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Abstract: This paper addresses the problem of estimating position and attitude of a rigid body
based on landmark coordinate readings and biased velocity measurements. Using a Lyapunov
function conveniently defined by the landmark measurement error, a nonlinear observer on SE(3)
is derived. The resulting position, attitude, and biases estimation errors are shown to converge
exponentially fast to the desired equilibrium points. The observer terms are explicit functions
of the landmark measurements and velocity readings, exploiting the sensor information directly.
Simulation results for trajectories described by time-varying linear and angular velocities are
presented to illustrate the stability and convergence properties of the observer, supporting the
application of the algorithm to autonomous air vehicles and other robotic platforms.

1. INTRODUCTION

Landmark based navigation is recognized as a promising
strategy for providing aerial vehicles with accurate po-
sition and attitude information during the critical take-
off, landing, and hover stages. Among a wide diversity of
suitable estimation techniques, nonlinear observers stand
out as an exciting approach often endowed with stability
results [Crassidis et al., 2007] formulated rigorously in non-
Euclidean spaces. Recent advances in this research topic
motivate the growing interest in the inclusion of non-ideal
sensor effects that have long been accounted for in filtering
estimation techniques.

The problem of formulating a stabilizing feedback law in
non-Euclidean spaces, such as SO(3) and SE(3), has been
addressed in several references, namely [Malisoff et al.,
2006, Chaturvedi and McClamroch, 2006, Fragopoulos and
Innocenti, 2004, Bhat and Bernstein, 2000], where the
analysis of the topological properties of the SE(3) manifold
provides important guidelines for the design of observers.
Nonlinear attitude observers motivated by aerospace ap-
plications are found in [Salcudean, 1991, Thienel and San-
ner, 2003], yielding global exponential convergence of the
attitude estimates in the Euler quaternion representation.
A nonlinear complementary filter in SE(3) is proposed
in [Baldwin et al., 2007], with almost global exponential
convergence and tested in a Vario Benzin-Acrobatic model
scale helicopter.

The observers proposed in [Baldwin et al., 2007, Thienel
and Sanner, 2003, Salcudean, 1991] assume that an ex-
plicit quaternion/rotation matrix attitude measurement is
available, obtained by batch processing sensor measure-
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ments such as landmarks, image based features, and vector
readings. In alternative, if the landmark measurements are
exploited directly in the observer, it is possible to analyze
the influence of the sensor characteristics and landmark
configuration in estimation results.

In this work, the position and attitude of a rigid body
are estimated by exploiting landmark readings and biased
velocity measurements directly. The proposed observer
yields exponential stability of the position and attitude
estimation errors, in the presence of biased angular and
linear velocity readings. As discussed in [Vasconcelos et al.,
2007], the attitude and position estimation problems can
be decoupled assuming perfect angular velocity measure-
ments. However, coupling occurs in the presence of angu-
lar velocity bias, which influences the position feedback
law, and the attitude and position estimation problems
must be addressed together. The stability of the origin is
derived, based on recent results for parameterized linear
time-varying systems presented in [Loŕıa and Panteley,
2002], that also bring about exponential convergence rate
bounds. To the best of the authors’ knowledge, no prior
work on nonlinear observers has addressed the problem
of position estimation in the presence of biased angular
velocity readings.

The paper is organized as follows. The position and at-
titude estimation problem is presented in Section 2. Sec-
tion 3 introduces the analytical tools adopted in the deriva-
tion of the observer. A convenient landmark-based coor-
dinate transformation and Lyapunov function are defined,
and the necessary and sufficient landmark configuration
for attitude determination is discussed. The main contri-
bution of this work is detailed in Section 4, where the expo-
nential convergence of the estimation errors to the desired
equilibrium points is presented. It is also shown that the
feedback law is an explicit function of the sensor readings
and observer estimates. Section 5 illustrates the properties
of the observer in simulation. Conclusions and directions
of future developments are presented in Section 6.
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Fig. 1. Airborne Landmark Based Navigation

NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted by M(n,m) and
M(n) := M(n, n). The sets of skew-symmetric, orthogonal,
and special orthogonal matrices are respectively denoted
by K(n) := {K ∈ M(n) : K = −K′}, O(n) := {U ∈
M(n) : U′U = I}, and SO(n) := {R ∈ O(n) : det(R) =
1}. The special Euclidean group is given by the product
space of SO(n) with R

n, SE(n) := SO(n) × R
n [Murray

et al., 1994]. The n-dimensional sphere and unitary ball
are described by S(n) := {x ∈ R

n+1 : x′x = 1} and
B(n) := {x ∈ R

n : x′x ≤ 1}, respectively.

