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Abstract: A model predictive control architecture based on discrete time nonlinear car model
is derived to solve regulation(“parking”) problem. Parameters of the proposed controller are
chosen by considering terminal state constraints. This setup combined with terminal state
penalty in the cost function could assure control stability. The generated trajectory satisfies
minimum curvature requirements and actuator saturations of the vehicle are considered in
controller design. Obstacle avoidance is realized by considering distance constraints in the open-
loop optimization process. Simulation results are given to illustrate the feasibility of the proposed
control architecture.
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1. INTRODUCTION

Autonomous vehicle regulation(“parking”) problem is an
open and challenging field not only because the nonholo-
nomic constraint makes it impossible to design a time
invariant feedback controller Brockett (1983) but also be-
cause input and state saturations add constraints on the
reference trajectory and control behavior. For solving such
kind of problems, Zhu et al. (2007) proposed a geometry
solution. In this paper, model predictive control(MPC)
for nonlinear discrete time system is introduced to give
a suboptimal solution.

Model predictive control or receding horizon control(RHC)
is a kind of control algorithm suitable for the case in
which pre-computation of a control law is not feasible. In
this control strategy, at each sampling instant, the current
control law is obtained by solving a finite horizon open-
loop optimal control problem. An optimal control sequence
is achieved and only the first control in this sequence is
used as control input. With the current state as the initial
state, this on-line optimal control problem will be solved
repeatedly. It is worth noting that MPC can consider
input or state constraints directly in the optimal control
computation.

There has been historical interest in the topic of ap-
plying MPC in the process industry with sufficient slow
dynamic. Currently, these applications are extended to
faster dynamic systems such as robots and vehicles. In
reference Mayne et al. (2000), a thorough survey is given
from the theoretical foundations of MPC, the evolution
of MPC, the sufficient condition of MPC stability, to the
robustness consideration. Various issues, such as tracking,
output feedback and adaptive MPC are discussed. Sev-
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eral papers are related to our research topic. In 1990s,
MPC strategy was introduced in trajectory generation for
nonlinear systems and researchers gave much attention to
the stability of MPC algorithm. Recently, the examples of
real time applications appeared where MPC is the strategy
for dynamic path planning in structured environment with
known obstacles and even unstructured environment with
unknown moving obstacles. Real-time MPC optimization
for obstacle avoidance is realized not only for ground
robots Wan et al. (2004) but also for unmanned aerial
vehicles Shim et al. (2006). Though using MPC in linear
systems is a matured field, nonlinear model based predic-
tive control(NMPC) is still an open topic including how
to achieve good stability and robustness performance.

The stability of MPC algorithm has close relation with
prediction horizon. Lyapunov arguments can be used to
show asymptotic stability of MPC with infinite prediction
horizon while finite prediction horizon does not guaran-
tee stability. However, finite prediction horizon is usually
adopted in real time systems. Adding end constraints is
a common method to solve this problem. Several kinds of
end constraints are mentioned including terminal equal-
ity constraints Grimm et al. (2003), terminal inequality
constraints Michalska et al. (1993), and a terminal cost
function. Most recently, the combination of a terminal
cost function and terminal state constraints has been ex-
plored Scokaert et al. (1998). This method is adopted in
tracking control of wheeled mobile robots in reference Gu
et al. (2006). Another notable result is contractive MPC
for constrained nonlinear systems Kothare et al. (2000)
where the contractive constraint renders the closed-loop
system exponentially stable in the state feedback case and
uniformly asymptotically stable in the output feedback
case.
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Fig. 1. Coordinate frames for the kinematic model

In this paper, nonlinear model based predictive control
architecture is applied to nonholonomic vehicle system
to solve constrained regulation problem. Both minimum
curvature requirements and actuator saturations are con-
sidered in the open-loop optimization process. Based on
stability consideration, the parameters in the controller
and discrete time step size are properly set up to realize
collision-free navigation under the guidance of real-time
MPC control module.

