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Abstract: This paper provides sufficient conditions to stabilize a sampled-data linear dis-
tributed parameter system with finite-dimensional input and output via a family of finite-
dimensional approximations that are obtained from numerical schemes. This family of finite-
dimensional approximations can be exponentially stabilized by a family of output feedback
controllers when the space discretization parameter h is sufficiently small. The sufficient condi-
tions presented in this paper guarantee that the same family of output feedback controllers can
exponentially stabilize the exact sampled-data linear distributed parameter system for a suffi-
ciently small sampling period. Since the output feedback controller design is based on the family
of finite-dimensional approximations which only require a standard finite-dimensional control
theory, this result can simplify the design of controller for sampled-data infinite-dimensional
systems when the sampling period is fast enough and those sufficient conditions are satisfied.
Moreover, the analysis method is applicable to more general situations when the sampled-data
state feedback controllers are designed based on finite-dimensional approximations.

1. INTRODUCTION

Linear distributed parameter systems (LDPS) arise in a
range of different processes in optical telecommunications,
fluid flows, thermal processes, biology, chemistry, environ-
mental sciences, mechanical systems, and so on. LDPS are
modelled by linear partial differential equations (PDE),
as opposed to linear lumped parameter systems (LPS)
that are modelled by linear ordinary differential equations
(ODE).

There are two important practical issues that deserve
special attention in the context of controller design for
LDPS: (i) The designed controller has to be finite dimen-
sional in order to be implementable in practice. Indeed,
while infinite-dimensional controllers are theoretically very
important and often arise naturally in theory, they have
to be approximated by a finite-dimensional controller be-
fore implementation. (ii) Nowadays most control systems
are implemented using digital technology since it is very
cheap, fast, relatively easy to operate, flexible and reliable.
This motivates investigation of the so called sampled-data
systems that consist of a continuous-time plant or process
controlled by a discrete-time controller as discussed in
Chen and Francis (1995). The plant and the controller are
interconnected via the analog-to-digital (A-D) and digital-
to-analog (D-A) converters. Consequently, the designed
controller needs to be time-discretized in order to be im-
plemented using the prevalent digital technology.

Emulation based infinite-dimensional sampled-data con-
trol design for linear distributed parameter systems has
been discussed in Rebarber and Townley (1998), Loge-
mann et al. (2003) and references cited therein. Here, em-
ulation method means that one first designs a continuous-
time infinite-dimensional controller for the continuous-
time infinite-dimensional system (ignoring sampling in
time) and then time-discretize the obtained infinite-
dimensional controller for digital implementation. As men-
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tioned above, the controller has to be finite-dimensional
to be implemented. That is, the space-discretization is
thus also needed. However, theoretical emulation results
with the consideration of space-discretization for linear
distributed parameter systems are very scarce in literature.

In this paper, we take the space-discretization into account
by using a family of finite-dimensional continuous-time ap-
proximations of the infinite-dimensional continuous-time
system to design a family of finite-dimensional continuous-
time controllers. First, Theorem 1 shows that if this
family of finite-dimensional continuous-time controllers
can uniformly stabilize the family of finite-dimensional
continuous-time approximations, they can also stabilize
the exact infinite-dimensional continuous-time system un-
der appropriate conditions and when h is sufficiently small.
Using emulation based infinite-dimensional sampled-data
control design method as discussed in Logemann et al.
(2003), it is not difficult to show that the family of finite-
dimensional continuous-time approximations, after sam-
pler and zero-order-hold, can stabilize the exact infinite-
dimensional continuous-time system if the sampling T is
sufficiently small.

To simplify the presentation, our focus is on linear dis-
tributed parameter systems with finite-dimensional input
and output. When an output feedback controller is em-
ployed, sampling in time is needed for controllers due to
finite-dimensional input and output. However, the analysis
method is applicable to distributed parameter systems
when both input and output are infinite-dimensional with
the help of appropriate space-discretization methods.