2. PROBLEM FORMULATION

Landmark based navigation, illustrated in Fig. 1, can be
summarized as the process of determining attitude and
position of a rigid body using landmark observations and
velocity measurements, given by sensors installed onboard
the autonomous platform. The rigid body kinematics are
described by

˙̄R = R̄ [ω̄×] , ˙̄p = v̄ − [ω̄×] p̄,

where R̄ is the shorthand notation for the rotation matrix
L
BR from body frame {B} to local frame {L} coordinates,
ω̄ and v̄ are the body angular and linear velocities,
respectively, expressed in {B}, p̄ is the position of the rigid
body with respect to {L} expressed in {B}, and [a×] is the
skew symmetric matrix defined by the vector a ∈ R

3 such
that [a×]b = a × b, b ∈ R

3. Without loss of generality,
the local frame is defined by translating the Earth frame
{E} to the landmarks’ centroid, as depicted in Fig. 1.

The body angular and linear velocities are measured by a
rate gyro sensor triad and a Doppler sensor, respectively

ωr = ω̄, vr = v̄. (1)

The landmark measurements qr i, illustrated in Fig. 1, are
obtained by on-board sensors that are able to track terrain
characteristics, such as CCD cameras or ladars, so that

qr i = q̄i = R̄′Lx̄i − p̄, (2)

where Lx̄i represents the coordinates of landmark i in the
local frame {L}. The concatenation of (2) is expressed in
matrix form as Q̄ = R̄′X − p̄1′

n where Q̄ := [q̄1 . . . q̄n],

X :=
[

Lx̄1 . . . Lx̄n

]

, Q̄,X ∈ M(3, n) and 1n := [1 . . . 1]
′
,

1n ∈ R
n . By the definition of frame {L}, the landmarks’

centroid is at the origin of the coordinate frame
n

∑

i=1

Lx̄i = X1n = 0. (3)

The proposed observer which estimates the position and
attitude of the rigid body takes the form

˙̂R = R̂ [ω̂×] , ˙̂p = v̂ − [ω̂×] p̂,

where ω̂ and v̂ are feedback terms that, by construction,
compensate for the estimation errors.

The position and attitude errors are defined as p̃ :=
p̂ − p̄ and R̃ := R̂R̄′, respectively. The Euler angle-
axis parameterization of the rotation error matrix R̃ is
described by the rotation vector λ ∈ S(2) and by the
rotation angle θ ∈ [0 π], yielding the formulation [Murray

et al., 1994] R̃ = rot(θ,λ) := cos(θ)I + sin(θ) [λ×] +
(1− cos(θ))λλ

′. While the observer results are formulated
directly in the SE(3) manifold, the rotation angle θ is
adopted to characterize some of the convergence properties
of the observer.

The attitude and position error kinematics are given by

˙̃R = R̃
[

R̄(ω̂ − ω̄)×
]

, (4a)

˙̃p = (v̂ − v̄) − [ω̄×] p̃ + [p̂×] (ω̂ − ω̄), (4b)

respectively. The attitude and position observers are ob-
tained by defining ω̂ and v̂ as functions of the velocity
readings (1) and landmark observations (2), so that the
closed loop estimation errors converge asymptotically to
the origin, i.e. R̃ → I, p̃ → 0 as t → ∞.

3. OBSERVER CONFIGURATION

The attitude feedback law and the analysis of the result-
ing observer are derived resorting to Lyapunov’s stability
theory. Based on a judiciously chosen landmark trans-
formation, which will be presented shortly, a candidate
Lyapunov function is defined to synthesize the attitude
and position observer.

