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Abstract: The control of nonlinear non-minimum phase processes by using traditional
geometric approaches has lead to the development of specific design methods, such as the
statically equivalent output approach. On the other hand, alternative design methods based
on physical models, energy and mass balances, and the concept of passivity have been applied
to a wide range of electrical and electromechanical systems. However, their application to
process control has been limited. In this work, a comparative analysis of both design control
approaches is presented. A standard continuous stirred tank reactor example is used to illustrate
the differences among the approaches and the performances attained in both cases.
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1. INTRODUCTION

Non-minimum phase processes pose one of the most chal-
lenging problems for many controller design techniques.
For instance, linearization techniques rely on generating
the inverse of the process, and therefore its application
to non-minimum phase processes requires the use of spe-
cial design methods. A popular approach, presented in
Niemiec and Kravaris (2003), is the use of the notion
of statically equivalent outputs, this outputs redefinition
makes the non-minimum phase system minimum phase as
far as the controller is concerned. These results guarantee
internal stability of the closed-loop system locally around
the equilibrium point. However, this technique relies on a
linearized model of the system, and therefore the range
of operation is limited to a region around the linearizing
point. Interconnection and Damping Assignment - Pas-
sivity Based Control (IDA-PBC) introduced in Ortega
et al. (2002), represents an attractive alternative to design
nonlinear controllers compared to more traditional meth-
ods like the one based on differential geometric concepts.
In the IDA-PBC framework, no inversion of the system
dynamics is made, therefore, these methods can be ap-
plied to both minimum and non-minimum phase systems.
The port-controlled Hamiltonian (PCH) models (van der
Schaft, 2004) describe the systems by defining matrices
that precisely captures the interconnection and damping
structure of the system. Thus, a control design can achieve
decoupled outputs by assigning a proper interconnection
matrix between the outputs in closed-loop. Even though
the wide application of these techniques to mechanical and
electromechanical systems there have been just a couple
of examples illustrating their use in process control (Sira-

⋆ The authors gratefully acknowledge the support of FONDECYT
Project 1070491.

Ramı́rez and Angulo-Nunez, 1997; Sbárbaro and Ortega,
2005; Johnsen and Allgöwer, 2006). In this work an IDA-
PB controller is designed to decouple the outputs of a non-
minimum phase continuous stirred tank reactor (CSTR)
over a wide range of operational points. The performance
of the controller is compared, by means of numerical
simulations, with a controller based on synthetic-outputs
(Niemiec and Kravaris, 2003). This paper is organized as
follows: Section 2 and 3 give the preliminaries for equiva-
lent output linearization and IDA-PBC respectively. Sec-
tions 4 presents a comparative example. Some simulation
results are presented in Section 5 and finally, in Section 6,
some closing remarks are given.

2. EQUIVALENT OUTPUTS APPROACH

Consider a non-minimum phase process with a mathemat-
ical model of the form

ẋ = f(x) + g(x)u
y = h(x),

(1)

where x denotes the vector of state variables, u denotes the
manipulated input vector, and y denotes the controlled
output vector. It is assumed that x ∈ X ⊂ ℜn is a
connected open set that includes x∗, u ∈ U ⊂ ℜm that
includes u∗, f, g : X → ℜn and h : X → ℜm are real an-
alytic functions, and (x∗, u∗) denotes the nominal steady-
state (equilibrium) pair of the process, that is, f(x∗) +
g(x∗)u∗ = 0. The relative order of a controlled output
yi, is denoted by ri, where ri is the smallest integer for
which [Lgi

Lri−1
f hi(x) . . . Lgm

Lri−1
f hi(x)] 6≡ [0 . . . 0], where

Lgi
and Lf are Lie derivative operators. The characteristic

matrix for a system of the form of (1) with finite relative
orders ri is defined as
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C(x) =







Lg1
Lr1−1

f h1(x) · · · Lgm
Lr1−1

f h1(x)
...

