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Abstract: We present a preliminary result on robust semi-global stabilization via output
feedback for a family of uncertain nonlinear systems which represent a generalized normal form
of affine systems in the plane. The main contribution of this paper is to show that with only the
knowledge of the bounding system of the uncertain planar system, it is possible to establish the
semi-global stabilization result by nonsmooth output feedback, although the uncertain controlled
plant is not in a triangular form, non-smoothly stabilizable and non-uniformly observable.
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1. INTRODUCTION AND MAIN RESULT

In this paper, we consider a family of single-input-single-
output (SISO) uncertain planar systems of the form

η̇1 = ηp
2 + ηp−1

2 φp−1(η1, t) + · · ·
+η2φ1(η1, t) + φ0(η1, t)

η̇2 = v

y = η1, (1)

where η = (η1, η2) ∈ IR2, v ∈ IR and y ∈ IR are the system
state, input and output, respectively. The parameter p
is an odd positive integer and the mappings φi : IR ×
IR → IR, i = 0, · · · , p− 1 are C1 with φi(0, t) = 0 for all t,
which represent the system uncertainty and need not to be
precisely known. However, it is assumed that the system
uncertainty satisfies the following condition:
Assumption 1. There exists a known bounding function
ψ : IR → [0,+∞), which is C1 with ψ(0) = 0 and satisfies
for i = 0, · · · , p− 1,

|φi(η1, t)| ≤ ψ(η1), ∀(η1, t) ∈ IR× IR. (2)

It is of interest to note that the form (1) without un-
certainty (i.e., φi(η1, t) ≡ qi(η1)) is representative of a
class of planar affine systems. In fact, Jakubczyk and
Respondek Jakubczyk and Respondek [1990] proved that
every smooth affine system in the plane, i.e.,

1 This work was supported in part by the U.S. National Science
Foundation under Grant ECS-0400413, Air Force Research Lab-
oratory under Grant FA8651-05-C-0110, and the Robert Herbold
Faculty Fellow Award.

ξ̇ = f(ξ) + g(ξ)u

y = h(ξ)

is feedback equivalent to the system (1) without ηp−1
2

term if g(0) and adp
fg(0) are linearly independent. A more

general result was proved in Cheng and Lin [2003] later on,
showing that the equation (1) is indeed a special case of
the so-called “p-normal form” or Hessenberg form Cheng
and Lin [2003]. In other words, system (1) is a normal form
of planar affine systems when rank[g(0), adp

fg(0)] = 2.

A distinguished feature of the planar system (1) is that
it is in general neither uniformly observable nor smoothly
stabilizable when p > 1, because on the one hand, the
state of (1) can only be represented as a Hölder continuous
rather than smooth function of the system input, output,
and their derivatives; on the other hand, the linearized
system of (1) may have uncontrollable modes associated
with eigenvalues on the right-half plane. These points can
be seen easily from the simple Example 3 in section 3. In
addition, system (1) is not in a triangular form. The lack of
uniform observability, smooth stabilizability and a trian-
gular structure makes the robust semi-global stabilization
of the uncertain system (1) via output feedback non-
trivial. In fact, the existing output feedback stabilization
results (e.g., Teel and Praly [1994, 1995], Isidori [2000])
can not be applied to the uncertain planar system (1).

Recently, we have tackled the semi-global stabilization
problem by output feedback Yang and Lin [2005b], for
a class of n-dimensional, non-uniformly observable and
nonsmoothly stabilizable systems with a strict-triangular
form. The work Yang and Lin [2005b] has extended the
previous output feedback stabilization results such as
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Theorem 3.5 of Qian and Lin [2004] and Theorem 3.2
of Yang and Lin [2005a] in two directions. First, the
local output feedback stabilization result in Qian and Lin
[2004] (see Theorem 3.5) was extended to the semi-global
case without requiring extra growth conditions. Secondly,
compared with the global output feedback stabilization
results obtained previously in Yang and Lin [2004, 2005a],
Qian and Lin [2004], the restrictive conditions such as
p1 = · · · = pn−1 and a high-order global Lipschitz-
like condition in Yang and Lin [2004], or the growth
requirements imposed on the triangular system Qian and
Lin [2004] were removed. The trade-off is that semi-global
other than global stabilizability was achieved.