To exploit the landmark readings information, vector
and position measurements are constructed from a linear
combination of (2), producing respectively

Būj :=

n−1
∑

i=1

aij(q̄i+1 − q̄i),
Būn := − 1

n

n
∑

i=1

q̄i, (5)

where j = 1, . . . , n − 1. To express these transformations

in matrix form, define DX :=
[

01×n−1

In−1

]

−
[

In−1

01×n−1

]

, dp :=

− 1
n1n, and AX := [aij ] ∈ M(n − 1), which is assumed to

be invertible. Using 1′
nDX = 0, the transformation (5) can

be written as
BŪX = Q̄DXAX = R̄′UX , Būn = Q̄dp = p̄ (6)

where BŪX :=
[

Bū1 . . . Būn−1

]

∈ M(3, n − 1), and
UX := XDXAX ∈ M(3, n − 1) is known. The estimates
of the transformed landmarks (6) are described by

BÛX = R̂′UX , Bûn = p̂. (7)

where the columns of BÛX and UX are denoted as Bûi

and Lūi, respectively.
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The candidate Lyapunov function is defined by the esti-
mation error of the transformed vectors

V = 1
2

n
∑

i=1

‖Bûi − Būi‖2. (8)

It is straightforward to rewrite V as a linear combination
of distinct attitude and position components V = VR+Vp.
The attitude component is given by

VR = 1
2

n−1
∑

i=1

‖Bûi − Būi‖2 = tr
[

(I − R̃)UXU′
X

]

=
1

4
‖I − R̃‖2

λ
′Pλ = (1 − cos(θ)) λ

′Pλ, (9)

where P := tr(UXU′
X)I − UXU′

X ∈ M(3), and the
position component described by Vp = 1

2‖Bûn − Būn‖2 =
1
2 p̃

′p̃. Taking the time derivatives produces

V̇R =
[

UXU′
XR̃ − R̃′UXU′

X⊗
]′

R̄(ω̂ − ω̄), (10a)

V̇p = p̃′([p̂×] (ω̂ − ω̄) + (v̂ − v̄)), (10b)

where ⊗ is the unskew operator such that [[a×]⊗] = a,a ∈
R

3.

3.1 Vector Measurement Configuration

The Lyapunov function VR measures the error of the trans-
formed landmarks, given by Bûi − Būi, i = 1, . . . , n − 1.
The landmark configuration under which zero observation
error VR = 0 is equivalent to correct attitude estimation
R̃ = I verifies the following assumption:

Assumption 1. (Landmark Configuration). The landmarks
are not all collinear, that is, rank(X) ≥ 2.

Lemma 2. The Lyapunov function VR has a unique global
minimum (at R̃ = I) if and only if Assumption 1 is verified.

Proof. By [Vasconcelos et al., 2007, Lemma 1], VR > 0
if and only if rank(UX) ≥ 2. The equality rank(UX) =
rank([UX 0]) = rank(X [DX 1n]

[

AX 0
0 1

]

) = rank(X)
given that AX and [DX 1n] are nonsingular, completes
the proof. 2

The necessity of Assumption 1 is illustrated by considering
all Lx̄i are collinear, which is equivalent to all Lūi collinear,
and hence any R̃ = rot(θ, Lūi/‖Lūi‖) satisfies VR = 0.

3.2 Vector Measurement Directionality

The derivation of a stabilizing feedback law for attitude
estimation relies on analyzing the level sets wherein VR ≤
c holds. For c large enough, the corresponding level sets
contain multiple critical points due to the nonuniform
directionality of P, see [Vasconcelos et al., 2007, Lemma 2]
for a motivation. Interestingly enough, the directionality
of matrix P can be made uniform by construction, using
the transformation AX .

Proposition 3. Let H := XDX be full rank, there is a
nonsingular AX ∈ M(n) such that UXU′

X = I.

Proof. Take the SVD decomposition of H = USV′ where
U ∈ O(3), V ∈ O(n), S =

[

diag(s1, s2, s3) 03×(n−3)

]

∈
M(3, n), and s1 > s2 > s3 > 0 are the singular values of H.

