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Abstract: It is well known that industrial robots use the classical PID for positioning tasks.
To the authors’ knowledge, so far, there is not a proof of global regulation for such a controller.
In the search of a practical PID regulator that be global, this paper proposes a new saturated
nonlinear PID regulator for solving the problem of global regulation of robot manipulators
with bounded torques. An approach based on Lyapunov theory is used for analyzing the global
asymptotic stability. In this sense this proposal gives a step ahead in the search of a global
asymptotic stability analysis for the practical PID. Copyright c©2008 IFAC.
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1. INTRODUCTION

Industrial robots are naturally equipped with classical PID
controllers, which theoretically assure semiglobal asymp-
totic stability of the closed loop equilibrium for the regula-
tion case (see e.g., Arimoto and Miyazaki, 1984; Arimoto
et al., 1990; Kelly, 1995; Ortega et al., 1995; Alvarez–
Ramirez et al., 2000; Kelly et al., 2005; Meza et al., 2007).
Uniformly and ultimately boundedness of the closed loop
solutions can be concluded when the desired position is a
function of time; some stability analyzes for this latter case
can be found, for instance, in: Kawamura et al. (1988),
Wen and Murphy (1990), Qu and Dorsey (1991), Rocco
(1996), Cervantes and Alvarez–Ramirez (2001), Choi and
Chung (2004) and Camarillo et al. (2008).

On the one hand, it is well known that the saturation phe-
nomenon in robot control systems is intrinsically present
when the actuators are driven by sufficiently large control
signals. If this physical constraint is not considered in
the controller design, it may lead to a lack of stability
guarantee. Some works have been reported to solve this
problem (Kelly, and Santibañez, 1996; Colbaugh, et al.,
1997a; Colbaugh, et al., 1997b; Loria, et al., 1997; San-
tibañez, and Kelly, 1997; Santibañez and Kelly, 1998b;
1 Work partially supported by CONACyT (grant 45826) and
DGEST, Mexico.

Zergeroglu, et al., 2000). More recently, new schemes deal-
ing with this problem have been presented: Zavala-Rio
and Santibañez (2006), Zavala-Rio and Santibanez (2007),
Dixon (2007) and Alvarez–Ramirez, et al., (2008), for the
regulation case. Also for the tracking case some works have
appeared in the control literature: Loria and Nijmeijer
(1998), Dixon et al. (1999), Santibañez and Kelly (2001),
Aguiñaga (2006), Moreno et al. (2008a) and Moreno et al.,
(2008b). Some Ph.d. and M. Sc. thesis works dealing with
the trajectory tracking with bounded inputs problem have
been presented; see e.g., Loria (1996), Santibañez (1997),
Licona (2002) and Aguiñaga (2006).

On the other hand, some global nonlinear PID regulators,
which are based on Lyapunov and passivity theory, has
been reported in (Arimoto, 1995; Kelly, 1998; Santibañez,
and Kelly, 1998a; Meza and Santibañez, 1999) however,
they do not take into account the effects of actuators
saturation. To the best of the authors’ knowledge, so far, a
few saturated PID controllers have been reported; namely,
two semiglobal saturated linear PID controller (Alvarez–
Ramirez, et al., 2003) and Alvarez–Ramirez, et al., (2008),
and two global saturated nonlinear PID controllers (Gorez,
1999; Meza et al., 2005). The work introduced by Gorez
(1999) was the first PID–like controller in assuring global
regulation, the latter work, introduced in Meza et al
(2005), also guarantees global regulation, but with the
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advantage of its structure is simpler than that presented
in (Gorez, 1999).

In this paper, in the search of a practical PID regulator
that be global, we propose a new saturated nonlinear PID
regulator for robot manipulators with bounded torques.
The structure of this new proposed controller is closer to
the structure of the practical PID used in the industry. An
approach based on Lyapunov theory is used for analyzing
the global asymptotic stability. In this sense, this proposal
gives a step ahead in the search of a global asymptotic
stability analysis for the practical PID.

