition in terms of 
LMIs, which causes conservativeness likewise. Recently, a 
descriptor system approach was proposed for time-delay 
systems. It reduced significantly the over-design compared 
with traditional methods (Fridman and Shaked, 2002; Gao 
and Wang, 2003). This approach was also applicable for 
polytopic systems. 

So, in this paper, the problem of robust stability analysis for 
polytopic systems with time-varying delays is investigated by 
parameter-dependent Lyapunov functions. With the 
introduction of a slack variable, a descriptor system approach 
is adopted to obtain a new delay-dependent stability criterion 
in terms of LMIs. This criterion reduces the computational 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11397 10.3182/20080706-5-KR-1001.2647



 
 

     

 

burden involved in solving LMIs. In the derivative of the 
Lyapunov functional, with the introduction of the augmented 
vector TT T( ) ( ) ( )t x t x tξ ⎡ ⎤⎣ ⎦ , the term 2 T

2( ) ( ) ( )h x t P x tλ  is 

formulated as T
2

2

0 0
( ) ( )

0 ( )
t t

h P
ξ ξ

λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, which avoids 

replacing ( )x t  in 2 T
2( ) ( ) ( )h x t P x tλ  with the state equation. In 

consequence, the Lyapunov matrix 2P , which handles time 
delay, is not involved in any product term with system 
matrices A  and dA . The result is applied to robust reliable 
control of an aircraft with multiple operating points. Finally, 
the performance of the obtained controller is presented based 
on simulation results. 

2. ROBUST STABILITY 

Consider the following system with a time-varying delay 

( ) ( ) ( ) ( ) ( ( ))
( ) ( ), [ ,0]

dx t A x t A x t t
x t t t h

λ λ τ
φ

= + −

= ∈ −
,                (1) 

where ( ) nx t R∈  is the state vector and the initial vector φ  is a 
continuously differentiable function from [ ,0]h−  to nR . We 
assume that ( )tτ  a differentiable function, satisfying 

0 ( ) , ( ) 1t h t dτ τ≤ ≤ ≤ < .                     (2) 
Suppose that system matrices ( )A λ  and ( )dA λ  belong to a 
polytopic uncertainty domain 1Ω . In this case, system 
matrices ( ( ), ( ))dA Aλ λ  can be written as follows 

1
1

( ( ), ( )) ( , )
N

d i i di
i

A A A Aλ λ λ
=

= ∈Ω∑ ,                (3) 

where T
1[ , , ] N

N Rλ λ λ ∈  denotes a vector of uncertain and 
time-invariant real parameters satisfying  

1

1, 0
N

i i
i

λ λ
=

= ≥∑ .                                 (4) 

The following inequalites will be used to prove our results. 

Lemma 1. (Kharitonov and Chen, 2003). For any constant 
matrix 0P >  and differentiable vector ( )x t  we have  

T

( ) ( )

[ ( ) ] [ ( ) ]
t t

t t t t

x s ds P x s ds
τ τ− −
∫ ∫                                           

T T

( )

( ) ( ) ( ) ( ) ( )
t t

t t t h

t x s P x s ds h x s P x s ds
τ

τ
− −

≤ ⋅ ≤ ⋅∫ ∫          (5) 

Lemma 2. (Yao et al.,  2004). For any constant matrix  1R  
and 2R  , a positive definite diagonal matrix U  and a time-
varying diagonal matrix Σ   satisfying | | UΣ ≤ ,we have 

T T T T 1 T
1 2 2 1 1 1 2 2R R R R RUR R URα α −Σ + Σ ≤ + , where scalars 0α > , 

1 2 qdiag{ , , , }σ σ σΣ = , 1 2 q| | diag{| |,| |, ,| |}σ σ σΣ = . 

We represent system (1) in the descriptor form 
( ) ( )
( ) ( ) ( ) ( ) ( ( ))d

x t t
t A x t A x t t

η
η λ λ τ

=
= + −

.                (6) 

Now, the following theorem presents a new delay-dependent 
and rate-dependent robust stability result. 