Any AX given by AX = V
[

diag(s−1
1 ,s−1

2 ,s−1
3 ) 03×(n−3)

0(n−3)×3 B

]

V′
A,

where B ∈ M(n − 3) is nonsingular and VA ∈ O(n),
produces UXU′

X = HAXA′
XH = UV′

AVAU′ = I. 2

Using the transformation AX defined in Proposition 3, the
Lyapunov function (9) is expressed by

VR = 1
2‖I − R̃‖2 = 2(1 − cos(θ)),

V̇R = −
[

R̃ − R̃′⊗
]′

R̄′(ω̂ − ω̄) = −2 sin(θ)λ′R̄′(ω̂ − ω̄).

Apparently, the case rank(X) = 2 does not satisfy the con-
ditions of Proposition 3, given that rank(H) = rank(X).
However, by taking two linearly independent columns of
H, Lhi and Lhj , a full rank matrix is defined as Ha =
[

H Lhi × Lhj

]

. The cross product is commutable with co-

ordinate transformations, (R′Lhi) × (R′Lhj) = R′(Lhi ×
Lhj), hence a modified observer can be rederived, without
loss of generality, by replacing H with Ha.

4. OBSERVER SYNTHESIS

In this section, the feedback law for the observer is derived,
and the problem of bias in the velocity sensors is addressed.
The observer for the case of unbiased velocity measure-
ments, which is based on previous work by the authors
[Vasconcelos et al., 2007], is presented first to motivate
the derivation of the attitude and position feedback laws,
and expose topological limitations to global stabilization.

4.1 Unbiased Velocity Measurements

For the case of unbiased velocity readings, the Lyapunov
function decoupling V = VR + Vp allows for the attitude
and position estimation problems to be addressed sep-
arately. The attitude observer (4a) is derived using the
Lyapunov function VR, and the position observer (4b) is
derived using Vp.

Attitude Feedback Law Under Assumption 1 and given
the Lyapunov function derivatives along the system tra-
jectories (10a), consider the following feedback law

ω̂ = ω̄ − Kωsω, (11)

where the feedback term is given by

sω :=R̄′
[

R̃ − R̃′⊗
]

= 2 sin(θ)R̄′
λ, (12)

and Kω > 0 is a positive scalar. The attitude feedback
yields the autonomous attitude error system

˙̃R =KωR̃(R̃′ − R̃), (13)

and a negative semi-definite time derivative V̇R =
−Kωs′ωsω = −4Kω sin2(θ) ≤ 0, so it is immediate that
the attitude feedback law produces a Lyapunov function
that decreases along the system trajectories. Under As-
sumption 1, the set of points where V̇R = 0 is given by

CR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,λ),λ ∈ S(2)}.
By direct substitution in the closed loop system (13),

the subset {R̃ ∈ SO(3) : R̃ = rot(π, λ)} is invariant,
hence any initial condition with θ = π does not converge
to the desired equilibrium point θ = 0. This issue is a
consequence of the known limitations to global stability on
SO(3) discussed in [Bhat and Bernstein, 2000], for details
on the present estimation problem see [Vasconcelos et al.,
2007] and references therein. However, the set θ = π has
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zero measure and, as shown in the next theorem, every
other initial condition converges exponentially fast to the
origin yielding almost global convergence. The proof is
obtained by adaptation of the [Vasconcelos et al., 2007,
Theorem 3], and omitted due to space constraints.

Theorem 4. The closed-loop system (13) has an exponen-

tially stable point at R̃ = I. For any initial condition
R̃(t0) in the region of attraction RA = {R̃ ∈ SO(3) :

R̃ = rot(θ,λ), |θ| < π,λ ∈ S(2)} the trajectory satisfies

‖R̃(t) − I‖ ≤ kR‖R̃(t0) − I‖e−
1
2γR(t−t0), (14)

where kR = 1 and γR = 2Kω(1 + cos(θ(t0))).

