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Abstract: Real-time control of industrial processes has become an important issue in the
recent years. Advances in hardware and software technologies allow the use of single-processor
computers to perform real–time tasks. The paper first explains the basic elements of PC–based
real–time control systems. Then, it describes the general operation of WinMechLab, a real–time
single–processor platform for the simulation and control of mechanisms based on MS–Windows.
Finally, we show the application of this software tool in a simple control task of a direct–drive
didactic robot arm.

1. INTRODUCTION

In the recent years, as the complexity of industrial automa-
tion processes has increased, the need of faster and more
precise control systems has become apparent. Further,
the implementation of control systems dealing with high–
speed tasks requires dedicated hardware and sofware based
on real–time features.

Real–time systems are those where it is absolutely imper-
ative that their response occur within a required deadline.
They arise from the intersection of control and comput-
ing engineering. In fact, control engineers need real–time
systems to implement their algorithms, so most practical
control systems are real–time systems.

The traditional approach to implement real–time con-
trollers in industrial plants is to use several interconnected
computers; one or more embedded processors (e.g. DSPs)
are dedicated to I/O and control tasks, while a host com-
puter (usually a PC) is used exclusively for monitoring
purposes. This approach, however, is not only expensive,
but requires specific hardware.

An alternative is the use of high–performance personal
computers, which can implement several tasks in a single
processor. These PC–based control systems are character-
ized by being low–cost, flexible, and able to handle plen-
tiful software and hardware resources. Modern computing
systems, with high processing rates and memory capacity,
as well as the so–called real time operating systems (RTOS)
are the key features for the effective operation of the
single–processor architecture.

There exist some recent works on PC–based real–time con-
trol systems running on general–purpose RTOSs, such as
QNX (Loffler et al. [2002], YaGuang and WenHai [2006])
and Linux (Bellini et al. [2002], Macchelli and Melchiorri
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[2002], Basso et al. [2005]). Microsoft Windows is not
an RTOS per se, but we can use third–party real–time
extensions to add it up real–time features. One of those
extensions is RTX from Ardence (formerly VenturCom),
which has been used under a Windows NT platform (Mon-
roy et al. [2001], Campa et al. [2004], He et al. [2004]).

The aim of this paper is threefold. First, we illustrate
distinctive concepts of real–time control systems under the
MS–Windows operating system. Second, we present Win-
MechLab 2.0, a general purpose computing system for real-
time control of mechanisms that we have developed in the
Robotics Laboratory at CICESE Research Center (Campa
et al. [2004]). Release 2.0 includes some new features, such
as the ability of running under latest Windows versions,
and sharing information among computers (see Monroy
et al. [2007]). Third, we show the results of testing the
performance of this system in the control of a direct–drive
didactic robot arm.

2. WINDOWS–BASED REAL–TIME CONTROL

2.1 RTOS generalities

Important features of real–time systems are concurrent ac-
tivities, interprocess communication, and especially timing
requirements which lead to deterministic and predictable
behavior. To fulfill these demands in a personal computer,
it is necessary to employ a real–time operating system.

In general, a RTOS requires:

• Multitasking:
The ability to execute several tasks in an appar-

ently simultaneous fashion.
• Process’ threads that can be prioritized:

Each concurrent task is executed as a separate
block of information, which is called a thread. RTOSs
let to assign a priority to each thread, so as to control
the execution order.
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• A sufficient number of interrupt levels:
RTOSs use a program called the scheduler to inter-

rupt the execution of the current thread and figure
out which other to give control to next.

In general–purpose operating systems, task scheduling
depends of several factors and is commonly imprecise. In
a RTOS, however, scheduling must be done according to
a very rigid, preestablished criterion, so as to fulfill the
assigned timing for each task.

Some RTOSs are created for special (embedded) applica-
tions; others are for more general purpose. To the latter
kind belong QNX and RT-Linux. A drawback of these
RTOSs, however, is that they are utilized typically by
specific research groups but not by the common user.

It is worth mentioning here the Matlab/Simulink/RTW
platform from Mathworks. This is a a well–known com-
puter aided control system design (CACSD) tool that
provides a generic interface to the Real–Time Windows
Target (RTWT), a small real–time kernel using the built–
in PC clock as its primary source of timing (Mathworks
[1999]). However, as pointed out by Gambier [2004], the
RTWT lacks from multitasking/multithreading support,
and is not considered an RTOS.