...
Lg1

Lrm−1
f hm(x) · · · Lgm

Lrm−1
f hm(x)






.

It is assumed that rank(g) = m and det (C) 6= 0. If
the nonlinear system of (1) is non-minimum phase, an
input/output linearizing model-state feedback controller
may induce closed-loop instability. An approach based on
the notion of statically equivalent outputs, that makes
the non-minimum phase system minimum phase as far as
the controller is concerned, is proposed in Niemiec and
Kravaris (2003). Let ha1

. . . ham
be auxiliary output maps

with the following properties:

(1) The system

ẋ = f(x) + g(x)u
ya = ha(x),

(2)

is locally hyperbolically minimum-phase.
(2) The outputs yi = hi(x) and yai

= hai
(x) are stati-

cally equivalent in the sense that hi(x
∗) = hai

(x∗) for
i = 1, . . . ,m.

If such output maps can be found, controlling the output yi

to a constant set point can be accomplished by controlling
the output yai

to the identical set point. In this case,
input/output linearizing state feedback may be based
on the minimum phase auxiliary output maps, and the
following model-state-feedback controller

ua = {[γ1ra1
. . . γmram

]Ca}
−1

{

(ysp − y) + (h − ha) −

m
∑

i=1

rai
∑

k=1

γikLk
fhai

}

,

achieves local asymptotic stability and zero steady-state
error for an open-loop locally hyperbolically stable system
(1), where ysp is the desired set-point, rai

are the relative
orders of the auxiliary outputs yai

, Ca is the corresponding
characteristic matrix and γik ∈ ℜm are constant parame-
ters that satisfy det [γ1ra1

. . . γmram
] 6= 0.

2.1 Construction of statically equivalent outputs

The first step in the derivation of the auxiliary outputs
is the construction of (n − m) independent functions that
vanish on the equilibrium manifold. Using these (n − m)
vanishing functions, a large class of outputs hai

(x), i =
1, . . . ,m, are constructed, which are statically equivalent
to hi(x), i = 1, . . . ,m, and depend on a number of
arbitrary weighting parameters that are selected to place
the transmission zeros of the linearization of (2) such that
the controller exhibits a local minimum phase behavior.
Assuming that the m × m matrix

G =







g1,n−m+1(x) · · · gm,n−m+1(x)
...

...
g1,n(x) · · · gm,n(x)







is nonsingular, the following scalar functions η1(x), . . .,
ηn−m(x), that vanishes at the equilibrium can be con-
structed as

ηj(x) = fj(x)−

[g1,j(x) . . . gm,j(x)]G−1(x)







fn−m+1(x)
...

fn(x)







j = 1, . . . , n − m,

(3)

and the following class of output map can be considered

ha(x) = h(x) + Λη(x), (4)

where

Λ =







λ1,1 · · · λ1,n−m

...
...

λm,1 · · · λm,n−m






and η(x) =







η1(x)
...

ηn−m(x)






,

with λi,j being arbitrary real numbers, or, more generally,
arbitrary state-dependent weight functions λi,j(x). The
output map (4) are statically equivalent to h(x), in the
sense that ha(x∗) = h(x∗). Values of λi,j that assign the
zeros of the linear approximation of (2) to desired locations
zd
1 , . . . , zd

n−m are determined from

Λ = −(CS)(NS)−1,

where S is the n × (n − m) matrix which solves

SP − AS = BQ,

with

A =
∂f

∂x
(x∗) +

m
∑

i=m

u∗

i

∂gi

∂x
(x∗), B = [g1(x

∗) . . . gm(x∗)],

C =
∂h

∂x
(x∗), and N =

∂η

∂x
(x∗).

P and Q being (n − m) × (n − m) and m × (n − m)
matrices, respectively, and P is such that P and A do
not have common eigenvalues, (Q,P ) is an observable pair,
and the eigenvalues of P are the desired transmission zeros
of system (2).

