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Abstract: The consistency of identification methods for input-output models of Linear
Parameter Varying systems is considered. In order to perform a consistency analysis the
applicability of ergodicity is required, which is not obvious with these types of nonstationary
systems. It is therefore shown that, when the scheduling parameter satisfies certain conditions,
an ergodicity-type result can be applied to the signals considered. An analysis is then carried out
for two cases: that of noise-free measurements of the scheduling parameter, and then the more
realistic case of noisy scheduling parameter measurements. The latter is shown to be an errors-
in-variables type problem. Since the least squares technique does not give consistent estimates,
the instrumental variables method is proposed to achieve this property. The analysis carried out
is reinforced by simulation results.

1. INTRODUCTION

In many real world control applications a Linear Time
Invariant (LTI) assumption is made on the system’s dy-
namics in order to use the well developed identification
and control techniques available for this class of systems.
This assumption is valid when the system remains within a
certain operating zone. However, when the operating point
changes considerably the identified model is no longer valid
and the controlled system’s performance is degraded, and
in the worst case it becomes unstable.

Therefore in order to achieve good performance through-
out the operating zone but still use the linear system
techniques the class of Linear Parameter Varying (LPV)
systems has been defined (Shamma and Athans, 1991).

LPV systems can be thought of as a weighted combination
of linear models. The weightings are a function of the
operating point, which is, in turn, a function of certain
scheduling parameters. These scheduling parameters can
either be endogenous signals, such as the system’s states or
outputs, or exogenous signals, which cause the dynamics to
change as a function of time according to the trajectories
of these signals. The former case is sometimes referred to
as Local Linear Models (Verdult, 2002). The latter means
that the LPV system represents a family of Linear Time
Varying (LTV) systems, each system corresponding to a
particular set of trajectories.

In this paper the consistency of certain identification
methods for LPV systems will be considered. A certain
amount of work has already been done into identification
of LPV systems. Two directions have been investigated
principally: subspace methods and ‘classical’ identification
techniques to find input-output models.

⋆ This work is supported by the Swiss National Science Foundation
under Grant No. 200021-116156/1.

In Nemani et al. (1995) a method is proposed for the
identification of LPV state-space models. It, however, re-
quires full-state measurement, which is often not possible,
and is only capable of handling one scheduling parameter.
Multiple scheduling parameters can be dealt with using
the method proposed in Lovera et al. (1998), but full-state
measurement is still required. In Verdult and Verhaegen
(2002) full-state knowledge is no longer required as a
scheme for estimating the states is proposed. In order
to obtain consistent estimates of the states, when the
scheduling parameter is noise-free, the use of instrumental
variables (IV) is proposed.

In Lee and Poolla (1999) the output-error identification
problem for LPV state-space models is examined. The
scheduling parameters are, again, considered noise-free. In
this case, parameter estimates are consistent when the real
system is in the model set and the global minimum of the
proposed quadratic cost function is found.

A technique for the identification of LPV systems in input-
output form is proposed in Bamieh and Giarré (2002).
It is shown that with the proposed parameterisation the
prediction error can be written in linear regression form.
Using the quadratic loss function proposed the parameter
estimation problem becomes one of linear least squares,
therefore finding a global minimum. A white equation
error is, however, assumed and no explicit analysis of the
consistency of the method is made.

In this paper the ergodicity of the signals used in the
identification of LPV systems is studied for different as-
sumptions on the scheduling parameter. It is shown that
the signals are ergodic if the scheduling parameter is noise-
free or the measurement noise on the scheduling parameter
is independent of that affecting the output. In these cases
the use of IV leads to consistent estimation of the parame-
ters. However, for the cases that the scheduling parameter
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Fig. 1. True System

is correlated with the output signal or the LPV system
does not have an affine dependency on the noisy scheduling
parameter, the ergodicity of the signals cannot be proved.

The paper is organized as follows. Notation and prelim-
inaries are given in Section 2. The non-noisy scheduling
parameter case is considered in Section 3. Then the noisy
scheduling parameter case is analysed in Section 4. Sim-
ulation results are presented in Section 5. Finally, some
concluding remarks are made in Section 6.