2.2 A real–time extension for Windows

Since the appearing of Windows 1.0 by mid 1980’s, Mi-
crosoft has taken two parallel routes in operating systems.
On the one hand, there are “home versions” focusing on
simple applications for the common user; on the other, the
“professional versions”, directed to the IT user, have more
specialized features, such as networking and security.

Windows NT 1.0 (for New Technology) was the first
professional version of Windows; it is based on a new kernel
and introduces preemptive multitasking. This technology
has been preserved in the newer versions of Windows
(Windows 2000, Windows XP and Windows Vista are, in
fact, versions 5.0, 5.1 and 6.0 of Windows NT). For this
reason, in the subsequent, the term Windows NT will be
used to refer to any of these versions.

All of Windows NT operating systems have a model based
on processes and threads. Another important feature of
NT is its layered structure, from the low–level Hardware
Abstraction Layer (HAL), up to the several high–level NT
subsystems, designed to implement abstract services such
as emulating different target operating systems.

Due to these features, the Windows NT family of operating
systems becomes a platform which is appropriate for the
development of systems where it is required a major
control of hardware resources together with the flexibility
of a graphical environment. Windows NT functionality,
however, is not targeted for “hard” real–time applications,
and thus, the use of Windows NT is significantly restricted,
and often prevented, for these applications (VenturCom
[1999]).

To overcome this limitation, some software companies have
developed commercial modules that can be installed over
Windows NT to add it up some hard real–time features.
One of those modules is RTX (standing for Real–Time
eXtension) from Ardence (formerly VenturCom), which we

Fig. 1. Windows NT plus RTX architecture.

have chosen as the platform for implementing real–time
tasks under Windows NT.

RTX enables Windows NT to function as both a general–
purpose operating system and a high–performance RTOS
on the same computer. This is possible thanks to RTX’s
feature of handling two different kinds of real–time
processes inside Windows NT (VenturCom [1999]):

• Win32 Processes.
They use a subset of the standard Windows API

(Win32) to keep the advantage of using GUIs and
other Win32–only functions, but they also can use
some RTX real–time functions.

• RTSS Processes.
They are executed under the Real-Time Subsystem

(RTSS) which is installed by RTX. They use their own
scheduler, so that RTSS processes can achieve hard
real–time tasks.

Figure 1 shows a general scheme of the Windows NT
architecture, including RTX. Other key real–time features
of RTX are:

• High execution rates for periodic RTSS processes (10
kHz).

• Complete range of RTSS process priorities, from the
lowest 0 to the highest 127.

• Interprocess communication (among RTSS and/or
Win32 processes) via shared memory.

3. WINMECHLAB: A MECHATRONICS
LABORATORY FOR WINDOWS

3.1 General description

WinMechLab is an acronym standing for Windows Mecha-
tronics Laboratory and it is a general–purpose system for
the real–time control of mechanisms, running under MS–
Windows, plus RTX. WinMechLab permits the edition,
compilation, simulation, and execution of control algo-
rithms, written using a simple syntax, very similar to the
standard C language.

One of the main features of WinMechLab is its versatility
in handling hardware devices. WinMechLab 2.0 includes
interface libraries for some commonly used acquisition
boards: MultiQ and MultiQ-PCI from Quanser Consult-
ing, ServoToGo from ServoToGo Inc., and MFIO-3A from
Precision MicroDynamics. New acquisition boards can be
added, provided that I/O C–Language API functions for
those boards exist.
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Fig. 2. General block diagram for the operation of WinMechLab 2.0.

Besides, the kind of mechanisms that can be controlled by
WinMechLab is also diverse. Currently, this software tool
is used with several direct–drive mechanical arms in the
Robotics Laboratory at CICESE Research Center.

Another interesting feature of WinMechLab is its ability
for simulation of mechanisms, only providing a proper file
containing the corresponding model in state–variable de-
scription. Simulations obtained using WinMechLab match
pretty well to experimental results of our robotic systems.

Some additional features which are new in version 2.0 are
the ability of executing external real–time processes, and
the possibility of communicating two or more computers
via serial port or a TCP/IP connection. An interesting
application of these features can be found in (Monroy et
al. [2007]).