The paper is organized as follows. In section 2, the problem
is formulated with kinematic error system model. And
nonlinear model based predictive control architecture is
presented in section 3. In section 4, simulation results of
parking maneuver are analyzed, followed by some conclud-
ing remarks in section 5.

2. PROBLEM FORMULATION

The kinematic car-like vehicle model (1) is used in this
paper. The state is represented by χ = [x, y, θ]′ ∈ C =
R

2 ×S, where C denotes the configuration space including
vehicle position and orientation, (x, y, θ) are the Cartesian
coordinates of the vehicle and its orientation with respect
to an inertial coordinate frame {O, X, Y }. u = [υ ω]′ is the
control input, i.e., the linear and the angular velocities,
respectively.







ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(1)

It is assumed that there is a pure rolling contact between
the wheels and the ground. Then the vehicle moves with-
out slipping on a plane, that is to say, the vehicle is subject
to a nonholonomic constraint (2).

ẋ sin θ − ẏ cos θ = 0 (2)

For this model, the closed-loop control relates to the de-
termination of steering inputs assuring the states of the
system asymptotically converge to the origin (parking tar-
get). While according to the well known work of Brockett
(1983), Cartesian state space representations of car model
is among a class of systems which are not controllable by a
time invariant feedback control law. In addition, the input
υ and ω have saturation resulted from physical limitations
of the actuators. The minimum turning radius of a vehicle
determined the relation between υ and ω, that is,

|
υ

ω
| ≥ Rmin. (3)

Since autonomous vehicle is usually driven by control
signals from computer, it is necessary to discretize the

system model. Considering a step size T, using Euler’s
approximation, the following model (4) can be obtained
for the time instant k

{
x(k + 1) = x(k) + v(k)cosθ(k)T
y(k + 1) = y(k) + v(k)sinθ(k)T
θ(k + 1) = θ(k) + ω(k)T

(4)

where χk = [x(k), y(k), θ(k)]′. Or, denote it as (5).

χk+1 = f(χk,uk) (5)

Generally, the MPC control problem to be solved can be
described as achieving a control sequence uk so that the
current state χk will converge to a desired reference state
χr when k → ∞. The NMPC algorithm will solve an
optimal problem in (6).

min
uM

J(k,uM ) = g(χf ) +
P−1∑

j=0

‖χk+j‖
q
Q

+
M−1∑

i=0

(‖uk+i‖
q
R + ‖∆uk+i‖

q
S)

(6)

Subject to:

χk+j = f(χk+j−1,uk+j−1) for j = 0, · · · , P
u ≤ uk+i ≤ u for i = 0, · · · ,M − 1

∆u ≤ ∆uk+i ≤ ∆u for i = 0, · · · ,M − 1.
(7)

where g(χf ) = χ′

fQfχf is the terminal penalty term.
Qf , Q, R, and S are positive definite weight matri-
ces. M is the control length and P is the predictive
length. M ≤ P . uk+i = 0 when i = M, M + 1, · · · , P .
uM = (uk, · · · ,uk+M−1) is the control sequence corre-
sponding to each predictive length. The first m inputs
(uk,uk+1, · · · ,uk+m−1) will be applied to the system at
each time instant.

Without loss of generality, we can consider autonomous
parking as regulation problem in which the desired op-
erating point is the origin. Error state system is defined
in (8)

{
xe(k + 1) = xe(k) − v(k)cosθe(k)T
ye(k + 1) = ye(k) − v(k)sinθe(k)T
θe(k + 1) = θe(k) − ω(k)T

(8)

where χe = χr − χ = −χ.

Now the regulation(“parking”) problem in our case can
be reformulated as finding a control sequence uk so that
the current state χe(k) will converge to the origin when
k → ∞. By choosing M = P , the value function we used
in this paper is as follows (9).