The key question of sampled-data systems on the basis
of emulation is whether the designed finite-dimensional,
continuous-time controller can stabilize the original infinite-
dimensional continuous-time plant with sampler and zero-
order-hold. This question is exactly the same as the one
addressed in Nešić et al. (1999) for sampled-data nonlin-
ear lumped parameter systems. Motivated by results in
sampled-data nonlinear lumped parameter systems, suf-
ficient conditions are provided in this paper to guaran-
tee that the controllers which can uniformly exponen-
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tially stabilize a family approximate finite-dimensional
continuous-time linear models can also exponentially sta-
bilize the exact sampled-data infinite-dimensional for any
sufficiently small sampling period T . Analogous to results
Nešić and Teel (2004) for (nonlinear) LPS, those suffi-
cient conditions are closely related to the some kind of
“closeness” of the trajectories between the approximate
finite-dimensional continuous-time linear model and exact
infinite-dimensional continuous-time model. It should be
noted that compared with the definition of “closeness of
solutions” in finite-dimensional spaces, the “closeness” of
solutions in infinite-dimensional spaces are much weaker
(see Definition 5). Moreover, since approximate models (in
Xh, will define later) is finite-dimensional while the exact
model (in X) is infinite-dimensional, in order to measure
the “closeness” between two trajectories, the prolongation
operator and the restriction operator are employed.

This paper is organized as follows. Section 2 presents pre-
liminaries including the notation, problem setting, output
feedback as well as stability properties. Closeness of solu-
tions between exact continuous-time model and a family
of continuous-time approximations is briefed in Section
3 followed by the conclusion. Main results are stated in
Section 4. Proofs of main results are given in the Appendix.

2. PRELIMINARIES

2.1 Problem setting and notation

The set of real numbers is denoted as R. X is a Hilbert
space with a norm ‖·‖X . L(X, Y ) is denoted as the space
of all linear bounded operators from X to Y where both
X and Y are Hilbert spaces and L(X) := L(X, X). IX is
the identity in X .

In this paper, we consider the following distributed pa-
rameter system characterized by an abstract differential
equation in X :

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X, (1)

y(t) = Cx(t), (2)

where A generates a strongly continuous (or C0) semigroup
S(t) on X . The input u ∈ R

m and the output y ∈ R
p are

both finite-dimensional. The systems (1) and (2) satisfy
the following assumptions.

Assumption 1. The Semigroup S(t) is analytic.

Remark 1. To simplify the presentation, S(t) is assumed
to be analytic. That is, we just consider parabolic systems.
The sampled-data control for hyperbolic systems is much
more complicated. For hyperbolic systems, filtering out
high frequency components in space is necessary when
space-discretization is considered.

Assumption 2. Linear operators B and C are bounded,
i.e., B ∈ L(Rm, X) and C ∈ L(X, Rp). In other words,
there exists M1, strictly positive, such that

‖B‖
L(Rm,X) ≤ M1, ‖C‖

L(X,Rp) ≤ M1 (3)

Remark 2. Assumption 2 is also restrictive. How to con-
vert systems governed by partial differential equations into
the form in (1) and (2) satisfying Assumption 2 has been
discussed in Curtain and Zwart (1995).

First of all, we assume that the dynamic system (1) is
well-posed. The well-poseness is defined as follows.

Definition 1. The abstract differential equation (1) is well-
posed, if the operator A generates a C0 semigroup S(·) and

B is a bounded linear operator so that the solution of (1)
is given by

x(t) = S(t)x0 +

∫ t

0

S(t − s)Bu(s)ds ∈ X, (4)

and (1) holds on X for any t ≥ 0.

Remark 3. This paper focused on stabilization, instead
of controllability. The system (1) is thus assumed to be
well-posed. However, controllability problem is a typical
ill-posed problem in the sense that existence, uniqueness
and continuous dependence may fail simultaneously. How
to deal with sampled-data controllability problem will be
future work.