2. PRELIMINARIES

2.1 True System Representation

Suppose that the true output of the SISO LPV system
G0(σt, q) is given by (see Fig 1):

y(t) = G0(σt, q)u(t) + H0(σt, q)e(t) (1)

where σt ∈ R
nσ is the measurable scheduling parameter

vector of dimension nσ at time t, q is the forward-shift time
operator and e(t) is a sequence of independent random
variables with zero mean values. G0(σt, q) and H0(σt, q)
are the system and noise models, respectively, and are
assumed to be uniformly stable for all σt in the operating
zone. G0(σt, q) can be represented in transfer operator
form as:

G0(σt, q) =
q−dB0(σt, q)

A0(σt, q)
(2)

where:

B0(σt, q) = b0

0
(σt) + b0

1
(σt)q

−1 + · · · + b0

nb
(σt)q

−nb (3)

and

A0(σt, q) = 1 + a0

1
(σt)q

−1 + · · · + a0

na
(σt)q

−na . (4)

nb and na are the numerator and denominator orders,
respectively. The coefficients of B0(σt, q) are given by:

b0

i (σt) = b0

i,0σt,0 + b0

i,1σt,1 + · · · + b0

i,nσ
σt,nσ

. (5)

Here σt,j represents the jth element of σt. This parameteri-
sation allows a wide range of dependence on the scheduling
parameter to be described. For example each σt,j could
represent a function of a different scheduling parameter.
Alternatively, as used in Bamieh and Giarré (2002), the
numerator and denominator coefficients could be polyno-
mially dependent on a single scheduling parameter i.e.

σt,j = σ̄
j
t , (6)

where σ̄t is the single measured scheduling parameter. A
similar representation to (5) exists for a0

i (σt).

Using (2), (1) can be rewritten as:

A0(σt, q)y(t) = q−dB0(σt, q)u(t)

+ A0(σt, q)H0(σt, q)e(t)

= q−dB0(σt, q)u(t) + e0(t) (7)

This, in turn, can be written in linear regression form as:

y(t) = φT (t)θ0 + e0(t), (8)

where the regressor vector is given by:

φ(t) = ϕ(t) ⊗ σt (9)

where ⊗ is the Kronecker product and

ϕT (t) = [−y(t − 1),−y(t − 2), . . . ,−y(t− na),

u(t − d), u(t − d − 1), . . . , u(t − d − nb)] (10)

and the true parameter vector is:

θT
0 =[a0

1,0, a
0

1,1, . . . , a
0

1,nσ
, . . . , a0

na,0, a
0

na,1, . . . , a
0

na,nσ

b0

0,0, b
0

0,1, . . . , b
0

0,nσ
, . . . , b0

nb,0, b
0

nb,1, . . . , b
0

nb,nσ
]. (11)

2.2 Model Representation

The model of the system is written as:

A(σt, q)y(t) = q−dB(σt, q)u(t) (12)

which allows the predictor:

ŷ(t, θ) = φT (t)θ (13)

to be defined, along with the prediction error:

ǫ(t, θ) = y(t) − ŷ(t, θ) = y(t) − φT (t)θ. (14)

As consistency is being considered in this paper, it will be
assumed that the model order is always chosen equal to
the true system order.

2.3 Single Realisation Behaviour and Ergodicity

It is often useful to be able to equate the time average
properties of a signal over a single realisation with the
ensemble average taken over many realisations. Signals
with this property are called ergodic and Theorem 2B.1 in
Ljung (1999) indicates when certain types of nonstationary
signals can be ergodic in the correlation.