3. THE IDA-PBC METHODOLOGY

IDA-PBC was introduced in Ortega et al. (2002) as a
procedure to control physical systems described by PCH
models of the form

ẋ = (J − R)∇H + gu
y = gT∇H.

(5)

Since its introduction, the IDA-PBC methodology has
been applied to a wide range of non-linear system. The key
step in this design methodology is the solution of a partial
differential equation (PDE) that guarantees closed-loop
stability of the controller. However, it is also possible, as
described in section 3.2, to use simplified procedures which
do not require solving any PDE to define the stability of
the controlled system.

3.1 Exact Matching IDA-PBC

Consider the system (1), and assume that it can be
modeled as a PCH of the form (5), and there exist matrices

Jd = J + Ja
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Rd = R + Ra

and g⊥(x)(n−m)×m, a function

Hd = H + Ha

where Jd(x)n×n = −Jd(x)⊤n×n and Rd(x)n×n = Rd(x)T
n×n

≥ 0, are the desired closed loop interconnection and
damping matrices respectively, Hd(x) : ℜn → ℜ, is the
desired total stored energy, that verify the PDE

g⊥(J − R)∇H = g⊥(Jd − Rd)∇Hd (6)

and the relation

(J − R)∇H + gu = (Jd − Rd)∇Hd (7)

where g⊥(x) is a full-rank left annihilator of g(x), i.e.,
g⊥(x)g(x) = 0, and Hd is such that the following condi-
tions holds

Equilibrium assignment, ∇Hd(x
∗) = 0

Lyapunov stability, ∇2Hd(x
∗) ≥ 0

with x∗ ∈ ℜ the equilibrium to be stabilized. Then, the
closed-loop system (5) with u = β(x), where

β(x) = (g⊤g)−1g⊤ [(Jd − Rd)∇Hd − (J − R)∇H] (8)

takes the PCH form

ẋ = (Jd − Rd)∇Hd (9)

with x∗ a (locally) stable equilibrium. It will be asymp-
totically stable if, in addition, x∗ is an isolated minimum
of Hd and the largest invariant set under the closed-loop
dynamics (9) contained in

{

x ∈ ℜn | ∇H⊤

d Rd∇Hd = 0
}

equals {x∗}. An estimate of its domain of attraction is
given by the largest bounded level set {x ∈ ℜn| Hd(x) ≤
c}. The conditions (6) y (7), can be summarized in one
equation whose solution guarantee the closed-loop stability
and gives the control action:

Qẋ = Q(Jd − Rd)∇Hd (10)

where Q(x) = [ g⊥(x) g⊤(x) ]⊤. The closed-loop dynamic
is given by

ẋ = Q−1Q(Jd − Rd)∇Hd = (Jd − Rd)∇Hd.

The stability of the controller is determined by the deriva-
tive of Hd(x) being less or equal to zero along the trajecto-
ries of x (Ortega and Garćıa-Canseco, 2004). If (6) holds,
the derivative becomes

Ḣd = −∇H⊤

d Rd∇Hd.

This is a quadratic expression and therefore always smaller
or equal to zero. The controller design methodology re-
sumed above achieves stabilization by rendering the sys-
tem passive with respect to a desired storage function and
injecting damping. It should be noticed that in this design
procedure the key step is the solution of (6).

3.2 Non-Exact Matching IDA-PBC

If (6) does not hold, (10) becomes

Qẋ = Q(Jd − Rd)∇Hd + [ δ⊤ 0 · · · 0 ]⊤

where [ δ⊤ 0 · · · 0 ]⊤ is a n × 1 matrix, and δ(x) corre-
sponds to the error of rank n − m in (6) and is given by

δ = g⊥ [(Jd − Rd)∇Hd − (J − R)∇H] . (11)

In this case, the closed-loop dynamic with control action
(8) is

ẋ = (Jd − Rd)∇Hd + Q−1[ δ⊤ 0 · · · 0 ]⊤. (12)

The derivative of Hd along the trajectories of x is in the
non-matching case

Ḣd = −∇H⊤

d Rd∇Hd + ∇H⊤

d Q−1[ δ⊤ 0 · · · 0 ]⊤,

this means that the stability of the closed-loop system
(12) depends on the error (11), and this one in turn
depends on the non-matching solution of (6). The following
propositions provide the conditions guaranteeing local
and global stability of a non-matching IDA-PB controller
(Ramı́rez, 2008).