Throughout this paper, we use the notation λm{A(x)} and
λM{A(x)} to indicate the smallest and largest eigenval-
ues, respectively, of a symmetric positive definite bounded
matrix A(x), for any x ∈ IRn. By an abuse of nota-
tion, we define λm{A} as the greatest lower bound (infi-
mum) of λm{A(x)}, for all x ∈ IRn, that is, λm{A} :=
infx∈IRn λm{A(x)}. Similarly, we define λM{A} as the
least upper bound (supremum) of λM{A(x)}, for all x ∈
IRn, that is, λM{A} := supx∈IRn λM{A(x)}. The norm
of vector x is defined as ‖x‖ =

√
xT x and that of ma-

trix A(x) is defined as the corresponding induced norm
‖A(x)‖ =

√
λM{A(x)T A(x)}.

2. DYNAMICS OF RIGID ROBOTS AND CONTROL
PROBLEM FORMULATION

The dynamics of a serial n-link rigid robot, including the
effect of viscous friction, can be written as (Spong and
Vidyasagar, 1989):

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = τ (1)

where q is the n × 1 vector of joint displacements, q̇ is
the n × 1 vector of joint velocities, τ is the n × 1 vector
of applied torques, M(q) is the n × n symmetric positive
definite manipulator inertia matrix, C(q, q̇) is the n × n
matrix of centripetal and Coriolis torques, Fv is the n ×
n diagonal matrix of viscous friction coefficients fvi for
i = 1, 2, . . . , n, and g(q) is the n×1 vector of gravitational
torques obtained as the gradient of the robot potential
energy U(q), i.e.

g(q) =
∂U(q)

∂q
. (2)

We assume that the links are joined together with revolute
joints.

2.1 Properties of the Robot Dynamics

Three important properties of dynamics (1) are the fol-
lowing:

Property 1. (Koditschek, 1984; Ortega and Spong, 1989).
The matrix C(q, q̇) and the time derivative Ṁ(q) of the
inertia matrix satisfy:

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn

and
Ṁ(q) = C(q, q̇) + C(q, q̇)T ∀ q, q̇ ∈ IRn.

Furthermore there exists a positive constant kc1 such that
for all x, y, z∈ IRn it has

‖c(x, y)z‖ ≤ kc1 ‖y‖ ‖z‖.
�

Property 2. (Craig, 1988). The gravitational torque
vector g(q) is bounded for all q ∈ IRn. This means that
there exist finite constants ḡi ≥ 0 such that

sup
q∈IRn

|gi(q)| ≤ ḡi i = 1, · · · , n. (3)

where gi(q) stands for the elements of g(q). Equivalently,
there exists a constant k′ such that

‖g(q)‖ ≤ k′ for all q ∈ IRn.

Furthermore there exists a positive constant kg such that
‖g(x) − g(y)‖ ≤ kg‖x− y‖.

for all x, y ∈ IRn. �
2.2 Problem Formulation

Consider the robot dynamic model (1). Assume that each
joint actuator is able to supply a known maximum torque
τmax
i so that:

|τi| ≤ τmax
i , i = 1, · · · , n (4)

where τi stands for the i–entry of vector τ . We also assume
that the maximum torque τmax

i of each actuator satisfies
the following condition

τmax
i > ḡi, (5)

where ḡi was defined in Property 2. This assumption
means that the robot actuators are able to supply torques
in order to hold the robot at rest for all desired joint
position qd ∈ IRn.

The control problem is to design a controller to compute
the torque τ ∈ IRn applied to the joints, which satisfies the
constraints (4), such that, the robot joint displacements
q tend asymptotically toward the constant desired joint
displacements qd.

3. SATURATION DEFINITIONS

Before presenting the main contribution of the paper,
we recall some definitions of the continuous saturation
functions that we use in our proposal.

Definition 1. (Kelly, 1998). F(m, ε, x) with 1 ≥ m > 0,
ε > 0 and x ∈ IRn denotes the set of all continuously
differentiable increasing functions

sat(x) = [sat(x1) sat(x2) · · · sat(xn)]T

such that

• |x| ≥ |sat(x)| ≥ m|x|, ∀x ∈ IR : |x| < ε
• ε ≥ |sat(x)| ≥ mε, ∀x ∈ IR : |x| ≥ ε

• 1 ≥ dsat(x)
dx ≥ 0, ∀x ∈ IR �

Definition 2. The hard saturation function SAT(x; k) ∈
IRn is defined by

SAT(x; k) =




SAT(x1; k1)
SAT(x2; k2)

...
SAT(xn; kn)