Position Feedback Law The position feedback law for the
system (4b) is defined as

v̂ = v̄ + ([ω̄×] − KvI)sv − [p̂×] (ω̂ − ω̄), (15)

where the feedback term is defined as sv := p̃, and Kv

is a positive scalar. The position feedback law produces a
closed loop linear time-invariant system ˙̃p = −Kvp̃, and
exponential stability of the origin is immediate.

4.2 Biased Velocity Measurements

This section presents the derivation of an exponentially
stabilizing observer for attitude and position estimation
in the presence of angular and linear velocity biases

ωr = ω̄ + b̄ω, vr = v̄ + b̄v (16)

where the nominal biases are considered constant, i.e.
˙̄bω = 0, ˙̄bv = 0. The proposed Lyapunov function (8)
is augmented to account for the effect of the angular and
linear velocity bias

Vb =2γθ(1 − cos(θ)) +
γp

2
‖p̃‖2 +

γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖2,

V̇b =γps
′
v ([p̂×] (ω̂ − ω̄) + (v̂ − v̄) − [ω̄×] p̃)

+ γθs
′
ω(ω̂ − ω̄) + γbω

b̃′
ω

˙̃
bω + γbv

b̃′
v
˙̃
bv (17)

where b̃ω = b̂ω − b̄ω, b̃v = b̂v − b̄v are the bias compen-

sation errors, b̂ω, b̂v are the estimated biases, and γθ, γp,
γbω

and γbv
are positive scalars. Under Assumption 1 and

given Lemma 2, the Lyapunov function Vb has an unique
global minimum at (p̃, R̃, b̃ω,bv) = (0, I, 0, 0).

The feedback laws for the angular and linear velocities are
given by

ω̂ = (ω̄ + b̄ω − b̂ω) − Kωsω = (ω̄ − b̃ω) − Kωsω , (18)

v̂ = vr − b̂v +
([

ωr − b̂ω×

]

− KvI
)

sv − [p̂×] (ω̂ − (ωr − b̂ω))

= v̄ − b̃v +
([

ω̄ − b̃ω×

]

− KvI
)

sv + Kω [p̂×] sω .

which are obtained by adding bias compensation terms
to the feedback laws (11) and (15), respectively. The

augmented Lyapunov time derivative is described by V̇b =

−γpKv‖sv‖2−γθKω‖sω‖2+(γp [p̂×] p̃−γθsω+γbω

˙̃
bω)′b̃ω+

(γbv

˙̃
bv − γpp̃)′b̃v. The bias estimates satisfy

˙̂
bω =

˙̃
bω,

˙̂
bv =

˙̃
bv, and the bias feedback laws are defined as

˙̂
bω =

1

γbω

(γθsω − γp [p̂×] p̃) ,
˙̂
bv =

γp

γbv

p̃. (19)

The closed loop system can be written as

˙̃p = − [p̄×] b̃ω − Kvp̃ − b̃v

˙̃R = −KωR̃(R̃ − R̃′) − R̃
[

R̄b̃ω×
]

˙̃
bω =

γθ

γbω

R̄
[

R̃ − R̃′⊗
]

− γp

γbω

[p̄×] p̃,
˙̃
bv =

γp

γbv

p̃

(20)

which are nonautonomous and the Lyapunov function time
derivative is described by V̇b = −γpKvs

′
vsv − γθKωs′ωsω.

Let xb := (p̃, R̃, b̃ω, b̃p) and Db := R
3 × SO(3) × R

3 ×
R

3, the set of points where V̇bω
= 0 is Cb = {xb ∈

Db : (p̃, b̃ω, b̃p) = (0,0,0), R̃ ∈ CR}. As discussed in
Section 4.1, global asymptotic stability of the origin is
precluded by topological limitations associated with the
estimation error R̃ = rot(π,λ). In the next proposition,
the boundedness of the estimation errors is shown and used
to provide sufficient conditions for excluding convergence
to the equilibrium points satisfying R̃ = rot(π,λ).

Lemma 5. The estimation errors (p̃, R̃, b̃ω, b̃p) are
bounded. For any initial condition such that

γbv
‖b̃v(t0)‖2 + γp‖p̃(t0)‖2 + γbω

‖b̃ω(t0)‖2

4γθ(1 + cos(θ(t0)))
< 1, (21)

the attitude error is bounded by θ(t) ≤ θmax < π for all
t ≥ t0 .