Theorem 2B.1 Let {Pρ(q), ρ ∈ Dρ} be a uniformly
stable family of filters, and assume that the family of
deterministic signals {wρ(t)}, ρ ∈ Dρ, t = 1, 2, . . . , is
subject to

|wρ(t)| ≤ Cw, ∀ρ, ∀t. (15)

Let the signal sρ(t) be defined, for each ρ ∈ Dρ, by

sρ(t) = Pρ(q)v(t) + wρ(t) (16)

where

v(t) =

∞
∑

k=0

lk(t)el(t − k) = L(t, q)el(t) (17)

and el(t) is a sequence of independent random vectors with
zero mean values, E{el(t)e

T
l (t)} = Λt and bounded fourth

moments, and {L(t, q), t = 1, 2, . . . } is a uniformly stable
family of filters. Then:

sup
ρ∈Dρ

∥

∥

∥

∥

∥

1

N

N
∑

t=1

[

sρ(t)s
T
ρ (t) − E{sρ(t)s

T
ρ (t)}

]

∥

∥

∥

∥

∥

→ 0 (18)

w.p. 1, as N → ∞,

where ‖ ‖ is the Frobenius norm and N is the number of
data measured.
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3. NON-NOISY SCHEDULING PARAMETERS

In this section the case of non-noisy scheduling parameters
is considered. This assumption is normally made in the
LPV identification literature, and is somewhat unrealistic
unless the scheduling parameter is a function of the system
input. It is considered here as it is a simpler case of the
noisy scheduling parameters discussed in the next section.
It also allows the polynomial scheduling parameter (6) to
be analysed when the degree of the polynomial is greater
than 1, which is not possible in the next section. Moreover,
in the case of a very low noise-to-signal ratio it might be
possible to ignore the noise on the scheduling parameter.

One restriction is that the scheduling parameter cannot be
taken as the system output y(t), because this is expressly
considered noisy.

As in Bamieh and Giarré (2002), we propose minimisation
of a quadratic criterion for the estimation of the system
parameters. It is given by:

VN (θ) =
1

N

N
∑

t=1

ǫ2(t, θ). (19)

This criterion can be minimised using a number of well
known algorithms including the Recursive Least Squares
algorithm, as proposed in Bamieh and Giarré (2002), it is
also possible to use the standard least squares algorithm
for batch data, giving:

θ̂LS
N =

[

1

N

N
∑

t=1

φ(t)φT (t)

]−1

1

N

N
∑

t=1

φ(t)y(t). (20)

Replacing y(t) in (20) with (8) gives:

θ̂LS
N = θ0 +

[

1

N

N
∑

t=1

φ(t)φT (t)

]−1

1

N

N
∑

t=1

φ(t)e0(t). (21)

For the estimate θ̂LS
N to be consistent i.e. that θ̂LS

N con-
verges in probability to θ0, it is well known that it is
necessary that:

i) lim
N→∞

1

N

N
∑

t=1

φ(t)φT (t) be nonsingular. (22)

ii) lim
N→∞

1

N

N
∑

t=1

φ(t)e0(t) = 0. (23)

Condition i) is a persistency of excitation condition,which
in the LPV case requires more attention, as discussed in
Bamieh and Giarré (2002) for the polynomial dependence
case (6).

Condition ii) can be analysed using Theorem 2B.1, given
in Subsection 2.3. We first note that φ(t)e0(t) contains
terms such as σt,ju(t − p)e0(t) and σt,jy(t − p)e0(t). We
then define:

s1(t) =

[

σt,ju(t − p)
σt,jy(t − p)

e0(t)

]

=

[

0
σt,jH0(σt−p, q)e(t − p)
A0(σt, q)H0(σt, q)e(t)

]

+

[

σt,ju(t − p)
σt,jG0(σt−p, q)u(t − p)

0

]

=





v1

1
(t)

v1

2(t)
v1

3(t)



 +





w1

1
(t)

w1

2(t)
w1

3(t)





(24)

where w1

1(t) and w1

2(t) satisfy (15), due to the assumed

uniform stability of G0(σt, q) and the boundedness of σ
j
t

and u(t). Also v1

1
(t) and v1

2
(t) fit in with the desired form

of (17) due to the assumed uniform stability of H0(σt, q).