Theorem 1. System (1) with parameter uncertainty (3) and 
time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable if there exist symmetric positive 
definite matrices 0iP , 1iP  2iP  and matrices 3P , 4P  such that 

T T T
11 0 3 4 3 2

T 2 T
4 4 2 4

1 2

* 0
* *

i i di i

i di

i i

P P A P P A P
P P h P P A

dP P

⎡ ⎤Δ − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 1, ,i N= ,       (7)              

where T T
11 3 3 1 2i i i iP A A P P PΔ = + + − , 1d d= − . 

Proof: Define the following Lyapunov–Krasovskii functional 

T T
0 1

( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )
t

t t

V t x t P x t x s P x s ds
τ

λ λ λ
−

= + ∫  

  T
2( ( )) ( ) ( ) ( )

t

t h

h s t h x s P x s dsλ
−

+ ⋅ − −∫ ,           (8) 

where 

0 0
1

( )
N

i i
i

P Pλ λ
=

= ∑ , 1 1
1

( )
N

i i
i

P Pλ λ
=

= ∑ , 2 2
1

( )
N

i i
i

P Pλ λ
=

= ∑ .     (9) 

Then, the time derivative of ( , )V t λ  is given by 
T T

0 0( , ) ( ) ( ) ( ) ( ) ( ) ( )V t x t P x t x t P x tλ λ λ= +  
T

1(1 ( )) ( ( )) ( ) ( ( ))t x t t P x t tτ τ λ τ− − − −  
                T 2 T

1 2( ) ( ) ( ) ( ) ( ) ( )x t P x t h x t P x tλ λ+ +  

   T
2( ) ( ) ( )

t

t h

h x s P x s dsλ
−

− ∫ .                    (10) 

From (10), lemma 1 and Leibniz–Newton formula, we have  
T T T

0 0

T 2 T
1 1 2

T
2

( ) ( )

T

( , ) ( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( ( ))

             ( ) ( ( )) ( ) ( ) ( ) ( ) ( )

              ( ) [ ( ) ] ( ) [ ( ) ]

( )
          

( )

t t

t t t t

V t x t P x t x t P x t d x t t

P x t t x t P x t h x t P

x t x s ds P x s ds

x t
t

τ τ

λ λ λ τ

λ τ λ λ

λ

η

− −

≤ + − − −

× − + +

× −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∫ ∫
TT

00 3
T

3 44

T T
1 2 3

T
4

T
1 2

( ) 0( ) ( )( )
0 00

( ) ( ) ( )( ) ( )
              

( ) ( ) 00

( )
              ( ( ))( ( ) ( )) ( ( ))

( )

Px t x tP P
P PP

x t x t x tP P P
t t P

x t
x t t dP P x t t

t

λλ

λ λ
η η

τ λ λ τ
η

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
× + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡
− − + − + ⎢

⎣

T

T
2

2
2

0 0 ( ) ( ) ( )
             ( ( ))

0 ( ) ( ) ( ) 0
x t x t P

x t t
h P t t

λ
τ

λ η η

⎤
⎥
⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
× + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 [ ]T
2

( )
( ( )) ( ) 0

( )
x t

x t t P
t

τ λ
η

⎡ ⎤
+ − ⎢ ⎥

⎣ ⎦
.                        (11) 

Note that one can obtain  
( ) 1 0 ( )
0 0 0 ( )

x t x t
tη

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                           (12) 

 
( ) 0 1 ( )

( ) ( ) ( ) ( ) 1 ( )
t x t

t A x t A t
η

η λ λ η
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
              (13) 

Substituting (6) into (11) and from (12) and (13), we obtain 
T

T 0 3
T

4

T
T 0 3

T
4

( )( )
( , ) ( )

( ) ( ) ( )0

0( )
             ( )