Proof. Define the set Ωρ = {xb ∈ Db : Vb ≤ ρ}. The
Lyapunov function (17) consists of the weighted distance
of the state to the origin, so ∃α‖xb‖2 ≤ αVb and the set
Ωρ is compact. The Lyapunov function decreases along

the system trajectories, V̇b ≤ 0, so any trajectory starting
in Ωρ will remain in Ωρ. Consequently, ∀t≥t0‖xb(t)‖2 ≤
αVb(x(t0)) and the state is bounded.

The gain condition (21) is equivalent to Vb(xb(t0)) < 4γθ.
The invariance of Ωρ implies that Vb(xb(t)) ≤ Vb(xb(t0))
which implies that 2γθ(1 − cos(θ(t))) ≤ Vb(xb(t0)) < 4γθ

and consequently ∃θmax
θ(t) ≤ θmax < π for all t ≥ t0. 2

Adopting the analysis tools for parameterized LTV sys-
tems [Loŕıa and Panteley, 2002], the system (20), in the
form ẋb = f(t,xb)xb, is rewritten as ẋ⋆ = A(λ, t)x⋆. In
this formulation, the parameter λ ∈ Db × R is associated
with the initial conditions of the nonlinear system and the
solutions of both systems are identical wherever the initial
conditions of both systems coincide, x⋆(t0) = x(t0), and
the parameter satisfies λ = (t0,x(t0)). Sufficient condi-
tions for uniform exponential stability of the parameter-
ized LTV system, and thus of the nonlinear system, are
derived in [Loŕıa and Panteley, 2002]. Using these results,
exponential convergence of the estimation errors in the
presence of biased velocity measurements is shown.

Theorem 6. Let γbv
= γbω

and assume that p̄, v̄ and
ω̄ are bounded. For any initial condition that satisfies
(21), the position, attitude and bias estimation errors
converge exponentially fast to the stable equilibrium point
(p̃, R̃, b̃ω, b̃v) = (0, I, 0, 0).

Proof. The stability of (20) is obtained by a change
of coordinates, using an attitude representation similar
to that proposed in [Thienel and Sanner, 2003]. Let the
attitude error vector be given by q̃q = sin( θ

2 )λ, the closed
loop kinematics are described by

˙̃p = − [p̄×] b̃ω − Kvp̃ − b̃v , ˙̃qq = 1

2
Q(q̃)(−R̄b̃ω − 4Kωq̃q q̃s)
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˙̃
bω = 4

γθ

γbω

R̄
′Q′(q̃)q̃q −

γp

γbω

[p̄×] p̃,
˙̃
bv =

γp

γbv

p̃ (22)

where Q(q̃) := q̃sI + [q̃q×], q̃ =
[

q̃′
q q̃s

]′
, q̃s = cos( θ

2 )

and ˙̃qs = 2Kωq̃′
qq̃q q̃s − 1

2q
′
qb̃ω. The vector q̃ is the well

known Euler quaternion representation [Murray et al.,

1994]. Using ‖q̃q‖2 = 1
8‖R̃ − I‖2, the Lyapunov function

in quaternion coordinates is described by Vb = 4γθ‖q̃q‖2 +
γp

2 ‖p̃‖2 +
γbω

2 ‖b̃ω‖2 +
γbv

2 ‖b̃v‖2.

Let xq := (p̃, q̃q, b̃ω, b̃v), xq ∈ Dq, and Dq := R
3 ×

B(3) × R
3 × R

3, define the system (22) in the domain
Dq = {x ∈ Dq : Vb ≤ γθ(4 − εq)}, 0 < εq < 4. The
set Dq is given by the interior of the Lyapunov surface, so
it is positively invariant and well defined. The condition
(21) implies that the initial condition is contained in the
set Dq for εq small enough.