The components of s1(t)s
T
1 (t) give, amongst others,

σt,ju(t − p)e0(t) and σt,jy(t − p)e0(t). Then (18) means
that it is possible to write:

∥

∥

∥

∥

∥

1

N

N
∑

t=1

φ(t)e0(t) −
1

N

N
∑

t=1

E{φ(t)e0(t)}

∥

∥

∥

∥

∥

→ 0 (25)

w.p. 1, as N → ∞.

Analysing the components of E{φ(t)e0(t)} we see that:

E{σt,ju(t − p)e0(t)} = σt,ju(t − p)E{e0(t)} = 0 (26)

and

E{σt,jy(t−p)e0(t)} = σt,jE{[φT (t−p)θ0 +e0(t−p)]e0(t)}
(27)

which is only zero when either e0(t) is a zero-mean, white
noise sequence, or na = 0. Neither of these cases occur
often in practice, so the second sum in (25) will, in
general, be non-zero, and thus also the first. The least
squares method therefore typically does not give consistent
parameter estimates.

In order to obtain consistent parameter estimates the
Instrumental Variable (IV) technique can be used. The
IV estimate is given by:

θ̂IV
N =

[

1

N

N
∑

t=1

ζ(t)T φ(t)

]−1

1

N

N
∑

t=1

ζ(t)y(t) (28)

where ζ(t) is the Instrumental Variable vector, which must
be correlated with the regressor φ(t) but not with the
noise e0(t) in order that the algorithm be consistent.
It should be mentioned that the IV vector for LPV
system identification should be a function of the scheduling
parameters, as φ(t) is. If the IV vector is only a function
of u(t) the variance of the estimates becomes too large. A
good choice is to use an auxiliary LPV model (identified
by the LS method) to generate the IV vector, or use a
second experiment.

4. NOISY SCHEDULING PARAMETERS

In this section the more realistic case of the measured
values of σt being contaminated by noise will be examined.
To do this, we express the noisy, measured vector, σe

t , as
the sum of a noise-free component and a noisy component
i.e.

σe
t = σt + eσt

. (29)

σe
t ∈ R

nσ and eσt
∈ R

nσ are, therefore, stochastic vectors.

The measured regressor vector is now given by:

φe(t) = φ(t) + φeσ
(t), (30)

where φ(t) is as defined in (9) and

φeσ
(t) = ϕ(t) ⊗ eσt

. (31)

If the least-squares algorithm is now applied in order to
estimate the parameters we have:

θ̂LS
N =

[

1

N

N
∑

t=1

φe(t)φ
T
e (t)

]−1

1

N

N
∑

t=1

φe(t)y(t) (32)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4020



where it can be seen that now the measured version φe(t)
is used. Substituting in (8) for y(t) gives:

θ̂LS
N =

[

1

N

N
∑

t=1

φe(t)φ
T
e (t)

]−1

1

N

N
∑

t=1

φe(t)(φ
T (t)θ0 + e0(t))

= θ0−
[

1

N

N
∑

t=1

φe(t)φ
T
e (t)

]−1

1

N

N
∑

t=1

φe(t)
(

φT
eσ

(t)θ0 − e0(t)
)

.

(33)

It is clear that this expression has an extra term over (21),
which comes from the fact that not only the output y(t) is
noisy but also the scheduling parameter signal. This can
be recognised as an errors-in-variables type problem.

For the estimate to be consistent we require, in a similar
fashion to before, that:

i) lim
N→∞

1

N

N
∑

t=1

φe(t)φ
T
e (t) be nonsingular. (34)

ii) lim
N→∞

1

N

N
∑

t=1

φe(t)
(

φT
eσ

(t)θ0 − e0(t)
)

= 0. (35)

As before, Condition i) is a persistency of excitation
condition.