Proposition 1. Consider a PCH system as in (5), with a
non-matching IDA-PB controller with control action given
by (8), and a neighborhood D = {x ∈ ℜn | ‖x‖2 < r} of x∗

where r > 0 and such that the following conditions holds

(1) x∗ ∈ D is an assignable equilibrium point of (5) and
an isolated minimum of Hd(x),

(2) ∀x ∈ D, ∇H⊤

d Rd∇Hd ≥ ∇H⊤

d Q−1[ δ⊤ 0 · · · 0 ]⊤,
(3) and the largest invariant set under the closed-loop dy-

namics (12) contained in S = {x ∈ D |∇H⊤

d Rd∇Hd+
∇H⊤

d Q−1[ δ⊤ 0 · · · 0 ]⊤ = 0} equals {x∗},

then the closed-loop system (12) is asymptotically stable.

Proposition 2. Consider a PCH system as in (5), with a
non-matching IDA-PB controller that holds proposition 1,
if D = {x ∈ ℜn | ‖x‖2 < r } where r → ∞, then the
closed-loop system (12) is globally asymptotically stable.

4. A COMPARATIVE EXAMPLE: CONTROL OF A
NONMINIMUM-PHASE CHEMICAL REACTOR

From the descriptions of both approaches, it is possible to
notice that the design using IDA-PBC offers the following
advantages over the synthetic output approach: it is much
simpler, does not rely on linearization and provides a
much clear insight into the structure of the problem. In
order to illustrate further the differences between these two
methods a classical example is presented. Let’s consider a
non-isothermal CSTR with series/parallel reactions taking
place (Niemiec and Kravaris, 2003; Guay et al., 2005;
Antonelli and Astolfi, 2003). The reactor model consists of
mole balances for species A and B, and an energy balance
for the reactor:

ẋ1 = −k1(x3)x1 − k3(x3)x
2
1 + (x10 − x1)u1

ẋ2 = k1(x3)x1 − k2(x3)x2 − x2u1

ẋ3 = ϑ(x) +
u2

ρCp

+ (x30 − x3)u1,
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CA ,CB Molar concentrations of A and B
T Reactor temperature
F/V Dilution rate
QH Rate of heat added or removed per unit volume
Cp Heat capacity of the reacting mixture
ρ Density of the reacting mixture
∆H Heat of reaction
E Activation energy
R Joule constant

Table 1. CSTR Parameters

with

ϑ(x) = −
∆H1k1(x3)x1 + ∆H2k2(x3)x2 + ∆H3k3(x3)x

2
1

ρCp

.

The rate coefficients ki are dependent on the reactor
temperature via the Arrhenius equation

ki(x3) = ki0 exp
Ei

Rx3
i = 1, 2, 3.

The parameters are summarized in table 1. The control
objective (Niemiec and Kravaris, 2003), is to maintain the
outputs y1 = x3 = T and y2 = x2 = CB at set points
by manipulating the dilution rate u1 = F/V and the rate
of heat addition or removal per unit volume u2 = QH .
Initially, the reactor is operating at a steady-state of x∗

1 =
1.25mol/l, x∗

2 = 0.90mol/l, and T ∗ = 407.15K, which
corresponds to u∗

1 = 19.52/h and u∗
2 = −451.51kJ/(lh).