Let x⋆ := (p̃⋆, q̃q⋆, b̃ω⋆, b̃v⋆), Dq := R
3 × R

3 × R
3 × R

3,
γb := γbω

= γbv
, and define the parameterized LTV system

ẋ⋆ =

[

A(t, λ) B′(t, λ)
−C(t, λ) 03×3

]

x⋆ (23)

where λ ∈ R≥0 ×Dq, the submatrices are described by

A(t, λ) =
[

−KvI 03×3

03×3 −2Kω q̃s(t,λ)Q(q̃(t,λ))

]

,

B(t, λ) =
[

[p̄×] −
R̄

′Q′(q̃(t,λ))
2

−I 03×3

]

, C(t, λ) =
B(t, λ)

γb

[

γpI 0
0 8γθI

]

,

and the quaternion q̃(t, λ) represents the solution of (22)

with initial condition λ = (t0, p̃(t0), q̃q(t0), b̃ω(t0), b̃v(t0)).
By the boundedness of p̄, the matrices A(t, λ), B(t, λ) and
C(t, λ) are bounded, and the system is well defined [Khalil,
1996, p. 626]. If the parameterized LTV (23) is λ-UGES,
then the nonlinear system (22) is uniformly exponentially
stable in the domain Dq, [Loŕıa and Panteley, 2002, p.14-
15]. The parameterized LTV system verifies the assump-
tions of [Loŕıa and Panteley, 2002, Theorem 1]:

1) Given the boundedness of p̄, v̄ and ω̄, ˙̄p is bounded,

and the elements of B(t, λ) and ∂B(t,λ)
∂t , as well as the

corresponding induced Euclidean norm, are bounded for
all λ ∈ R≥0 ×Dq, t ≥ t0.

2) The positive definite matrices P (t, λ) = 1
γb

[

γpI 0
0 8γθI

]

,

Q(t, λ) = 1
γb

[

2KvγpI 0

0 32q̃2
s(t,λ)KωγθI

]

satisfy P (t, λ)B′(t, λ) =

C′(t, λ), −Q(t, λ) = A′(t, λ)P (t, λ) + P (t, λ)A(t, λ) +

Ṗ (t, λ), min(Cp)I ≤ P (t, λ) ≤ max(Cp)I, min(Cq)I ≤
Q(t, λ) ≤ max(Cq)I with Cp = 1

γb
{γp, 8γθ}, Cq =

1
γb
{cq, cq cos2( θmax

2 ), 2Kvγp}, and cq = 32Kωγθ.

The system (23) is λ-UGES if and only if B(t, λ) is λ-
uniformly persistently exciting [Loŕıa and Panteley, 2002].
Algebraic manipulation produces for any y ∈ R

3,

B(τ, λ)B′(τ, λ) =
[

1
4 R̄

′Q′(q̃)Q(q̃)R̄−[p̄×]2 −[p̄×]

[p̄×] I

]

,

1

4
y′R̄′Q′(q̃)Q(q̃)R̄y =

1

4

(

‖y‖2 − (y′R̄′q̃q)
2
)

≥ ‖y‖2

4

(

1 − ‖q̃q‖2
)

≥ ‖y‖2

4

(

1 − sin2
(

1
2θmax

))

= ‖y‖2cθ

where cθ := 1
4 cos2

(

1
2θmax

)

. Therefore B(τ, λ)B′(τ, λ) ≥
B(τ), where B(τ) :=

[

cθI−[p̄×]2 −[p̄×]
[p̄×] I

]

. Simple but long

algebraic manipulations show that the eigenvalues of B(τ)
are lower bounded by some αB > 0, independent of τ , if
p̄ is bounded and θmax < π. It follows that persistency
of excitation condition is satisfied, B(τ, λ)B′(τ, λ) ≥ αBI,
the parameterized LTV (23) is λ-UGES, and the nonlinear
system (22) is exponentially stable in the domain Dq. 2

Given γp, γθ, γbω
, and γbv

, any initial estimation error
xb(t0) satisfying (21) converges exponentially fast to the
origin. The following corollary establishes that the origin
is uniform exponential stable, i.e. the convergence rate
bounds are independent of xb(t0), for a bounded initial
estimation error, which is a reasonable assumption for
most applications.