( ) ( ( ))0 d

tP P
V t t

t A x tP

P P
t

A x t tP

ηλ
λ ξ

η λ

λ
ξ

λ τ

⎡ ⎤ ⎡ ⎤
≤ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
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TT
0

3 4

0 1 2T

3 4

T
1 2

T T
2

2

( ) 0 0( )
    ( )

( ) ( ( ))( ) ( ) ( )

( ) 0 ( ) ( ) 0
    ( ) ( ) ( )

0 0

    ( ( ))( ( ) ( )) ( ( ))
0 0

    ( ) ( ) (
0 ( )

d

Pt
t

P P A x t tt A x t

P P P
t t t

P P

x t t dP P x t t

t t
h P

λη
ξ

λ τη λ

λ λ λ
ξ ξ ξ

τ λ λ τ

ξ ξ ξ
λ

⎡ ⎤ ⎡ ⎤⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ −− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
× +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
− − + −

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

[ ]

2

T
2

TT T
T T 33 0 3

TT T
44 4

T T
T 3 4

0 3 4

1 2T
2

( )
) ( ( ))

0

    ( ( )) ( ) 0 ( )

( )( ) ( )
 ( ) ( ) ( )

( )( )

( ) ( )
    ( ( )) ( ) ( )

( )

( ) ( ) 0
    ( )

0

d

d

P
t x t t

x t t P t

P AP A P P
t t t

P AP A P

A P A P
x t t t t

P P P

P P
t

h

λ
τ

τ λ ξ

λλ λ
ξ ξ ξ

λλ

λ λ
τ ξ ξ

λ

λ λ
ξ

⎡ ⎤
−⎢ ⎥

⎣ ⎦
+ −

⎡ ⎤⎡ ⎤−
= + ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
× − + ⎢ ⎥− −⎣ ⎦

−
+

[ ]

2

2T T
1 2

T
2

TT
T 3

T
4

( )
( )

( )
    ( ( ))( ( ) ( )) ( ( )) ( )

0

    ( ( )) ( ( )) ( ) 0 ( )

( )
    ( ( )) ( )

( )
d

d

t
P

P
x t t dP P x t t t

x t t x t t P t

P A
x t t t

P A

ξ
λ

λ
τ λ λ τ ξ

τ τ λ ξ

λ
τ ξ

λ

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
− − + − + ⎢ ⎥

⎣ ⎦
× − + −

⎡ ⎤
+ − ⎢ ⎥

⎣ ⎦

 

T( ) ( )
 ( )

( ( )) ( ( ))
t t

x t t x t t
ξ ξ

λ
τ τ

⎡ ⎤ ⎡ ⎤
= Ξ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,                               (14) 

where 
TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ , 

T
3 2

T
4

1 2

( ) ( )
( )

( ) ( )
* ( ) ( )

d

d

P A P
P A

dP P

λ λ
λ

λ λ
λ λ

⎡ ⎤⎡ ⎤+
Γ⎢ ⎥⎢ ⎥Ξ = ⎢ ⎥⎣ ⎦

⎢ ⎥− −⎣ ⎦

, 

T T
T T3 3

0 3 4
1 2

T 2
4 4 2

( ) ( )
( ) ( )

( ) ( ) ( )
* ( )

P A A P
P P A P

P P
P P h P

λ λ
λ λ

λ λ λ
λ

⎡ ⎤+
− +⎢ ⎥Γ = + −⎢ ⎥

⎢ ⎥− − +⎣ ⎦

.   (15) 

According to (7) and (15), we have 
T

3 2
T

4
1

1 2

( ) 0

*

di iN
i

i di
i

i i

P A P
P A

dP P

λ λ
=

⎡ ⎤⎡ ⎤+
Γ⎢ ⎥⎢ ⎥Ξ = <⎢ ⎥⎣ ⎦

⎢ ⎥− −⎣ ⎦

∑ ,               (16) 

where  
T T

T T3 i 3
0 3 i 4

1 2
T 2

4 4 2*

i
i

i i i

i

P A A P
P P A P

P P
P P h P

⎡ ⎤+
− +⎢ ⎥Γ = + −⎢ ⎥

⎢ ⎥− − +⎣ ⎦

.              (17) 

From (14) and (16), we get ( , ) 0V t λ < , which completes the 
proof according to the Lyapunov theory. 