Remark 4. Since S(t) is a C0 semigroup and it is analytic,
it has the following properties (see, (Curtain and Zwart,
1995, Theorem 2.16), (Lasiecka and Trigiani, 2000, Page
122))

‖S(t)‖
L(X) ≤Meωt, ∀0 ≤ t < ∞. (5)

∥

∥

∥
e−Ât

∥

∥

∥

L(X)
≤ M̂e−ω̂t, ∀t ≥ 0. (6)

where M > 1 and ω > 0 are positive constants, Â = −A+
ω̄I, where ω̄ = fixed > ω. ω̂ = ω̄ − ω − ε > 0, M̂ is a
positive constant and ε > 0.

2.2 Zero-order-Hold Equivalent method

The system (1), (2) is assumed to be between a sampler
(A/D converter) and zero-order-hold (D/A converter).
The control signal is assumed to be piecewise constant,
i.e.

u(t) = u(kT ) := u(k), ∀t ∈ [kT, (k + 1)T ), k ∈ N, (7)

where T > 0 is a sampling period. Moreover, we assume
that the output measurement y(k), where

y(k) := y(kT ) (8)

is available at sampling instants. Using sampled-data con-
trol (7), the solution of the system (1) becomes

x(t) = S(t − kT )x(k) +

∫ t

kT

S(t − s)Bu(k)ds, (9)

for all t ∈ [kT, (k + 1)T ) and k ∈ N.

2.3 Semi-discretization in space

The analytical solutions of (1) are hard to compute. Nu-
merical methods are widely used. In this paper, we just
consider space approximations via semi-discretization on
space. We introduce adapted numerical discretization as-
sumptions, inspired by (Lasiecka and Trigiani (2000); S.
Labbé and E. Trélat (2006)) for semi-discretization on
space. Consider a family of finite-dimensional approximat-
ing spaces (Xh)0<h<h0

, where h is the space discretization
parameter that tends to zero, 0 < h ≤ h0. Ih denotes the
identity in Xh.

Assumption 3. For every h ∈ (0, h0), there exist mappings
Rh : X → Xh and Ph : Xh → X such that the following
conditions hold:

(a) For every h ∈ (0, h0), the following holds

RhPh = Ih. (10)
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(b) For any φ ∈ X , we have

‖{IX − PhRh}φ‖X −−−→
h→0

0. (11)

Assumption 4. For every h ∈ (0, h0), there holds

R∗

h = Ph (12)

where the adjoint operator is considered with respect to
the pivot spaces X and Xh.

For every h ∈ (0, h0), we define the approximation opera-
tors B∗

h : Xh → R
m and C∗

h : R
p → Xh by

B∗

h = B∗Ph; C∗

h = RhC∗. (13)

After the numerical discretization, we have a family of
finite-dimensional continuous-time linear systems in the
following form

ẋh = Ahxh(t) + Bhu(t), xh(0) = Rhx0, (14)

y(t) = Chxh(t) (15)

where Ah ∈ L(Xh) and Bh ∈ L(Rm, Xh) and Ch ∈
L(Xh, Rp). Due to (12) in Assumption 3, it is clear that
Bh = RhB and Ch = CPh.
Assumption 5. It is also assumed that

(a) The family of operators eAht is uniformly analytical
in the sense that there exists Cθ such that

∥

∥Aθ
heAht

∥

∥

L(Xh)
≤ Cθ

e(ω+ε)t

tθ
, (16)

for all t > 0, θ ∈ [0, 1] with constant Cθ independent
of h. ω is from (5) and ε > 0.

(b) There exists a positive constant C1 such that
∥

∥

∥
Â−1 − PhÂ−1

h Rh

∥

∥

∥

L(X)
≤ C1h

s, (17)

for some s > 0, where s and C1 are independent of h,

Âh
4
= −Ah + ωIh ∈ L(Xh).