Condition ii) can, again, be analysed using Theorem 2B.1.
We first consider the matrix φe(t)φ

T
eσ

(t). This contains the
following terms:

(σt,j + eσt,j
)y(t − p)eσt,i

y(t − n), (36)

(σt,j + eσt,j
)y(t − p)eσt,i

u(t − n) and (37)

(σt,j + eσt,j
)u(t − p)eσt,i

u(t − n). (38)

Considering (36), it is clearly equal to:

σt,j [G0(σt−p, q)u(t − p) + H0(σt−p, q)e(t − p)]

eσt,i
[G0(σt−n, q)u(t − n) + H0(σt−n, q)e(t − n)]

+ eσt,j
[G0(σt−p, q)u(t − p) + H0(σt−p, q)e(t − p)]

eσt,i
[G0(σt−n, q)u(t − n) + H0(σt−n, q)e(t − n)] . (39)

So, referring to Theorem 2B.1, we can write:

s2(t) =















σt,jH0(σt−p, q)e(t − p)
eσt,j

G0(σt−p, q)u(t − p)
eσt,j

H0(σt−p, q)e(t − p)
eσt,i

G0(σt−n, q)u(t − n)
eσt,i

H0(σt−n, q)e(t − n)
0















+















0
0
0
0
0

σt,jG0(σt−p, q)u(t − p)















=

















v2

1
(t)

v2

2
(t)

v2

3
(t)

v2

4(t)
v2

5(t)
v2

6(t)

















+

















w2

1
(t)

w2

2
(t)

w2

3
(t)

w2

4(t)
w2

5(t)
w2

6(t)

















.

(40)

In order to write v2

3
(t) = eσt,j

H0(σt−p, q)e(t − p) and

v2
5(t) = eσt,i

H0(σt−n, q)e(t−n) it is necessary that eσt
and

e(t) are uncorrelated. This condition is reasonable so long
as the scheduling parameter is not the system output y(t).
If they are correlated the expected value of their product
is non-zero and does not satisfy the theorem’s assumptions
on the stochastic component. The ergodicity of the signals

used in the identification method is, thus, not provable in
this case.

Additionally it is not possible to establish the ergodicity
of the signals when the scheduling parameter has the
polynomial dependence discussed in (6) which is of a
degree greater than 1. The reason is that we would have
higher order moments of the noise term affecting σ̄t, which
are non-zero mean. This, in turn, would imply that eσt,j

is non-zero mean and thus v2

2
(t) and v2

4
(t) are non-zero

mean, violating the theorem’s assumptions.

With these conditions in mind, we see that amongst the
elements of s2(t)s

T
2
(t) are all the cross-terms found in (39),

and thus:
∥

∥

∥

∥

∥

1

N

N
∑

t=1

[

(σt,j + eσt,j
)y(t − p)eσt,i

y(t − n)

−E{(σt,j + eσt,j
)y(t − p)eσt,i

y(t − n)}
]∥

∥ → 0

w.p. 1, as N → ∞. (41)

Similar results exist for (37) and (38), meaning that:
∥

∥

∥

∥

∥

1

N

N
∑

t=1

φe(t)φ
T
eσ

(t) −
1

N

N
∑

t=1

E{φe(t)φ
T
eσ

(t)}

∥

∥

∥

∥

∥

→ 0

w.p. 1, as N → ∞. (42)

Considering, for example, E{(σt,j + eσt,j
)y(t−p)eσt,i

y(t−
n)} from (41) it contains terms like

E{
(

eσt,j
G0(σt−p, q)u(t − p)

) (

eσt,i
G0(σt−n, q)u(t − n)

)

}

which are not necessarily equal to zero. This, with other
terms, will mean that the second sum in (42) will not, in
general, be zero. This implies that the first sum will not
be zero either.

Now examining the second term in (35) we have that the
vector φe(t)e0(t) contains the terms

(σt,j + eσt,j
)y(t − p)e0(t) and (σt,j + eσt,j

)u(t − p)e0(t).

Again referring to Theorem 2B.1 we can write:

s3(t) =











σt,jH0(σt−p, q)e(t − p)
eσt,j

G0(σt−p, q)u(t − p)
eσt,j

H0(σt−p, q)e(t − p)
A0(σt, q)H0(σt, q)e(t)

0











+











0
0
0
0

σt,jG0(σt−p, q)u(t − p)











=













v3

1
(t)

v3

2
(t)

v3

3(t)
v3

4(t)
v3

5(t)













+













w3

1
(t)

w3

2
(t)

w3

3(t)
w3

4(t)
w3

5(t)













.