Remark 1. In Theorem 1, with the introduction of the slack 
variables 3P , 4P  and the corresponding augmented vector 

TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ , the robust stability criterion (7) does 
not involve the product between the Lyapunov matrix 0P  and 
system dynamic matrices A  and dA . Besides, the augmented 
vector can be used to formulate 2 T

2( ) ( ) ( )h x t P x tλ  as 

T
2

2

0 0
( ) ( )

0 ( )
t t

h P
ξ ξ

λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

, which avoids replacing ( )x t  in the 

term 2 T
2( ) ( ) ( )h x t P x tλ  with the state equation and so 

eliminates the product between the Lyapunov matrix 2P  and 
system matrices A  and dA . Hence, for (7), 2iP  are not 
required to be the same, but the slack variables  3P  and 4P   
are. So, it leads to a less conservative condition, as there are 
no other constraints imposed on 3P  and 4P . 

Remark 2. A stability criterion was also given in Theorem 1 
of (Fridman and Shaked, 2003). This criterion, however, 
requires more matrix variables. Consequently, the dimension 
of (12a) in (Fridman and Shaked, 2003) becomes higher than 
that of (7) in this paper ( 7n vs. 3n ). The computational 
burden involved in solving these inequalities is increased 
accordingly, which can be verified through the next example. 

The example below demonstrates the stability criterion (7). 

Example 1: Consider system (1) with the following matrices 
borrowed from (Xia and Jia, 2002) 

1

0.2 0
0 0.09

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

2 1
0 2

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

1.9 0
0 1

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

1

0.1 0
0.1 0.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

0 1
1 0dA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

0.9 0
1 1.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

. 

Several previous stability conditions have been applied to this 
system. For constant delay, the upper bound h   is found to be 
0.0853 by (Souza and Xi Li, 1999), 0.4149 by (Xia and Jia, 
2002), 4.2423 by (Fridman and Shaked, 2003). According to 
Theorem 1, it is found that the system is robustly stable for 

4.2423h = , which means that Theorem 1 yields better results 
than those obtained in (Souza and Xi Li, 1999; Xia and Jia, 
2002) and the same with that of (Fridman and Shaked, 2003). 
To provide relatively complete information, we calculate the 
upper bound h  for different time-varying cases, listed in 
Table 1, where the acronyms have the following meaning 

SOU    stability criterion (Souza and Xi Li, 1999) 
XJA     stability criterion (Xia and Jia, 2002) 
XJII     stability criterion (Xia and Jia, 2003) 
FSK     stability criterion (Fridman and Shaked, 2003) 
TEM    Theorem 1 proposed in this paper. 

Table 1. Delay bounds by different approaches 

d  0 0.1 0.5 0.9 Any d

SOU 0.0853 - - - - 

XJA 0.4149 - - - - 

XJII 0.6142 - - - - 

FSK 4.2423 3.3555 1.8088 0.9670 0.7963

TEM 4.2423 3.3555 1.8088 0.9670 0.7963
Besides, the numbers of iterations by (Fridman and Shaked, 
2003) and Theorem 1 are presented in Table 2 to compare 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11399



 
 

     

 

computational burden. It can be seen from these tables that 
our method achieves exactly the same upper bound of delay 
with less computational effort. 