 , x =




x1

x2
...

xn


 ,
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k = [ k1 k2 . . . kn ]T , where ki is the i–th saturation limit,
and

SAT(xi; ki) =

{
xi if |xi| ≤ ki

ki if xi > ki

−ki if xi < −ki

for i = 1, 2, . . . n. �
Some useful properties of the above saturation functions
are in order:

Property 3. (Kelly et al., 2005). From Definition 1, it is
easy to prove that:

‖sat (x)‖ ≤
{ ‖x‖ ∀ x ∈ IRn

ε
√

n ∀ x ∈ IRn (6)

and

‖sat (Λx)‖ ≤
{ ‖Λx‖ ∀ x ∈ IRn

ε
√

n ∀ x ∈ IRn (7)

where Λ is a diagonal positive definite matrix. �
Property 4. (Kelly et al., 2005). Similarly, from Defini-
tion 1, we have:∥∥∥∥ d

d t
sat (x)

∥∥∥∥ :=
∥∥ ˙sat (x)

∥∥ ≤ ‖ẋ‖ ∀ x ∈ IRn (8)

and ∥∥ ˙sat (Λx)
∥∥ ≤ ‖Λẋ‖ ∀ x ∈ IRn (9)

where Λ is a diagonal positive definite matrix. �
Property 5. From Definition 1 and 2 it is easy to see that,
for all δi ≥ ε with i = 1, 2, . . . , n, we have:

‖x‖ ≥ ‖SAT (x; δ)‖ ≥ ‖sat (x)‖ ∀ x ∈ IRn (10)

and

‖Λx‖ ≥ ‖SAT (Λx; δ)‖ ≥ ‖sat (Λx)‖ ∀ x ∈ IRn(11)

where Λ is a diagonal positive definite matrix. �
Property 6. The integral of a hard saturation function
I(xi) − minxi{I(xi)} is a positive definite function with a
unique and global minimum at xi = b/k, with |b| < δi;
where

I(xi) :=

xi∫
b

[SAT (kξi; δi) − b] dξi,

(see for instance Figure 1).

Fig. 1. Integral of the hard saturation function I(xi) −
minxi{I(xi)}.

4. SATURATED NONLINEAR PID GLOBAL
REGULATOR

In this section we present a new saturated nonlinear PID
controller to solve the set-point control problem of robot
manipulators with actuator torque constraints.

4.1 Main Result

The proposed control law is given by
τ = KpSAT

(
Bq̃ − Kvq̇; τ ′

pd

)
+ SAT (Kiw; τw) (12)

with

w =

t∫
0

[αsat (Bq̃ (r)) − q̇] dr

where τ ′
pd and τw are the respective vectors of saturation

limits whose elements satisfy, from the real actuator limi-
tations, τmax

i ≥ kpiτ
′
pdi

+ τwi ≥ gi, for i = 1, 2, . . . n. Kp,
B, Kv and Ki are n × n diagonal positive definite matri-
ces whose elements are kpi , bi, kvi , kii respectively with
i = 1, 2...n, q̃ = qd − q denotes the position error vector,
sat(q̃) was defined in Definition 1, α is a small positive
constant suitably selected. SAT

(
Bq̃ − Kvq̇; τ ′

pd

)
∈ IRn

and SAT (Kiw; τw) ∈ IRn are the proportional–derivative
and integral hard saturation functions, respectively, de-
fined in Definition 2.

In the next paragraphs we analyze the stability of the
equilibrium of the closed loop system formed by (12) and
(1):




˙̃q
q̈

ẇ


 =




−q̇

M (q)−1
[
KpSAT

(
Bq̃ − Kvq̇; τ ′

pd

)
+SAT (Kiw; τw) − C (q, q̇) q̇ − Fv q̇ − g (q)]

αsat (Bq̃) − q̇




(13)

which is an autonomous differential equation whose unique
equilibrium is:

[
q̃T q̇T wT

]T
=

[
0 0 K−1

i g(qd)
]T

,
provided that τwi ≥ ḡi for i = 1, 2, . . . , n. Such an analysis
is carried out using Lyapunov theory, and LaSalle’s invari-
ance principle.