In the sequel, for any h ∈ (0, h0), the vector space Xh is
endowed with the norm ‖·‖Xh

defined by

‖xh‖Xh
= ‖Phxh‖X . (18)

Remark 5. With the endowed norm defined in (18), it is
obvious that Ph is a linear operator satisfying

‖Ph‖L(Xh,X) = 1. (19)

Remark 6. By using the Banach-Steinhaus Theorem (see
Kreyszig (1989)), Condition (b) ( or equations (11)) in
Assumption 3 implies that Rh is a linear operator, i.e.,
there exists MR > 0 such that

‖Rh‖L(X,Xh) ≤ MR. (20)

Remark 7. Remark 3.1 in S. Labbé and E. Trélat (2006)
explained how general Assumptions 3–5 are, even though
Assumption 5 of uniform analyticity is not standard, and
has to be checked in each case as discussed in Lasiecka and
Trigiani (2000).

2.4 Output feedback

In this paper, the output controller design is based on the
approximate model (15). That is, our controller is to find a
family of output feedback gain matrices Kh ∈ L(Rp, Rm),

u(t) = Khy(t) = KhChxh(t), (21)

such that the closed-loop of the approximate model (15)
becomes

ẋh(t) = (Ah + BhKhCh)xh(t) = Φa
hxh(t), (22)

is “stable” (we will define the stability property later),

where Φa
h

4
= Ah + BhKhCh.

Once the output feedback gain Kh is obtained from the
approximate model, first we apply this feedback gain Kh

to the exact model. Let Φe
h

4
= A + BKhC, we have the

following continuous-time exact model:

ẋ(t) = (A + BKhC)x(t) = Φe
hx(t), x(0) = x0. (23)

On the other hand, when the sampler and the zero-order-
hold are considered, with x(0) = x0, it leads to the
following closed-loop system

x(t) =

{

S(t − kT ) +

∫ t

kT

S(s)BKhC

}

x(k)ds. (24)

2.5 Stability properties

Exponential stability is most frequently used in the control
of infinite-dimensional systems Curtain and Zwart (1995).
Several exponential stability properties are defined here.
Definition 2. A family of finite-dimensional systems (14)
are said to be exponentially stable uniformly in small h
if there exists h∗

u > 0 such that for all h ∈ (0, h∗
u), there

exists a positive pair (K, λ) and K > 1, such that solutions
of (14) satisfy

‖xh(t)‖Xh
≤ Ke−λt ‖xh(0)‖Xh

, ∀xh(0) ∈ Xh. (25)

Definition 3. The infinite-dimensional continuous system
(23) is exponentially stable uniformly in h if there exists
h∗

i such that for any h ∈ (0, h∗
i ), there exists a positive

pair (K, λ), K > 1 and the solutions of the system (24)
satisfy

‖x(t)‖X ≤ Ke−λt
∥

∥x0
∥

∥

X
. (26)

Definition 4. The sampled-data system (24) is exponen-
tially stable uniformly in [T, h] if there exists h∗ and
T ∗ > 0 such that for any h ∈ (0, h∗) and T ∈ (0, T ∗), there
exists a positive pair (K, λ), K > 1 and the solutions of
the system (24) satisfy

‖x(t)‖X ≤ Ke−λt
∥

∥x0
∥

∥

X
. (27)

The main objective of this paper is to provide sufficient
conditions that can ensure uniform exponential stability
properties of the sampled-data exact model (24) from
a family of output feedback gain matrices Kh that are
designed to uniformly exponentially stabilize a family of
continuous-time approximations (22).

It is well-known that the stability properties of the con-
tinuous model (23) indicate the stability properties of the
sampled-data system (24) uniformly in sampling T under
appropriate assumptions as indicated in (Logemann et al.,
2003, Theorem 3.1). More precisely, when A is a generator
a C0 semigroup and B is a bounded control operator, if
A + BKhC generates an exponentially stable semigroup
with the linear compact operator KhC, then the sampled-
data system (24) is exponentially stable uniformly in the
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sampling period T . To show the uniform exponential sta-
bility of the sampled-data system (24), the continuous-
time linear system (23) is first shown to be uniformly stable
in small h (Theorem 1). Then by showing the compactness
of KhC, Theorem 2 shows that the sampled-data system
(24) is exponentially stable uniformly in sampling period
T .