Table 2. Number of iterations by different approaches 

d  0 0.05 0.1 0.5 0.9 

FSK 46 48 46 35 25 

TEM 29 29 28 24 17 
 

3. APPLICATION TO FLIGHT CONTROL 

In this section, we apply the results of section 2 to a robust 
reliable flight control problem. The equations of longitudinal 
motion of the aircraft are described by 

' '

' '

( ) ( )( ) ( )( ) ( ( ))
( ) ( )( ) ( )( ) ( ( ))

E PTVq

E PTVq

Z ZZ Zt t t
M MM Mq t q t t

δ δα

δ δα

ρ ρρ ρα α τ
ρ ρρ ρ τ

⎡ ⎤ − ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

( ) ( )( ) ( )
( ) ( )( ) ( )

qE

qPTV

Z Zt t
M Mt q t

α

α

ρ ρδ α
ρ ρδ

⎡ ⎤⎡ ⎤ ⎡ ⎤
× + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
                       (18) 

where ( )tα  and ( )q t  represent angle-of-attack (AOA) and 
pitch rate, respectively; Eδ  and PTVδ  represent symmetric 
elevator position and pitch thrust velocity nozzle position, 
respectively; ( , )M hρ =  denotes Mach and altitude; ( )tτ  
represents a time-varying flight delay. Jet aircrafts typically 
have multiple operating flight conditions that correspond to 
the convex combination of given operating points.  
Denoting [ ]T( ) ( ) ( )x t t q tα= , [ ]T( ) ( ) ( )E PTVu t t tδ δ= , we can 
rewrite the aircraft system as 

( ) ( ) ( ) ( ) ( ( )) ( ) ( )dx t A x t A x t t B u tλ λ τ λ= + − + ,          (19) 
where ( ) mu t R∈  is control input, system matrices satisfies 

3

2
1

( ( ), ( ), ( )) ( , , )d i i di i
i

A A B A A Bλ λ λ λ
=

= ∈ Ω∑ .         (20) 

Let ( )fu t  denotes the signal from the actuator that has failed. 
Then the following actuator fault model is adopted  

( ) ( )fu t Fu t= ,                               (21) 
where the fault matrix F  satisfies 

1 2{ diag[ , , , ],
              0 , 1, 1, , }.

m

lj j uj uj

F F f f f
f f f f j m

ψ∈ =
≤ ≤ ≤ ≥ =

         (22) 

Define 
0 01 02 0=diag[ , , , ]mF f f f , 1 2=diag[ , , , ]mW w w w , 

1 2=diag[ , , , ]mL l l l , 1 2| | =diag[ | |,| |, ,| | ]mL l l l ,       (23) 

where 0
1 ( )
2j lj ujf f f= + , uj lj

j
uj lj

f f
w

f f
−

=
+

, 0

0

j j
j

j

f f
l

f
−

= . 

From  (23), we have 
0 ( ),| |F F I L L W I= + ≤ ≤ .                       (24) 

Obviously when 0jf = , the fault model (21) corresponds to 
the case of the j th actuator fault. When 1jf = , it corresponds 
to the case of no fault in the j th actuator. 
When 0 , 1lj j uj ujf f f f≤ < < ≥ , and 1jf ≠ , it corresponds to the 
case of partial fault in the j th actuator.  

The design problem is to find a state feedback controller such 
that the closed-loop system is robustly stable for all 
admissible fault matrices F . 
Design a state feedback controller 

( ) ( )u t Kx t= .                                 (25) 
Then the closed-loop system is given by 

( ) ( ( ) ( ) ) ( ) ( ) ( ( ))dx t A B FK x t A x t tλ λ λ τ= + + − .        (26) 
The following theorem presents a sufficient condition for the 
existence of the robust reliable controller. 

Theorem 2. The system (26) is robustly stable if for all 
admissible fault matrix F , there exist symmetric positive 
definite matrices 0riX , 1riX  2riX , matrices 3rX , rY  such that 

T T T T
11 0 3 3 3 2

T 2
3 3 2 3

1 2

* 0
* *

ri r r i r i di r ri

r r ri di r

ri ri

X X X A Y FB A X X
X X h X A X

dX X

⎡ ⎤Δ − + + +
⎢ ⎥Π = − − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

1, ,i N= ,                                                                (27) 
where T T T T

11 3 3 1 2i r r i i r r i ri riA X X A B FY Y FB X XΔ = + + + + − . The co-
rresponding state feedback gain is given by 1

3r r rK Y X −= . 