Now, we are in position to introduce our main result:

Proposition 1. The Robot dynamics (1) in closed-loop
with the control law (12), satisfying τwi ≥ gi, λm {Kp} >

kh2 and τ ′
pdi

> ε, where kh2 = 2k′

sat
(

2k′λm{B}
kg

) , has a unique

equilibrium given by
[
q̃T q̇T wT

]T
=

[
0 0 K−1

i g(qd)
]T ∈

IR3n, which is globally asymptotically stable, provided that
α be suitably selected satisfying (14), shown at the top of
the next page.

Furthermore the applied torques are bounded by |τi| ≤
τmax
i for i = 1, 2, 3...n. �

Proof. Proposition 1 can be proven via Lyapunov the-
ory. Toward this end we propose the following Lyapunov
function candidate:
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α < min

{√
2βλm {M}
λM {M}2 ,

4λm {Fv} (λm {Kp} − kh2)
λM {Kp}2

λM {Kv}2 + 4 (kc1
√

n + λM {M}λM {B}) (λm {Kp} − kh2)

}
(14)

V (q̃, q̇, w) =
1
2
q̇T M (q) q̇ − αsat (Bq̃)T

M (q) q̇ + h(q̃)︸ ︷︷ ︸
V1(q̃,q̇)

+
n∑

i=1

α

q̃i∫
0

fvisat (βiri) dri

︸ ︷︷ ︸
V2(q̃)

+
n∑

i=1

wi∫
gi(qd)

[SAT (kiiri; τwi) − gi (qd)] dri

︸ ︷︷ ︸
V3(w)

−Imin (15)

where

h(q̃) =
n∑

i=1

q̃i∫
0

kpiSAT
(
βiri; τ ′

pi

)
dri

+U (q) − U (qd) + g (qd)
T q̃

and Imin denotes the minimum value of V3(w), that is,

Imin = −
n∑

i=1

gi (qdi)
2

2

[
(kii − 1)2

kii

]
.

Positive definiteness. From Property 6, it is straight-
forward to see that V2(q̃) and V3(w) − Imin are radi-
ally unbounded and positive definite functions in q̃ and
w − K−1

i g(qd) respectively. Hence, in order to prove that
V (q̃, q̇, w) is a radially unbounded and positive definite
function, it remains to prove that V1(q̃, q̇) is positive
definite in [q̃T q̇T ], to this end, notice that it is possible
to below bound V1(q̃, q̇) by

V1 (q̃, q̇, w)≥ 1
2
λm {M} ‖q̇‖2

−αλM {M} ‖sat (Bq̃)‖ ‖q̇‖
+β ‖sat (Bq̃)‖2

= [ ‖sat (Bq̃)‖ ‖q̇‖ ] P
[ ‖sat (Bq̃)‖

‖q̇‖
]

where β is a positive constant satisfying h(q̃) ≥ β ‖sat (Bq̃)‖2

provided that λm {Kp} > kh2, and

P =

[
β −αλM{M}

2

−αλM{M}
2

λm{M}
2

]

which, due to α condition (14), results to be a positive
definite matrix.

Negative semidefiniteness. The time derivative of the
Lyapunov function candidate (15) along the trajectories of
the closed loop system (13), after some algebraic manipu-
lations and using Property 1, results:

V̇ (q̃, q̇, w) = [q̇ − αsat (Bq̃)]T ×
Kp

[
SAT

(
Bq̃ − Kvq̇; τ ′

pd

) − SAT
(
Bq̃; τ ′

pd

)]
−q̇T Fv q̇ − αsat (Bq̃)T [g (qd) − g (q)]

−αsat (Bq̃)T
C (q, q̇)T

q̇ − α ˙sat (Bq̃)T
M (q) q̇

−αsat (Bq̃)T
KpSAT

(
Bq̃; τ ′

pd

)
. (16)

Now we provide upper bounds on each of the terms of (16):