3. CLOSENESS OF SOLUTIONS BETWEEN
APPROXIMATION MODEL AND EXACT MODEL

Sufficient conditions are needed in order to show that
the continuous model (23) is uniformly stable in small
h. Analogous to results in LPS (see Nešić et al. (1999)),
these sufficient conditions that can guarantee the stability
properties of the continuous model (23) from the stability
properties of the approximate model (22) are closely
related to the closeness of the trajectories between the
exact model and the family of approximate models.

It is intuitively clear that when the trajectories from
two systems are close enough, stability properties of one
system can indicate “some” stability properties of the
other system. To characterize the closeness of solutions,
the following definitions is provided.
Definition 5. We say that the solutions of (1) and the
solutions of the numerical method (14) can be made
weakly close on compact time intervals if the following
holds. For any t > 0 and any positive constant δ, there
exists a positive constant h∗

c > 0, such that for any
h ∈ (0, h∗

c), x0 ∈ X , we have 1

∥

∥tθ (x(t) − Phxh(t))
∥

∥

X
≤ δ

∥

∥x0
∥

∥

X
(28)

for all t > 0 and 0 ≤ θ ≤ 1.

In the sequel, the following proposition is needed in our
main result.
Proposition 1. (Lasiecka and Trigiani, 2000, Proposition
4.1.2.1) Assume that Assumptions 1, 3 and 5 hold. Then
for 0 ≤ θ ≤ 1, there exists C2 > 0 such that the following
holds.

∥

∥PheAhtRh − S(t)
∥

∥

L(X)
≤ C2

hsθe(ω+ε)t

tθ
(29)

for all t > 0 and ε > 0, where ω is from (5) and s is from
Assumption 5. C2 is independent of the choice of h.
Remark 8. Proposition 1 comes from (Lasiecka and Tri-
giani, 2000, Proposition 4.1.2.1). But there exists a slight
difference. In (Lasiecka and Trigiani, 2000, Proposition
4.1.2.1), only restriction operator Rh (Πh in Lasiecka and
Trigiani (2000)) is used. However, with the endowed norm
‖·‖Xh

, it is straightforward to extend Proposition 4.1.2.1

in Lasiecka and Trigiani (2000) to Proposition 1. Therefore
the proof is omitted.
Remark 9. Proposition 1 indicates the “weak closeness”
of solutions between (23) and approximations (22) when
Kh = 0p×m. Indeed, given any positive pair (δ, t) and
t > 0, for some s > 0, we can find that h∗ > 0 sufficiently
small such that C2h

sθe(ω+ε)t < δ so that

∥

∥tθ (x(t) − Phxh(t))
∥

∥

X
=

∥

∥tθ
(

PheAhtRhx0 − S(t)x0
)∥

∥

X

≤ δ
∥

∥x0
∥

∥

X
,

for all t > 0 and 0 ≤ θ ≤ 1. However, when Kh 6= 0p×m,
we need to show that Φa

h in (22) satisfies Assumptions 5

1 We assume that the initial condition x0 for the solutions of (1)
and while the initial condition of (14) is xh(0) = Rhx0.

so that (29) holds true when A is replaced by Φe
h and Ah

is replaced by Φa
h.

Proposition 2. Assume that the following conditions hold

(a) Assumptions 1– 5 hold.
(b) The family of output feedback operators Kh is uni-

formly bounded in small h. That is, there exists
hk > 0 such that for all h ∈ (0, hk), we have
‖Kh‖L(Rp,Rm) ≤ MK , where MK is a positive con-
stant.

Then the following holds

∥

∥

∥

∥

(

Φ̂e
h

)−1

− Ph

(

Φ̂a
h

)−1

Rh

∥

∥

∥

∥

L(X)

≤ Chs (30)

for some s > 0 independent of h.