Proof: By defining, T
0 3 0 3 0i riP P X P= > , T

1 3 1 3 0i riP P X P= > , 
T

2 3 2 3 0i riP P X P= > , 1
3 3rP X −= ， 3r r rY K X= , multiplying (27) by 

T T T
3 3 3diag{ , , }P P P  and 3 3 3diag{ , , }P P P , on the left and the right, 

respectively, we obtain 

T T T
11 0 3 3 3 2

T 2 T
3 3 2 3

1 2

* 0
* *

i cli di i

i di

i i

P P A P P A P
P P h P P A

dP P

⎡ ⎤Π − + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 1, ,i N= ,   (28)                 

where T T
11 3 3 1 2cli cli i iP A A P P PΠ = + + − ， cli i i rA A B FK= + . For the 

system (26), application of Theorem 1 ends the proof. 

A sufficient condition for the existence of robust standard 
controller without considering any fault is obtained by 
Theorem 2 with F I= . 

Corollary 1. The system (26) with F I=  is robustly stable if 
there exist symmetric positive definite matrices 0siX , 1siX  

2siX  and matrices 3sX , sY  such that 

T T T T
11 0 3 3 3 2

T 2
3 3 2 3

1 2

* 0
* *

s si s s i s i di s si

s s si di s

si si

X X X A Y B A X X
X X h X A X

dX X

⎡ ⎤Δ − + + +
⎢ ⎥− − + <⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

1, ,i N= ,                                                                  (29) 
where T T T T

11 3 3 1 2s i s s i i s s i si siA X X A BY Y B X XΔ = + + + + − , 1d d= − . 
The state feedback gain is given by 1

3s s sK Y X −= . 

Remark 3. A relevant result was also given in (Fridman and 
Shaked, 2003). With the introduction of extra scalars α  and 
ε , a stabilizability criterion is derived in terms of LMIs. This 
criterion depends upon α  and ε  that must be positive. Thus, 
this treatment, which estimates α  and ε  in advance to 
secure feasible solutions, causes conservativeness. 

The design method for robust reliable controller is presented 
as follows. 
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Theorem 3. The system (26) is robustly stable if there exist 
scalars 1 0α > , 2 0α > , symmetric positive definite matrices 

0riX , 1riX  2riX  and matrices 3rX , rY  such that 

T T
11 12 3 2

22 3

1 2
1

1
1

2

* 0 0
0* * 0 0

* * * 0
* * * *

di r ri r r

di r

ri ri

A X X Y Y
A X

dX X
W

W
α

α

−

−

⎡ ⎤Λ Λ +
⎢ ⎥Λ⎢ ⎥
⎢ ⎥ <− −
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1, ,i N= , (30)                                                 

where T T T T
11 3 3 0 0 1 2 1 0i r r i i r r i ri ri iA X X A B F Y Y F B X X B FαΛ = + + + + − +
T

0( )iW B F× , T T T T
12 0 3 3 0ri r r i r iX X X A Y F BΛ = − + + , T

22 3 3r rX XΛ = − −
2 T

2 2 0 0( )ri i ih X B F W B Fα+ + . The corresponding state feedback 
gain is given by 1

3r r rK Y X −= . 

Proof:  From (24) and (27), we obtain 

11 12 3 2

22 3

1 2

*
* *

di r ri

di r

ri ri

A X X
A X

dX X

⎡ ⎤Λ Λ +
⎢ ⎥Π = Λ⎢ ⎥
⎢ ⎥− −⎣ ⎦

  

T T
0 0 0

0

( ) ( ) 0
0 0

0 0 0

i r i r i r

i r

B F LY B F LY B F LY
B F LY

⎡ ⎤+
⎢ ⎥+ ⎢ ⎥
⎢ ⎥⎣ ⎦

.            (31) 

where T T T T
11 3 3 0 0 1 2i r r i i r r i ri riA X X A B F Y Y F B X XΛ = + + + + − , 22Λ =

T 2
3 3 2r r riX X h X− − + . 