3.2 WinMechLab operation

Figure 2 shows a general diagram of WinMechLab’s oper-
ation. The main program (EDITOR) is where the user can
edit, compile and execute control algorithms. EDITOR in-
cludes a configuration panel (shown in Figure 3) where the
user can choose the mechanism to control, the acquisition
board, sampling periods, and communication parameters,
among many other things.

WinMechLab’s Editor operates in two modes:

• Edition Mode.
In this mode the user can edit the control algorithm

(.ROB file) by using the whole functionality of Win-
dows environment. In addition, the user can select the
variables he wants to manipulate during the execution
of the algorithm, and configure the general behavior
of WinMechLab.

• Execution Mode.
In this mode the user can start the execution

of the real–time processes needed to achieve the
control task. Before execution, the user can choose
the operations (numerical or graphical display, file
storage, serial or TCP/IP communications) to carry
out during execution stage.

The .ROB file is written using a C-Language syntax,
but with a very simple format. As an example, Figure

Fig. 3. WinMechLab configuration window.

Fig. 4. WinMechLab program for PID control

4 shows a program for implementing a PID controller in
WinMechLab. Note that only the equations of the control
algorithm are required (they are executed iteratively every
Sampling period seconds). Joint positions, velocities and
torques are handled internally by WinMechLab.
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Fig. 5. User’s flowchart for WinMechLab 2.0.

To enter Execution Mode, the .ROB file must be first com-
piled without errors. After the compilation, a real–time
program containing the control algorithm (CONTROL)
is generated. This program will be executed as an RTSS
process during the execution of the task.

Once in Execution Mode, the user can select among five
types of operations to carry out with the selected variables,
during the execution of the control algorithm: to display
them in numerical form, in graphical form, to store them in
a text file, or to send them to another computer via a serial
or TCP/IP port. These operations make use of real–time
processes of Win32 type, with relatively low priorities,
and execution periods selected by the user. Those optional
Win32 processes are:

• DISPLAY: Allows the numerical visualization of up
to twelve variables and six parameters.

• GRAPH: For the graphical display of variables during
execution. There can be up to six instances of this
process, running simultaneously.

• STORE: For the storage of up to twelve variables to
a file, in ASCII format.

• SERCOM: For communication to another computer,
via serial port (RS232).

• NETCOM: For communication via Ethernet, using
TCP/IP.

Besides these processes for variable manipulation opera-
tions, there are other high priority RTSS processes that
are executed simultaneously:

• RTIME: Its unique function is to continuously keep
the count of the real–time counter. This process is
executed every 0.1 ms, and given its importance, it
has the highest priority (127).

• CONTROL: This is the real–time process that was
generated after compiling the .ROB file. It is the
second in order of priority (126) and its execution
period is assigned by the user (default is 2.5 ms).

• SIMROB: It is an optional process that corresponds
to the simulator of the selected mechanism. It is
executed every 0.2 ms, with a priority of 125.

There exist another real–time process, called MONITOR,
which has some important functions, such as to display
the real time counter, to turn on and off the servomotors,
and to start and stop the execution of the controller.

Figure 5 shows the flowchart indicating the steps that a
registered user should follow to load, configure and execute
a real–time controller using WinMechLab 2.0. Notice that
the user can, at any time, go back to the edition of the
control algorithm, after running the controller. Moreover,
the user can easily commute between the execution of a
simulation or a real experiment. These features are very
useful during the controller design and gain tuning stages.

As an additional feature of WinMechLab, it includes a
graphic viewer to easily display, edit, and convert to EPS
format, the data resulting from a simulation/experiment.
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Fig. 6. Experimental arm

4. AN APPLICATION TO ROBOTICS

In order to illustrate the operation of WinMechLab, we
carried out some experiments of joint motion control on a
two–DOF direct–drive didactic arm that is in the Robotics
Laboratory of CICESE Research Center (see Figure 6).

4.1 Mechanical system

This robot arm is made of two rigid links and two high–
torque, brushless direct–drive servos (models DM1200A
and DM1015B from Parker Compumotor), which are op-
erated in torque mode, so the motors act as a torque source
and they accept an analog voltage as a reference of torque
signal. Position information is obtained from incremental
encoders located on the motors, and velocity information
is obtained by numerical differentiation of the position
signals.