Around this steady-state, the process is locally asymptot-
ically stable with eigenvalues of −96.465 and −33.154 ±
9.815i. The transmission zero of the linearized system is
found to be +122.71. This indicates that the process is
locally non-minimum phase around the given steady-state
due to the right-half plane transmission zero.

Control Using Synthetic Outputs Since n−m = 1, there
is only one independent function that vanishes on the
equilibrium manifold. One such function can be generated
according to (3),

η(x) = −x2(k1x1 + k3x
2
1) + (x10 − x1)(k1x1 − k2x2).

Statically equivalent outputs for the given system can
be constructed as ya1

= x3 + λ1η and ya2
= x2 +

λ2η. Following the procedure in Niemiec and Kravaris
(2003), defining [ γ11 γ21 ] as diag{γ, γ}, the following
characteristic matrix

Ca(x) =

[

Lg1
L0

fha1
Lg2

L0
fha1

Lg1
L0

fha2
Lg2

L0
fha2

]

=

[

Ca11
Ca12

Ca21
Ca22

]

,

with,

Ca11
= λ1(x30 − x3)ν1 − λ1x2ν2 + (x30 − x3)(1 + λ1ν3),

Ca12
= (1 + λ1ν3)/(ρCp),

Ca21
= λ2(x30 − x3)ν1 − x2(1 + λ2ν2) + λ2(x30 − x3)ν3,

Ca22
= λ2ν3/(ρCp),

ν1 = −x2(k1 + k32x1) − (k1x1 − k2x2) + k1(x10 − x1),
ν2 = −(k1x1 + k3x

2
1) − k2(x10 − x1),

ν3 = −k1E1(−x1x2 + x1(x10 − x1))−
k2E2(−x2(x10 − x1)) − k3E3(x

2
1x2),

and the Lie derivatives

L1
fha1

= −λ1(k1x1 + k3x
2
1)ν1+

λ1(k1x1 − k2x2)ν2 + ϑ(1 + λ1ν3),

L1
fha2

= −λ2(k1x1 + k3x
2
1)ν1+

(k1x1 − k2x2)(1 + λ2ν2) + λ2ϑν3,

defines the control law

[ua1
(x) ua2

(x)]⊤, (13)

where

ua1
=

[

Ca22
(γ(x3 − ha1

) − L1
fha2

)−

Ca12(γ(x2 − ha2
) − L1

fha1
)
] 1

Ca11
Ca22

− Ca12
Ca21

,

ua2
=

[

− Ca21
(γ(x3 − ha1

) − L1
fha2

)+

Ca11(γ(x2 − ha2
) − L1

fha1
)
] 1

Ca11
Ca22

− Ca12
Ca21

.

In order to place the transmission zero at -122.71 (the
reflection of the process zero with respect to the imaginary
axis), the following values for the weights λ1 = −5.45375×
10−6 and λ2 = 2.77156 × 10−3, and γ = 0.01, are used in
Niemiec and Kravaris (2003).

PCH Representation The first step in the application of
the design methodology detailed in section 3, is to express
the CSTR process as a PCH system. Writing down the
systems equations as a PCH model is not direct. The fact
that the enthalpy ∆H1, has opposite sign compared to the
others enthalpies, make it impossible to include the term
ϑ in the damping matrix R directly. Observing that ∆H3

is the most negative of the system enthalpies, and that
the divisions ∆H1

∆H3

y ∆H2

∆H3

are less than one, a new state

variable can be obtained dividing ẋ3 by −
ρCp

∆H3

. Thus ˙̄x3 is

˙̄x3 =
1

∆H3
(∆H1k1x1 + ∆H2k2x2 − u2) + k3x

2
1−

ρCp

∆H3
(x30 − x3)u1,

with the new rate coefficient

ki(x̄3) = ki0 exp

(

−
Ei∆H3

Rx̄3ρCp

)

i = 1, 2, 3.