(43)

The components of s3(t)s
T
3
(t) include the terms (σt,j +

eσt,j
)y(t − p)e0(t) and (σt,j + eσt,j

)u(t − p)e0(t). So it is
possible to write:

∥

∥

∥

∥

∥

1

N

N
∑

t=1

φe(t)e0(t) −
1

N

N
∑

t=1

E{φe(t)e0(t)}

∥

∥

∥

∥

∥

→ 0 (44)

w.p. 1, as N → ∞.

From (44) we have

E{φe(t)e0(t)} = E{(φ(t) + φeσ
(t)) e0(t)} (45)

which contains terms similar to those found in (27), so, as
in Section 3, typically E{φ(t)e0(t)} 6= 0. Thus the second

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4021



sum, and so the first, in (44) will usually be non-zero.
This, together with the result above for the first matrix
in (35), means that Condition ii) is not normally satisfied
and again the estimates obtained using the least squares
algorithm are usually not consistent.

The instrumental variables method can be used to find a
consistent estimate of the parameters in this case also. The
estimate is given by:

θ̂IV
N =

[

1

N

N
∑

t=1

ζ(t)T φe(t)

]−1

1

N

N
∑

t=1

ζ(t)y(t). (46)

This time, however, not only should ζ(t) be correlated
with the regressor φ(t) and not with the noise e0(t), it
should also be uncorrelated with φT

eσ
(t) in order that the

algorithm be consistent.

5. SIMULATION RESULTS

Simulations are carried out to see how the identification
techniques perform for a finite number of data.

5.1 Simulation 1

The case of non-noisy parameter scheduling variables is
first tested in simulation. The true system is given by:

G0(σt, q) =
q−1(b0

0
(σt) + b0

1
(σt)q

−1)

1 + a0
1
(σt)q−1 + a0

2
(σt)q−2

. (47)

The coefficient dependence on the scheduling parameter
is chosen as polynomial in a single parameter, as in (6),
giving:

a0

1(σt) = (1 − 0.5σ̄t + 0.2σ̄2

t )

a0

2(σt) = (0.5 − 0.7σ̄t − 0.1σ̄2

t )

b0

0(σt) = (0.5 − 0.4σ̄t + 0.01σ̄2

t )

b0

1
(σt) = (0.2 − 0.3σ̄t − 0.02σ̄2

t ).

The true vector of parameters is, thus:

θT
0

= [1,−0.5, 0.2, 0.5,−0.7,−0.1,

0.5,−0.4, 0.01, 0.2,−0.3,−0.02].
(48)

The signal u(t) is chosen as a pseudo random binary
signal (PRBS) with a shift register of length 12, giving
N = 4095 points, and an amplitude of 1. σ̄t is selected as
a sinusoid with a period equal to N . It oscillates in the
interval (0,1). In order for the algorithm to be consistent
it is necessary that the persistency of excitation conditions
are met. With the choice of u(t) and σ̄t used, this is
easily the case. The noise on the output is taken such
that e(t) is a zero-mean, normally distributed white noise
with a variance of 0.005, and H0(σt, q) = 1. The least
squares and instrumental variables method are tested. The
instrumental variable vector is taken as the regression
vector using y(t) calculated from the model formed using

θ̂LS i.e.
ζ(t) = ϕls(t) ⊗ σt (49)

where

ϕT
ls(t) = [−yls(t − 1),−yls(t − 2), . . . ,−yls(t − na),

u(t − d), u(t − d − 1), . . . , u(t − d − nb)] (50)

It therefore satisfies the conditions in Section 3. The
simulations are carried out 200 times to calculate the
bias on the parameters found using the method, as well

Table 1. Results for Simulation 1 with noise-
free σt

LS IV

Identification: ‖θ − E{θ̂}‖2 1.3505 0.0164

‖E{(θ̂ − E{θ̂})2}‖2 0.0112 0.0250

Validation: E{‖y(t) − ŷ(t)‖2} 0.0514 0.0099

as their variance. Table 1 shows the 2-norms of the bias
and variance of the parameters found using the different
methods. The expectation operators are calculated as
averages over the simulations.