The dynamics of our robot arm has the general structure
(Kelly et al. [2005]):

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where, in our application, q, q̇, q̈ are the 2 × 1 vectors of
joint displacements, velocities and accelerations, respec-
tively; τ is the 2 × 1 vector of applied torque inputs,
M(q) is the 2× 2 symmetric positive definite manipulator
inertia matrix, C(q, q̇) is the 2 × 2 matrix of centripetal
and Coriolis torques, and g(q) is the 2 × 1 vector of
gravitational torques due to gravity.

The physical parameters and complete dynamic model of
this arm are reported by Reyes and Kelly [1997].

4.2 Motion control

Let qd, q̇d, q̈d, be the desired joint position, velocity
and acceleration vectors of a motion trajectory, which are
chosen as bounded functions. The primary goal of motion
control in joint space is to make the robot joint positions
q track a given time–varying qd. Rigorously, the motion
control objective in joint space is achieved provided that

lim
t→∞ q̃(t) = 0 (2)

where q̃(t) = qd(t) − q(t) is the joint position error.
Similarly, ˙̃q(t) = q̇d(t) − q̇(t) is the joint velocity error.

For the purposes of this paper, we consider the computed–
torque control which is one of the simplest motion control

schemes, whose practical effectiveness has been reported
for more than two decades. The computed–torque con-
troller is given by (Kelly et al. [2005]):

τ = M(q)[q̈d + Kv
˙̃q + Kpq̃] + C(q, q̇)q̇ + g(q). (3)

where, besides the previously defined terms, Kp and Kv

are 2 × 2 symmetric positive definite gain matrices.

If the manipulator dynamic model is exact, then the
computed–torque controller (3), applied to the robot dy-
namics (1), achieves the decoupling of all the joints, re-
sulting in an asymptotically stable linear time–invariant
closed–loop system, in terms of the error q̃, and thus
asymptotically exact tracking is ensured (see Kelly et al.
[2005]).

4.3 Experimental results

An important issue for experimental evaluation of robot
control algorithms is the choice of the desired trajectories
qd(t) for the robot motion. The expression of the desired
trajectory used in this project is similar to those proposed
in Dawson et al. [1994], that is

qd(t) =


 a1[1 − e−α1t3 ] + b1[1 − e−α1t3 ] sin (ω1t)

a2[1 − e−α2t3 ] + b2[1 − e−α2t3 ] sin (ω2t)


 (7)

where b1 and b2 denote the amplitude of the steady state
sine functions whereas ω1 and ω2 represent the angular
frequencies of the desired trajectory for the shoulder and
elbow joints respectively. For the experimental session we
used the next values: a1 = 45◦, a2 = 60◦, b1 = 10◦,
b2 = 125◦, α1 = 2 s−1, α2 = 2 s−1, ω1 = 15 rad/s,
ω2 = 3.5 rad/s.

The controller (3) was implemented together with trajec-
tory (7) as a real–time process, and executed at a sampling
period of 2.5 [ms] using WinMechLab. The values of the
controller gains used for the experiments were: Kp =
diag{400, 1000} [Nm/rad], and Kv = diag{40.0, 63.2}
[Nms/rad].

Figure 7 presents the computer screen during the experi-
mental testing. Notice the windows for EDITOR (show-
ing the control algorithm), MONITOR, DISPLAY and
GRAPH processes. In the same figure we can see the
graphs of the joint position errors (in radians) and applied
torques (in Newton-meters). Although the errors are not
zero as ideally (see equation (2)), they are small enough,
indicating a good performance of the controller. Non–
null errors are considered to be due to the presence of
unmodeled dynamics and noise in the velocity estimation
(using simple Euler approximation).

5. CONCLUDING REMARKS

Thanks to the progress during the last decade in high–
performance hardware and real–time software, it is pos-
sible nowadays to develop real–time control systems in
single–processor computers.

Real–time operating systems play an important role in the
development of PC–based controllers. MS–Windows has
the advantage of being very familiar for most of the users,
even though it is not a hard real–time operating system.
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Fig. 7. Example of experimental session using WinMechLab

To solve this limitation and still take profit of the graphic
environment of Windows, we have used Ardence’s real–
time extension (RTX).

In order to test the benefits of this approach we have
developed a software system for real–time control of mech-
anisms, which is called WinMechLab. This system allows
the execution of concurrent tasks, and its performance fits
the requirements of real–time control in fast processes such
as robot manipulators. This allows WinMechLab to be an
excellent tool for learning real–time control features at a
practical level.
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