Introducing this change of variables the following equiva-
lent model is obtained

ẋ1 = −k1x1 − k3x
2
1 + (x10 − x1)u1

ẋ2 = k1x1 −

[

∆H2

∆H3
k2x2 +

(

1 −
∆H2

∆H3

)

k2x2

]

− x2u1

˙̄x3 =
∆H1

∆H3
k1x1 +

∆H2

∆H3
k2x2 + k3x

2
1 −

1

∆H3
u2−

ρCp

∆H3
(x30 − x3)u1

From the transformed model the following PCH system is
considered

H = x1 + x2 + x̄3. (14)
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J =











0 −k1x1 −k3x
2
1

k1x1 0 −
∆H2

∆H3
k2x2

k3x
2
1

∆H2

∆H3
k2x2 0











, (15)

R =











0 0 0

0

(

1 −
∆H2

∆H3

)

k2x2 0

0 0 −
∆H1

∆H3
k1x1











, (16)

g =







x10 − x1 0
−x2 0

−
ρCp

∆H3
(x30 − x3) −

1

∆H3






, (17)

Since ∆H3 is negative, the term −∆H1

∆H3

k1x1 becomes
positive and the matrix R is positive defined.

IDA-PBC Synthesis The desired performance can be
achieved by shaping the interconnection and damping
matrices of the closed-loop PCH system. Its desirable that
the dynamics of the controlled system are just given by
dissipative elements; i.e.

ẋ = −Rd∇Hd.

Such performance can be achieved selecting a null desired
interconnection matrix. Notice that in the open-loop PCH
system part of the dissipation for x1 and x2 occurs through
the natural interconnection matrix J . As a null closed-
loop interconnection matrix is selected, the elements of
the original interconnection structure must be introduced
in the closed-loop damping matrix. Taking this under con-
sideration, a decoupled closed-loop system can be obtained
using the following matrices

Ja = −J,

Ra =











k1x1 + k3x
2
1 0 0

0
∆H2

∆H3
k2x2 0

0 0

(

1 +
∆H1

∆H3

)

k1x1











.

The closed-loop system is characterized by the following
desired interconnection and damping matrices

Jd =

[

0 0 0
0 0 0
0 0 0

]

, Rd =





k1x1 + k3x
2
1 0 0

0 k2x2 0
0 0 k1x1



 . (18)

In Ramı́rez (2008), several general “non-exact matching”
storage functions that achieves (locally) stable IDA-PB
controllers for a wide range of PCH systems were proposed.
One of them is the logarithmic storage function which
achieves the closed-loop desired storage function

Hd(x) =

n
∑

i=1

κi(xi − x∗

i lnxi), (19)

with closed-loop gradient

∇Hd(x) =
[

κ1

(

1 −
x∗

1

x1

)

κ2

(

1 −
x∗

2

x2

)

· · · κn

(

1 −
x∗

n

xn

) ]⊤

.
(20)

The control law can be directly obtained replacing
(14),(15),(16),(17),(18) and (20) in (8)

β(x) = [ β1(x) β2(x) ]
⊤

, (21)

where β1 and β2 are respectively given by

β1(x) = −
(x10 − x1)(k1x1 − k3x

2
1)(x̃1 − 1)

(x10 − x1)2 + x2
2

−

x2 (k1x1 − k2x2(x̃2 − 1))

(x10 − x1)2 + x2
2

,

β2(x) = ρCp(x30 − x3)β1(x)−
1

∆H3

(

k1x1

(

x̃3 −
∆H1

∆H3

)

+
∆H2

∆H3
k2x2 + k3x

2
1

)

,

and x̃i is κi

(

1 −
x∗i
xi

)

, with i = 1, 2, 3. In order to obtain

a closed-loop profile similar to the synthetic outputs con-
troller (13), the values used for the controllers parameters
where κ1 = 2.5, κ2 = 2.5 and κ3 = 4000.