From lemma 2, we have 
T T

0 0 0

0

( ) ( ) 0
0 0

0 0 0

i r i r i r

i r

B F LY B F LY B F LY
B F LY

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

T 1 T 1 T
1 0 0 1 2

T
2 0 0

( ) 0 0
0 ( ) 0
0 0 0

i i r r r r

i i

B F W B F Y WY Y WY
B F W B F

α α α
α

− −⎡ ⎤+ +
⎢ ⎥≤ ⎢ ⎥
⎢ ⎥⎣ ⎦

.(32) 

From (30)-(32) and using Surch complement we have 0Π < , 
which completes the proof according to Theorem 2. 

4.  SIMULATION 

In this section, computer simulations are carried out to 
confirm the validity of the proposed method. For each 
operating point, system matrices are given in the Appendix. 
The flight delay satisfies ( ) 0.103 0.1sint tτ = + , from which it 
is known that h  and d  are 0.203 and 0.1, respectively. 
According to Corollary 1, we get the following gain matrix 

sK  of standard controller. Setting 1 2diag{ , }F f f= , 10 1.2f≤ ≤ , 
and 20 1.6f≤ ≤  and by Theorem 3, gain matrix rK  of reliable 
controller is obtained as follows. 

2.4864 2.3775
15.6685 11.3463sK

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 0.0020 0.0016
0.0005 0.0004rK

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

We compare the performance of the controllers above to 
demonstrate the effectiveness of our method. Fig. 1-2 show 
normal state responses using the standard controller and 

reliable controller, respectively.  It is obvious that both 
controllers make the corresponding flight control system 
robustly stable in the case of no actuator fault. Especially the 
former indicates that the closed-loop system can be stabilized 
with good performance by Theorem 1.  
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Fig. 1. The state curve of standard control with no fault 
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Fig. 2. The state curve of reliable control with no fault 

Assume that the first actuator is susceptible to complete fault 
and the second actuator is normal, that is, diag{0,1}F = . In 
Fig. 3-4, fault state responses using these two controllers are 
given. It can be seen that the standard controller can not 
stabilize the closed-loop system when complete fault in the 
first actuator occurs, while our reliable controller can. 
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Fig. 3. The state curve of standard control with fault 
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Fig. 4. The state curve of reliable control with fault 

5. CONCLUSIONS 

This paper proposes a new stability criterion for a time delay 
system with polytopic uncertainties. The stability criterion is 
delay-dependent LMIs, which is derived by constructing a 
parameter-dependent Lyapunov function and employing a 
descriptor system transformation. A numerical example 
demonstrates that this criterion achieves exactly the same 
upper bound of delay with less computational effort. Based 
on the stability criterion combined with fault tolerant 
techniques, a robust reliable flight controller is designed for 
an aircraft. Computer simulations show that our stability 
criterion is applicable for control synthesis and the stability 
of the flight control system is guaranteed even in the case of 
actuator faults. 
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Appendix A. 

For each operating point, system matrices of the aircraft are  

1

1.1750 0.9871
8.4580 0.8776

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0.3525 0.2961
2.5374 0.2633dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

2

2.3280 0.9831
30.440 1.493

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

0.6984 0.2949
9.1320 0.4479dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

3

2.4520 0.9856
38.610 1.340

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 3

0.7356 0.29570
11.583 0.4020dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 

1

0.194 0.0359
19.29 3.803

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

0.3012 0.0587
38.430 7.8150

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

3

0.2757 0.0523
37.360 7.2470

B
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
. 
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