Proof: see Appendix. ◦
Proposition 3. Assume that all conditions in Proposition
2 hold true. If a family of closed-loop approximations
(22) are exponentially stable uniformly in small h, then
solutions of (23) and the solutions of the numerical ap-
proximation (22) can be made weakly close on compact
time intervals.

Sketch of Proof: As a family of closed-loop approximations
(22) are exponentially stable uniformly in small h, condi-
tion (a) in Assumption 5 holds. Proposition 2 shows that
condition (b) in Assumption 5 holds true. The result holds
true by applying Proposition 1. ◦

4. MAIN RESULTS

The main results of this paper are to show under which
conditions that the sampled-data system (24) is stable if
Kh is designed to uniformly stabilize a family approximate
models (22) in small h. In this paper, it is first shown
that the infinite-dimensional continuous system (23) is
exponentially stable uniformly in small h provided that the
family approximate models (22) is uniformly exponentially
stable in small h and the appropriate “ weak closeness” of
solutions.

Theorem 1. Assume

(a) Solutions of (23) and the solutions of the numerical
method (22) can be made weakly close on compact
time intervals.

(b) The family of closed-loop approximation systems (22)
are exponentially stable uniformly in small h

Then the system (23) is exponentially stable uniformly in
small h.

Proof: see Appendix. ◦

With stability properties of the continuous model (23),
we can conclude the stability of the exact sampled-data
system (24) if KhC can be shown to be bounded and
compact. The second result of this paper is stated as
follows.

Theorem 2. Assume that the following conditions hold

(a) Assumptions 1–5 hold true.
(b) The family of output feedback operators Kh is uni-

formly bounded in small h.
(c) The family of closed-loop approximation systems (22)

are exponentially stable uniformly in small h

Then the exact sampled-data system (24) is exponentially
stable uniformly in small [T, h].
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Sketch of Proof: Proposition 3 shows that solutions of
(23) and the solutions of the numerical method (22) can
be made weakly close on compact time intervals. Using
Proposition 3 and Condition (c), it can be concluded
that the system (23) is exponentially stable uniformly
in small h. Condition (b) implies that KhC is compact
((Kreyszig, 1989, Theorem 8.1-3)). Using (Logemann et
al., 2003, Theorem 3.1), the exact sampled-data system
(24) is exponentially stable uniformly in small [T, h] ◦

5. CONCLUSION

In this paper, sampled-data output feedback control de-
sign of distributed parameter systems is based on their
finite-dimensional continuous-time approximate models.
Sufficient conditions have been shown to guarantee that
the controller that can uniformly stabilize a family finite-
dimensional continuous-time approximations can also sta-
bilize the exact sampled-data infinite-dimensional system
when sampling period is sufficient small. Those suffi-
cient conditions are closely related to the “closeness”
of trajectories between the exact model and approxi-
mate model. Since the controller is designed on the basis
of the finite-dimensional continuous-time approximations,
the proposed methods simplify the design of controllers for
sampled-data distributed parameter systems.
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APPENDIX

5.1 Proof of Proposition 2

Using perturbation theory (Pazy, 1983, Theorem 1.1),
Φh

e generates analytic semigroup. There exist positive
constants ωc and λc, such that the solutions of (23) satisfy

‖x(t)‖X ≤ Mce
ωct

∥

∥x0
∥

∥

X
. (31)

Moreover, we have

(

Φ̂e

h

)−1
=

(

ω̄I − Φe

h

)−1
(ω̄I − (A + BKhC))−1 = R(ω̄; Φe

h
)

where ω̄ = fixed > ω + MM2
1MK , where M1 is from

Assumption 2 and ω is from (5). Similarly, we have

∥

∥

∥

(

Φ̂e

h

)−1
− Ph

(

Φ̂a

h

)−1
Rh

∥

∥

∥

L(X)