Notably, most of the results reviewed so far have an
obvious drawback, that is, the design of output feedback
controllers still uses a copy of the original system and hence
requires the precise information of the controlled plant.
Consequently, the output feedback control scheme in Yang
and Lin [2005b] is not robust with respect to parametric
uncertainty. Moreover, it cannot be applied to uncertain
nonlinear systems such as (1) which is not in a triangular
form. The purpose of this paper is to address the robust
issue, and to develop a robust semi-global output feedback
control scheme for a family of uncertain systems (1) by
using only the knowledge of the upper bound of φi(·),
i.e., the function ψ(·). This is one of the main differences
between Yang and Lin [2005b] and this paper.

The objective of this paper is to show that robust semi-
global stabilization can be achieved for the whole family
of the uncertain systems (1) by a single output feedback
controller. Such a robust control problem can be formu-
lated as follows: given a bound r > 0, find, if possible, a
nonsmooth but C0 dynamic output compensator, which
depends on r and the bounding function ψ, of the form

˙̂z = θ(ẑ, y), ẑ ∈ IR

v = v(ẑ, y) (3)

such that the following two properties hold:

• Local Stability: The compensator (3) locally asymp-
totically stabilizes the whole family of uncertain sys-
tems (1) at the origin (η, ẑ) = (0, 0, 0);

• Semi-Global Attraction: All the trajectories of the
closed-loop system starting from the compact set

Γη × Γẑ
∆= [−r, r]2 × [−r, r] ⊂ IR3

converge to the origin.

The main result of this paper is the following theorem.
Theorem 2. Under Assumption 1, there exists a nons-
mooth dynamic output compensator of the form (3), which
semi-globally robustly stabilizes the entire family of uncer-
tain planar systems (1).

2. PROOF OF THEOREM 2

In this section, we prove the main result of this paper
— Theorem 2. In particular, we shall construct explicitly
a nonsmooth robust dynamic output compensator by

integrating the tool of adding a power integrator Qian and
Lin [2001], the rescaling technique Yang and Lin [2005a],
and the idea of saturating the estimated states Khalil and
Esfandiari [1995].

Proof: First of all, in order to handle the system uncer-
tainty φi(η1, t) and to find a semi-global output feedback
controller, we need to develop a robust design technique
without using the copy of the system or the precise knowl-
edge of the controlled plant. Inspired by the work Yang
and Lin [2005a], we introduce a rescaling transformation
with a suitable dilation for the original system (1), which
turns out to be crucial for dominating the uncertainty of
(1). To be precise, let

x1 = η1,

x2 =
η2
L
,

u=
v

L1+p
, (4)

where L ≥ 1 is a rescaling factor to be assigned later.

Under the x-coordinate, the uncertain system (1) is rewrit-
ten as

ẋ1 =Lpxp
2 + Lp−1xp−1

2 φp−1(x1, t) + · · ·
+Lx2φ1(x1, t) + φ0(x1, t)

ẋ2 =Lpu

y = x1. (5)

Similar to the work Yang and Lin [2005b], one can design
recursively a globally stabilizing, nonsmooth state feed-
back controller of the form

x̃∗3 = −[ξ2β2(x1, x
p
2)]

1/p

and the Lyapunov function

Vc(x) = Vc(x1, x2) =
1
2
x2

1 +

x2∫
x∗2

(sp − x∗p2 )2−
1
p ds,

which is positive definite and proper Qian and Lin [2001],
such that

V̇c(x1, x2) ≤ Lp[−3(x2
1 + ξ22) + ξ

2− 1
p

2 (u− x̃∗3)], (6)

where x∗p2 = −β1(x1)x1 and ξ2 = xp
2−x

∗p
2 = xp

2 +β1(x1)x1

with βi : Ri → (0,+∞), i = 1, 2 being positive smooth
functions independent of L.

Under the coordinate of x = (x1, x2), we define the level
set Ωx = {(x1, x2)|Vc(x1, x2) ≤ r0 + 1}, where r0 > 0 is a
constant such that

Γη ⊂ Γx
∆= {(x1, x2)

∣∣|x1| ≤ r, |x2| ≤ r}
⊂ {(x1, x2)|Vc(x1, x2) ≤ r0}.

Moreover, denote

M = max
x∈Ωx

||x||∞

as a saturation threshold, which is independent of L (see
Figure 1 for details).
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Fig. 1 The level set on x-space

and the saturation threshold M .

Clearly, there exists a constant B2 > 0 independent of L,
satisfying

0 < [β2(x1, x
p
2)]

1
p ≤ B2, ∀(x1, x2) ∈ Ωx. (7)

Therefore, on the level set Ωx, the state feedback controller
can be simplified as

x∗3 = −B2ξ
1
p

2
∆= [u∗(x1, x

p
2)]

1/p.