It can be seen from the table that the IV method can be
considered to give unbiased parameter estimates compared
to the LS method. The IV method does, however, have
a larger variance, a known problem with these methods,
which comes as a trade-off with their low computational
complexity. This can often be improved using the Multi-
step Algorithm in Ljung (1999).

A noise-free validation simulation is carried out for the θ
estimated, using different signals for u(t) and σ̄t to those
used in identification. They are 2 uniformly distributed
random sequences varying in the intervals [-1,1] and [0,1]
respectively, and of length 1024 points. The 2-norm of the
prediction error is calculated for each simulation and the
average values over the 200 simulations for each method
are shown in Table 1. It can be seen that due to the
fact that the parameters identified using the instrumental
variables are asymptotically unbiased, the prediction error
achieved in the validation experiment is much smaller
using this method.

5.2 Simulation 2

Next a simulation is done to examine the case where
the scheduling parameter is contaminated by noise. To
be in accordance with the case analysed in Section 4 i.e.
polynomial dependence no greater than affine, the system
is given as:

G0(σt, q) =
q−1(b0

0
(σt) + b0

1
(σt)q

−1)

1 + a0
1
(σt)q−1 + a0

2
(σt)q−2

(51)

where

a0

1(σt) = (1 − 0.5σ̄t), a0

2(σt) = (0.5 − 0.7σ̄t),

b0

0
(σt) = (0.5 − 0.4σ̄t), b0

1
(σt) = (0.2 − 0.3σ̄t).

Thus, the true vector of parameters is this time given by:

θT
0 = [1,−0.5, 0.5,−0.7, 0.5,−0.4, 0.2,−0.3]. (52)

The signals u(t), σ̄t and the noise on the output are chosen
as before. The noise on σ̄t is taken such that eσt,1

is a zero-
mean, normally distributed white noise with a variance
of 0.0005. The least squares and instrumental variables
method are tested. This time it is not possible to use the
regression vector generated using the output of the model

formed from θ̂LS as an instrumental variable vector. This
is because it would still use σe

t from the first simulation.
The instrumental variable vector is therefore formed by
using the measured values of y(t) and σe

t from a second
simulation, which has different realisations of e(t) and eσt

,
and are therefore not correlated with those in the first
simulation.
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Table 2. Results for Simulation 2 with noisy σt

LS IV

Identification: ‖θ − E{θ̂}‖2 0.3161 0.0042

‖E{(θ̂ − E{θ̂})2}‖2 0.000505 0.0024

Validation: E{‖y(t) − ŷ(t)‖2} 0.0376 0.0051

The simulations are, again, carried out 200 times to
calculate the bias on the parameters identified, as well
as their variance. Table 2 shows the 2-norms of the bias
and variance of the parameters found using the different
methods.

Again the results show that the IV method can be con-
sidered to give unbiased parameter estimates compared to
the LS method, though once more the estimate variance
is larger.

A noise-free validation simulation is done again, using the
same signals as in the validation in Simulation 1. The mean
2-norm values of the prediction error are shown in Table
2. Again we see that the prediction error achieved using
the instrumental variables in the validation experiment is
much smaller than that using the LS method.

6. CONCLUSIONS

In this paper the consistency of certain LPV identification
methods is considered. It has been shown that ergodicity
results, under certain conditions, can be applied to the
signals in these LPV identification methods in order to
carry out a consistency analysis.

When the scheduling parameter is noisy, it has been shown
that an errors-in-variables type identification problem oc-
curs and consistent estimates can be calculated using the
IV method. In this case ergodicity was only demonstrable
when the noise affecting the scheduling parameter and
that affecting the output are uncorrelated. Furthermore,
ergodicity is not provable when a polynomial dependence
on the scheduling parameter of degree greater than 1 is
present.

Further work would involve the analysis of the case where
the scheduling parameter’s noise is correlated with that
of the output and also for the complete polynomial de-
pendence case when noise is present on the scheduling
parameter.
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