=
∥

∥R(ω̄; Φe

h
) − PhR(ω̄; Φa

h
)Rh

∥

∥

L(X)

=
∥

∥[IX − R(ω̄; A)BKhC]−1
R(ω̄;A)

−Ph [Ih − R(ω̄; Ah)BhKhCh]−1
R(ω̄; Ah)Rh

∥

∥

L(X)
(32)

By adding and subtracting the following term

[IX − R(ω̄; A)BKhC]
−1

PhR(ω̄; Ah)Rh,

it yields

∥

∥

∥

(

Φ̂e

h

)−1
− Ph

(

Φ̂a

h

)−1
Rh

∥

∥

∥

L(X)
= ‖(1) + (2)‖

L(X), (33)

where

(1) = (IX − T1)−1 [R(ω̄;A) − PhR(ω̄;Ah)Rh];

(2) =
{

IX − T1)−1 − Ph [Ih − R(ω̄;Ah)RhBKhCPh]−1
}

T3

= (2a) + (2b)

where T1 = R(ω̄; A)BKhC, T2 = PhR(ω̄; Ah)RhBKhC,
T3 = PhR(ω̄; Ah)Rh and

(2a) =
[

(IX − T1)−1 − (IX − T2)−1
]

T3

(2b) =
{

IX − T2)−1 − Ph [Ih − R(ω̄; Ah)RhBKhCPh]−1
Rh

}

T3

Using the identity

(I − T1)−1 − (I − T2)−1 = (IX − T1)−1(T1 − T2)(IX − T2)−1,

it follows that

(2a) = (IX − T1)−1(R(ω̄;A) − PhR(ω̄;Ah)Rh)(IX − T2)−1.

Noting the following facts,
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Ph [Ih − R(ω̄; Ah)RhBKhCPh]
−1

RhT3

= T3 + Ph

[

∞
∑

k=1

(R(ω̄; Ah)RhBKhCPh)k

]

RhT3,

[IX − PhR(ω̄; Ah)RhBKhC]
−1

T3

= T3 +

[

∞
∑

k=1

(PhR(ω̄; Ah)RhBKhC)k

]

T3.

By using Induction, it is not difficult to show that

Ph

[

∞
∑

k=1

(R(ω̄; Ah)RhBKhCPh)k

]

RhT3

=

[

∞
∑

k=1

(PhR(ω̄; Ah)RhBKhC)
k

]

T3, (34)

which implies that (2b) ≡ 0. Denoting T4 = R(ω̄; A) −
PhR(ω̄; Ah)Rh, consequently,

∥

∥

∥

∥

(

Φ̂e
h

)−1

− Ph

(

Φ̂a
h

)−1

Rh

∥

∥

∥

∥

L(X)

≤
∥

∥

∥
(IX − T1)

−1
∥

∥

∥

L(X)
‖T4‖L(X)

+
∥

∥

∥
(IX − T1)

−1
∥

∥

∥

L(X)
‖T4‖L(X)

∥

∥(IX − T2)
−1

∥

∥

L(X)
.(35)

Noting the boundedness of (IX − T1)
−1 and (IX − T2)

−1,
using (b) in Assumption 5 yields the result. �

5.2 Proof of Theorem 1

Let arbitrary δ ∈ (0, 1), t > 1 be given. Let h∗
u, K and

λ come from condition (b) in Theorem 1. Moreover, the
solutions of (23) and (22) can be made weakly close on
compact time intervals [0, t]. Given δ

2 , we can find h∗
c , such

that for any h ∈ (0, min{h∗
u, h∗

c}), such that for all we have
the weak closeness of solutions (see Definition 5), that is,

‖t (x(t) − Phxh(t))‖X ≤
δ

2

∥

∥x0
∥

∥

X
. (36)

Since (22) is exponentially stable uniformly in small h,
there exist positive constants K and λ such that