• q̇T Kp

[
SAT

(
Bq̃ − Kvq̇; τ ′

pd

) − SAT
(
Bq̃; τ ′

pd

)] ≤ 0

• −αsat (Bq̃)T
Kp

[
SAT

(
Bq̃ − Kvq̇; τ ′

pd

)−
SAT

(
Bq̃; τ ′

pd

)] ≤ αλM {Kp}λM {Kv} ‖sat (Bq̃)‖ ‖q̇‖
• −q̇T Fv q̇ ≤ −λm {Fv} ‖q̇‖2

• −αsat (Bq̃)T [g (qd) − g (q)] ≤ αkh2 ‖sat (Bq̃)‖2

• −αsat (Bq̃)T
C (q, q̇)T

q̇ ≤ αkc1

√
n ‖q̇‖2

• −α ˙sat (Bq̃)T
M (q) q̇ ≤ αλM {B}λM {M} ‖q̇‖2

• −αsat (Bq̃)T
KpSAT

(
Bq̃; τ ′

pd

)
≤ −αλm {Kp} ‖sat (Bq̃)‖2

where we have used the Property 2 – Property 5. Finally
the time derivative V̇ (q̃, q̇, w) can be upper bounded by

V̇ (q̃, q̇, w) ≤ −α [ ‖sat (Bq̃)‖ ‖q̇‖ ]Q
[ ‖sat (Bq̃)‖

‖q̇‖
]

where

Q =[
λm {Kp} − kh2 −λM{Kp}λM{Kv}

2

−λM{Kp}λM{Kv}
2

λm{Fv}
α − kc1

√
n − λM {M}λM {B}

]

which is a positive definite matrix because we have as-
sumed that λm {Kp} > kh2 and α satisfies (14), hence
V̇ (q̃, q̇, w) is a globally negative semidefinite function. By
using the fact that the Lyapunov function candidate (15)
is a radially unbounded globally positive definite function
and its time derivative is a globally negative semidef-
inite function we conclude that the equilibrium of the
closed loop system (13) is stable. Finally, by invoking the
LaSalle’s invariance principle (see e.g., Khalil, 2002), the
global asymptotic stability of the equilibrium is proven.

5. SIMULATION RESULTS

Using the SIMNON software, we tested our algorithm in
the two revolute–joint robot manipulator used in (Reyes
and Kelly, 1997). The desired joint positions were chosen
as qd1 = 90◦ and qd2 = 60◦. The gains were tuned as
Kp = diag{2, 2} [Nm/deg], Ki = diag{0.5, 0.5} [Nm/deg],
Kv = diag{55, 8} [sec], α = 1 × 10−5 [sec−1], B =
diag{900, 100}, τ ′

pd1
= 40 [deg], τ ′

pd2
= 3 [deg], τw1 = 3.5

[Nm] and τw2 = 2 [Nm]. The maximum torques supplied
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Fig. 2. Joint position errors for the saturated PID Control

Fig. 3. Applied torque using the saturated PID Control

Fig. 4. Applied torque using the saturated PID Control

by the actuators are τmax
1 = 150 [Nm] and τmax

2 = 15
[Nm]. The parameters to be used are: λM{M(q)} = 5.03
[kg m2], λm{M(q)} = 0.102 [kg m2], kg = 1.406 [Nm/deg],
kc1 = 0.336 [kg m2], kh2 = 1.848 [Nm/deg] and λm{Fv} =
0.175 [Nm sec/deg]. The soft saturation function sat(·)
used in the simulation essays is the hyperbolic tangent,
that is, sat(·) = tanh(·).
The Figure 2 shows how the position errors converge to
zero and the Figure 3 shows the torques for a period of
three second. We can observe from Figure 3 and 4 that the
proposed saturated nonlinear PID controller yields control
inputs |τ1| < τmax

1 = 150 [Nm] and |τ2| < τmax
2 = 15 [Nm].

6. CONCLUSIONS

In this paper we have proposed a new saturated nonlinear
PID regulator to solve the global regulation problem of
robot manipulators with bounded torques.

By using particular properties of some saturation functions
we have proposed a simple Lyapunov function candidate,
which using the Lyapunov theory and the LaSalle’s in-
variance principle, leads to conclude global asymptotic
stability of the closed loop system.

The main relevance of this work lies in the step ahead
that this paper gives in the search of a stability analysis

that provides the conditions to prove global asymptotic
stability for the practical PID in closed loop with robot
dynamics.

It is also guaranteed that, regardless of initial conditions,
the delivered torques remain inside prescribed limits.
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Meza, J.L., and V. Santibáñez (1999). Analysis via pas-
sivity theory of a class of nonlinear PID global regulators
for robot manipulators. Proc. of the IASTED Inter-
national Conference, Robotics and Applications RA’99,
U.S.A., pp. 288–293.
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