Corollary 7. Assume that the initial estimation errors are
bounded

‖p̃(t0)‖ ≤ p̃0 max, θ(t0) ≤ θ0 max < π

‖b̃ω(t0)‖ ≤ b̃ω0 max, ‖b̃v(t0)‖ ≤ b̃v0 max,
(24)

and let γbv
b̃2

v0 max + γpp̃
2
0 max + γbω

b̃2
ω0 max < 4γθ(1 +

cos(θ0 max)), γbω
= γbv

, then the equilibrium point x =
(0, I, 0, 0) is exponentially stable, uniformly in the set
defined by (24).

Convergence rate bounds can be obtained by applying
[Loŕıa, 2004, Theorem 1 and Remark 2]. However, the
obtained values were conservative and are omitted due to
the necessity of further study.

4.3 Output Feedback Law

This section shows that the feedback laws can be expressed
in terms of the landmark and velocity readings, (16) and
(2) respectively.

Theorem 8. The feedback laws are explicit functions of the
sensor readings and state estimates

ω̂ = ωr − b̂ω − Kωsω , (25a)

v̂ = vr − b̂v +
([

ωr − b̂ω×

]

− KvI
)

sv + Kω [p̂×] sω , (25b)

˙̂
bω =

1

γbω

(γθsω − γp [p̂×] sv),
˙̃
bv =

γp

γbv

sv (25c)

sω =

n
∑

i=1

(R̂′XDXAXei) × (QrDXAXei), sv = p̂ − Qrdp (25d)

where Qr := [qr 1 · · · qr n] is the concatenation of the
landmark readings and ei is the unit vector where ei = 1.

Proof. The expressions (25a-25c) are directly obtained
from (18-19). Given (6) and Qr = Q̄ produces sv. Using

the definition of R̃, the feedback law (12) can be rewritten

as sω =
[

R̄′R̂ − R̂′R̄⊗
]

. Using BÛX
BŪ′

X = R̂′R̄,

BŪX
BÛ′

X =
∑n

i=1
Būi

Bû′
i and Būi

Bû′
i − BûB

i ū′
i =

[

(Bûi × Būi)×
]

, bears sω =
∑n

i=1(
BÛXei) × (BŪXei).

Applying (6) and (7) produces the desired results. 2

5. SIMULATIONS

In this section, the simulation results for the proposed
observer are presented. The position of the landmarks

is described by X =

[

0 1/2 −1/2
1 −1/2 −1/2
0 0 0

]

, which satisfies the

conditions expressed in Assumption 1 and corresponds
to the case discussed in Section 3.2. The feedback gains
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Fig. 2. Estimation Errors.

are given by Kω = Kv = 1, the values of
γp

γθ
and

γb

γθ
are computed to satisfy the condition of Corollary 7

for p̃0 max = 2
√

3 m, θ0 max = 90 ◦, b̃ω0 max = 5
√

3 ◦ /s

and b̃v0 max =
√

3 × 10−1 m/s, and the initial estimation

errors are given by p̃(t0) = 2 [1 1 1]
′
m, θ(t0) = 72 ◦,

b̃ω(t0) = 5 [1 1 1]
′ ◦ /s, b̃v = 10−1 [1 1 1]

′ ◦ /s. The rigid
body trajectory is computed using oscillatory angular and
linear velocities of 1Hz.

The estimation errors converge to the origin as depicted
in Fig. 2. The exponential convergence of the Lyapunov
function (and of the estimation error) is illustrated in
Fig. 3, using a logarithmic scale. The convergence of the
estimation error to the origin is faster for larger bias
feedback gains.

6. CONCLUSIONS

A nonlinear observer for position and attitude estimation
on SE(3) was proposed, using landmark measurements and
biased velocity readings. The estimation errors were shown
to converge exponentially fast to the origin, by adopting
recently derived stability results for parameterized lin-
ear time-varying systems. Simulation results illustrated
the convergence properties of the observer for different
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Fig. 3. Exponential Convergence of Vb.

feedback gains. Future work will focus on improving the
convergence rate bounds provided by the parameterized
systems’ framework, and on the implementation in discrete
time and testing of the algorithm on the Vario X-Treme
model-scale helicopter platform.
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