‖xh(t)‖Xh
≤Ke−λt

∥

∥Rhx0
∥

∥

Xh
= Ke−λt

∥

∥PhRhx0
∥

∥

X

≤K1e
−λt

∥

∥x0
∥

∥

X
, (37)

where K1 = MRK and MR is from (20). In the sequel, we
have

∥

∥tθx(t)
∥

∥

X
≤

∥

∥tθPhxh(t)
∥

∥

X
+

∥

∥tθ (x(t) − Phxh(t))
∥

∥

X

≤ tθ ‖xh(t)‖Xh
+

δ

2

∥

∥x0
∥

∥

X

≤ tθK1e
−λt

∥

∥x0
∥

∥

X
+

δ

2

∥

∥x0
∥

∥

X
. (38)

Let t > 1 be such that for all s ≥ t, we have K1

(

se−λs
)

≤
δ
2

2 .

2 Such a t exists since for any t ≥ 1
λ
, te−λt monotonically decreases.

We introducing ki = i · t and k0 = 0. The proof consists of
the following steps:

Step 1: We will show that for all i = 1, 2, · · · , the following
holds

∥

∥tθx(ki)
∥

∥

X
≤ δi

∥

∥x0
∥

∥

X
. (39)

We prove it by Induction:

(1) Note that K1

(

te−λt
)

≤ δ
2 , t > 1 and θ ∈ [0, 1], using

(38), it follows that

∥

∥tθx(t)
∥

∥

X
≤ tK1

(

e−λt
)
∥

∥x0
∥

∥

X
+

δ

2

∥

∥x0
∥

∥

X

≤ δ
∥

∥x0
∥

∥

X
. (40)

(2) Assume that when i = n, inequality (39) holds true.
We can re-initialize the two systems at x(ki)

3 . Using
re-initialization and weak closeness of the solutions,
noting that K1

(

te−λt
)

≤ δ
2 , when i = n + 1, it yields

that
∥

∥tθx (kn+1)
∥

∥

X

≤
∥

∥tθPhxh(kn+1)
∥

∥

X

+
∥

∥tθ [x (kn+1) − Phxh (kn+1)]
∥

∥

X

≤ t
(

Ke−λt ‖PhRhx(kn)‖X

)

+
δ

2
‖x(kn)‖X

≤ tK1e
−λt ‖x(kn)‖X +

δ

2
‖x(kn)‖X

≤ δ ‖x(kn)‖X ≤ δ ‖tx(kn)‖X ≤ δn+1
∥

∥x0
∥

∥

X
,(41)

which shows (39) holds true. ◦

Step 2: Since δ < 1, we can bound (39) as

∥

∥tθx(ki)
∥

∥

X
≤ e−λ̄ki

∥

∥x0
∥

∥

X
(42)

where λ̄ :=
ln( 1

δ )
t

. Noting that t > 1, it yields

‖x(ki)‖X <
∥

∥tθx(ki)
∥

∥

X
≤ e−λ̄ki

∥

∥x0
∥

∥

X
. (43)

Step 3: We now consider inter-sampling behavior. Since
A + BKhC is analytic, for all k ∈ [ki, ki+1], i = 1, 2, · · · ,
we have

‖x(k)‖ ≤
(

Mce
ωc(k−ki)

)

‖x(ki)‖X

where Mc and ωc are from (31). It follows that

‖x(k)‖X ≤
(

Mce
ωc(k−ki)

)

‖x(ki)‖X

≤
(

Mce
ωct

)

(

e−λ̄ki
∥

∥x0
∥

∥

X

)

=
(

Mce
ωct

)

e−λ̄keλ̄(k−ki)
∥

∥x0
∥

∥

X

≤
[

(

Mce
ωct

)

eλ̄t
]

e−λ̄k
∥

∥x0
∥

∥

X

≤ K̄e−λ̄k
∥

∥x0
∥

∥

X
, (44)

where K̄
4
=

[

(Mce
ωct) eλ̄t

]

, in the sequel, the proof is

completed. �

3 The re-initialization implies that xh(ki) = Rhx(ki).
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