Closed-loop Stability The stability analysis of the closed
loop system, requires the use of a full-rank left annihilator
g⊥ that solves the PDE (6). A possible choice is

g⊥ =

[

x2

x10 − x1

0

]⊤

.

For an asymptotically stable closed-loop system proposi-
tion 1 must be fulfilled for x ∈ ℜ3. The first condition, on
the storage function, holds by construction of (19). The
remaining conditions, depends on the shaped interconnec-
tion and damping matrices. For this example, the stability
conditions becomes

{

∀x ∈ ℜ2|Ḣd =

−(k1x1 + k3x
2
1)x̃

2
1 − k2x2x̃

2
2−

k1x1x̃
2
3 − φx2(k1x1 + k3x

2
1)(x̃1 − 1)−

φ(x10 − x1)(k1x1 + k2x2(x̃2 − 1)) ≤ 0
}

where φ = x2x̃1+(x10−x1)x̃2

x2

2
+(x10−x1)2

, and the largest invariant set

under the closed-loop dynamics of

{x ∈ ℜ3 | Ḣ = 0} = {x∗}.

A local asymptotic stability study can be carried out by
linearizing the closed-loop system with (21), and analyzing
all the eigenvalues of the Jacobian matrix

∂

∂x

(

(Jd − Rd)∇Hd + Q−1[ δ 0 · · · 0 ]⊤
)

which must have real part strictly negative.

5. NUMERICAL SIMULATIONS

Figure 1 and figure 2 shows the performance of the
synthetic-output controller and the IDA-PB controller for
step changes in x2 set-point while maintaining the set-
point of x3 at 407.15K. The closed-loop responses for both
controllers are similar around the equilibrium point used
in the design of (13), but the synthetic-output controller
loses the design properties as the set-point of x2 moves
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CA0 5.0 mol/l k10 1.287× 1012 h
T0 403.15 K k20 1.287× 1012 h
Cp 3.01 kJ/(kg K) k30 9.403× 109 l/(mol h)
ρ 0.94342 kg/l E1/R -9758.3 K
∆H1 4.20 kJ/mol E2/R -9758.3 K
∆H2 -11.00 kJ/mol E3/R -8560.0 K
∆H3 -41.85 kJ/mol

Table 2. CSTR Numerical Parameters
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Fig. 1. Performance of controllers for x2, IDA-PBC (solid),
synthetic-output (dashed)
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Fig. 2. Performance of controllers for x3, IDA-PBC (solid),
synthetic-output (dashed)

away from that equilibrium. Even though the change in
x3 can be considered negligible with the synthetic-output
controller, the decoupling is not perfect. However, the
IDA-PB controller (21) achieves exact decoupling of the
outputs. The numerical values used in the simulation are
summarized in table 2.

6. CONCLUSION

The comparative analysis carried out shows that the
IDA-PBC approach poses considerable advantages over
synthetic-output linearization. The design based on PCH
models enables to easily identify the interconnection struc-
ture of the process and achieve decoupled outputs, while
the more complex linearization methodology have no di-
rect physical interpretation. The IDA-PBC design does not

rely on local approximations (linearization of the dynam-
ics), and therefore the stability region can cover a wide
range of operational conditions. Additionally, by using the
non exact-matching IDA-PBC approach it is not necessary
to find a solution for a PDE, this simplifies the design of
the controller since the desired closed-loop PCH structure
can be selected regarding to physical properties of the pro-
cess. The stability of the IDA-PB controller is verified by
a linear analysis and the performance have been compared
using a classical example with the input-(synthetic)output
linearization controller proposed in Niemiec and Kravaris
(2003). The numerical simulations have shown that the
controllers exhibits similar response around the nominal
equilibrium point. As the operational conditions change
the IDA-PB controller maintains the desired closed-loop
behavior unlike the synthetic output controller and also
provides exact decoupling of the process outputs. Fur-
ther research could compare the IDA-PBC approach with
methods not based on linearization as the one presented
in Ball et al. (2004).
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