Indeed, because of (7), the derivative of Vc on Ωx satisfies

V̇c

∣∣∣
Ωx

≤ Lp[−3(x2
1 + ξ22) + ξ

2− 1
p

2 (u− x∗3)].

Motivated by Yang and Lin [2005b], we construct a
reduced-order observer to estimate, instead of x2 itself,
the unmeasurable variable z2 = xp

2 − Lx1.

In view of z2’s dynamics

ż2 = pLpxp−1
2 u− L

[
Lpxp

2 + Lp−1xp−1
2 φp−1(x1, t)

+ · · ·+ φ0(x1, t)
]
, (8)

we design the one-dimensional observer

˙̂z2 = −Lp+1x̂p
2, with x̂p

2 = ẑ2 + Lx1. (9)

The key difference between the observer (9) and the one
in Yang and Lin [2005b] is that here we do not use the
copy of the system (8). Rather, we build the observer (9)
by ignoring the system uncertainty in (8).

By the certainty equivalence principle, we replace the
unmeasurable state x2 in the virtual controller x∗3 by the

saturated state estimate x̂2 from the observer (9). In this
way, we obtain

u =
[
u∗(x1, [satM (x̂2)]p)

] 1
p , (10)

or equivalently,

v = L1+p
[
u∗(η1, satMp(ẑ2 + Lη1))

] 1
p , (11)

where satN (x) represents a saturation function with the
threshold N ≥ 0 defined by

satN (x) : IR → IR =

{−N if x < −N
x if |x| ≤ N
N if x > N.

(12)

Clearly, the dynamic output compensator (9)-(11) is im-
plementable.

In what follows, we shall prove that the non-smooth output
feedback controller thus constructed, i.e., (9)-(11), semi-
globally stabilizes the uncertain system (1).

Let

e2 = z2 − ẑ2 = xp
2 − x̂p

2 =
ηp
2

Lp
− Lη1 − ẑ2 (13)

be the estimate error. Then, A straightforward calculation
shows that the error dynamics are characterized by

ė2 =Lp[pxp−1
2 u− Le2 − xp−1

2 φp−1(x1, t)

− · · · − L−(p−1)φ0(x1, t)]. (14)

Now, construct the following Lyapunov function V (η, ẑ2)
for the whole closed-loop system (1)-(9)-(11):

V (η, ẑ2) = Vc(x) + Ve(e) = Vc(η1,
η2
L

) +
ln(1 + e22)
ln(µ(L))

,

where µ(L) ∆= 1 + (rp + Lr + r)2 is a polynomial of L.

The corresponding level set can be defined as

Ω = {(η, ẑ2) ∈ IR3
∣∣V (η, ẑ2) ≤ r0 + 1}.

In view of the definition of e2 in (13), it is easy to verify the
level set Ω contains the preset attractive domain Γη × Γẑ

uniformly with respect to L ≥ 1 since (η1, η2, ẑ2) ∈ Γη×Γẑ

implies V (η1, η2, ẑ2) ≤ r0 + 1,∀L ≥ 1.

Moreover, from the definition of M , it is clear that for all
(η1, η2, ẑ2) ∈ Ω,

|x1| = |η1| ≤M, |x2| = |η2
L
| ≤M.

(see the details in Figure 2)
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Fig. 2 The level set on (x, ẑ)-space.

Note that the saturation function has the following prop-
erty:

|a− satM (b)| ≤ 2 min{|ap − bp|1/p,M},
∀a ∈ [−M,M ], ∀b ∈ IR.

(15)
Keeping this in mind, the boundedness of x-coordinate on
the level set Ω implies there exists a generic constant C > 0
independent of L such that∣∣[u∗(x1, [satM (x̂2)]p)

] 1
p −

[
u∗(x1, x

p
2)

] 1
p
∣∣∣∣∣

Ω

≤Cmin{|e2|
1
p , 1}. (16)

Hence, in view of (15), (16) and Young’s inequality, we
have

V̇c

∣∣∣
Ω
≤ Lp[−2(x2

1 + ξ22) +K1 min{e22, 1}], (17)

where K1 > 0 is a constant independent of L.

Similarly, it is easy to see that for all (i = 0, · · · , p−1) and
L ≥ 1,

|L−(i−p−1)φi(x1, t)|
∣∣∣
Ω
≤ ψ(x1)

∣∣∣
Ω
≤ C|x1|1−

i
p . (18)

where C > 0 is a generic constant independent of L.

Hence, by the Young’s inequality, a direct but tedious
calculation gives

V̇e

∣∣∣
Ω
≤ Lp

ln(µ(L))(1 + e22)

[
2p|xp−1

2 ||e2||u| − 2Le22

+2C|e2||xp−1
2 ||x

1
p

1 |+ · · ·+ 2C|e2||x1|
]

≤
Lp

[
− (2L−K2)e22 + (x2

1 + ξ22)
]

ln(µ(L))(1 + e22)

≤Lp
[
− 2L−K2

ln(µ(L))
e22

1 + e22
+

x2
1 + ξ22

ln(µ(L))

]
(19)

with K2 > 0 being a constant independent of L.

Observe that
e22

1 + e22
≥ 1

2
min{e22, 1}.

Putting (17) and (19) together results in

V̇
∣∣∣
Ω
≤Lp

[
− (2− 1

ln(µ(L))
)(x2

1 + ξ22)

−
( L

ln(µ(L))
−K

)
min{e22, 1}

]
(20)

with K > 0 being a constant independent of L.

Since µ(L) is a fixed polynomial, we have

lim
L→+∞

L

ln(µ(L))
= +∞.

Therefore, there exists a sufficiently large L such that

2− K

ln(µ(L))
≥ 1

L

ln(µ(L))
−K ≥ 1

which, in turn, yields

V̇
∣∣∣
Ω
≤ Lp

[
− (x2

1 + ξ22)−min{e22, 1}
]
.

This completes the proof of Theorem 2.

3. EXAMPLES AND DISCUSSIONS

The significance of Theorem 2 can be demonstrated by the
following two examples.

Example 3. Consider the following non-triangular system
with an parameter uncertainty

η̇1 = η3
2 + θη2η1 + η1

η̇2 = v

y = η1, (21)
where θ is an unknown parameter bounded by one.

Due to the lack of a triangular structure and the presence
of θ, the semi-global design method in Yang and Lin
[2005b] is no longer valid. However, the uncertain system
(21) satisfies Assumption 1. By Theorem 2, the entire
family of systems (21) with θ being varied over the interval
[−1, 1] is semi-globally stabilizable by a single output
feedback controller of the form (9)-(11).

In fact, the Lyapunov function can be chosen as

V (η, ẑ2) =
1
2
η2
1 +

η2
L∫

x∗2

(s3 − x∗32 )
5
3 +

( η3
2

L3 − Lη1 − ẑ2)2

ln(µ(L))
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with L ≥ 1, µ(L) = 1+(rp +Lr+L)2 and x∗2 = [−η1
4 (η2

1 +
21)]

1
3 . It yields the dynamic compensator in the following

form:

˙̂z2 =−L4[ẑ2 + Lη1]

v =L4[u∗(η1, satM3(ẑ2 + Lη1))]
1
3 ,

with the function

u∗(x1, x
3
2) =−B3

2(x3
2 + x1

21 + x2
1

4
)

and B2,M > 0 and L ≥ 1 being appropriate constants.

The simulation shown in Figure 3 demonstrates the tran-
sient response of the closed-loop system with θ = 1 and the
initial condition (η1, η2, ẑ2) = (2, 1, 0.5) and B2 = 7, M =
5, L = 3.
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"z2

Fig. 3 The transient response of the closed-loop system.

Example 4. Consider the time-varying planar system

η̇1 = η3
2 + ln(1 + η2

2)η1 sin(η2t)

η̇2 = v

y = η1. (22)

Although (22) is not precisely in the form (1) (due to the
term ln(1+η2

2)η1 sin(η2t)), the robust design method used
in the proof of Theorem 2 is still valid. Since

| ln(1 + η2
2)η1 sin(η2t)| ≤ |η2| |η1|,

it can be concluded that the uncertain system (22), which
is non-smoothly stabilizable and non-uniformly observ-
able, is semi-globally stabilizable by the non-smooth dy-
namic output compensator (9)-(11) as long as the param-
eter L is large enough.

4. CONCLUSIONS

In this paper, we have presented a preliminary result on
how to achieve robust semi-global stabilization by non-
smooth output feedback for a family of uncertain nonlinear
systems. This class of uncertain systems, although they

are only two-dimensional, are difficult to be controlled
by output feedback for a number of reasons such as
the lack of a triangular structure, the presence of the
system uncertainty, and the loss of smooth stabilizability
and uniform observability. It is worth mentioning that
the robust semi-global output feedback stabilization of
higher-dimensional nonlinear systems in the “p-normal
form” or Hessenberg form Cheng and Lin [2003] is far
more complicated and difficult than the planar case. The
problem is currently under our investigation.
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