J(k,uM ) = χe(k + M)′χe(k + M)+
M−1∑

i=0

[χe(k + i)′Qχe(k + i) + u(k + i)′Ru(k + i)]
(9)

Subject to:

χe(k + i) = f(χe(k + i − 1),u(k + i − 1))
for i = 0, · · · , P

u ≤ u(k + i) ≤ u
for i = 0, · · · ,M − 1

ρ(k) = ‖[x(k + i) y(k + i)]′ − [xh
o yh

o ]′‖ ≥ D
for i = 0, · · · , P
for h = 1, · · · ,H

χe(k + M) ∈ Ω

(10)
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where ρ(k) is the distance from vehicle to the obstacle
h measured by sensor set up on the vehicle in the real
time system. In simulation, it is simulated by the Eu-
clidean distance between current vehicle position and the
nearby obstacle. D is the safe distance defined for obstacle
avoidance behavior. By adding this constraint, the real
time system can realize parking maneuver with obstacle
avoidance. Ω is the terminal state region.

The fact that one can solve the closed-loop control problem
through a sequence of open-loop optimisations was recog-
nised very clearly in the development of optimal control
theory and one can view the NMPC solution as a way
of turning an intractable closed-loop computation into a
sequence of tractable open-loop calculations Kouvaritakis
et al. (2001). In autonomous vehicle field, prediction hori-
zon in MPC strategy is meaningful just as look ahead dis-
tance. Usually, in driving process, the driver will consider
the road condition several hundred yards ahead(his vision)
so that he can predict the potential dangers. This vision is
moving along with the vehicle and could not be too small,
i.e., the prediction length should be tuned to a fitful value.

3. NONLINEAR MODEL BASED PREDICTIVE
CONTROL ARCHITECTURE

3.1 Control Strategy

It is well known that MPC with infinite receding hori-
zon can guarantee stability for nonlinear systems Keerthi
et al. (1988) though it is not feasible in practice due to
the computation complexity. The proposed MPC in this
section is using finite predictive horizon considering the
speed requirement of real time systems. To clearly describe
the predictive control process, the similar notation as that
appeared in Kothare et al. (2000) is adopted here. The
evolution of the system will be over time index of the
form tjk := t0 + (j + km)T , with j varying in the interval
j = 0, . . . ,M −1, while k is kept constant at k = 0, 1, 2 . . ..
Here, we choose t0 = 0 and P = M . Then the time index
will be as follows.

{. . . , t0k, t1k, . . . , tmk = t0k+1, t
1
k+1, . . . , t

m
k+1 = t0k+2, . . .}

∀k ∈ Z+.

As shown in Fig. 2, there are several sets of time duration
in which the corresponding optimal problem will be solved.
Using the iteration in Fig. 2 as an example, we can
get an optimal control sequence u0

k+1, u
1
k+1, . . . , u

M−1
k+1 .

The first M − m control inputs are called local optimal
control denoted by uop and the rest m control inputs are
called terminal control denoted by uT . The corresponding
time index t0k+1, . . . , t

M−m−1
k+1 and tM−m

k+1 , . . . , tM−1
k+1 are

called local optimal control duration and terminal control
duration respectively. Only the first m control inputs,
u0

k+1, u
1
k+1, . . . , u

m−1
k+1 will be the future control action

applied to vehicle steering system.

The control architecture is shown in Fig. 3 where the
initial state is current vehicle position and the set point is
goal parking position. Future control action is decided by
MPC module and this part is motivated by the continuous
MPC for tracking control in Gu et al. (2006). Discrete
time MPC is used here for considering the real time
application and therefore, the main focus will be on how

kmT

t
0
k

. . .
t
1
k t

m−1

k t
M−m

k+1
t
M−1

k+1
. . .. . .

Control horizon

Predictive horizon

kmT + PT (P = M)

Terminal control duration

Control horizon

Local optimal control durationFuture control action

t
M−m−1

k+1
t
M−2

k+1

kmT

+ T

(k + 1)mT

+ (M − 2)T

(k + 1)mT

+ (M − 1)T

t
0
k+1

kmT

+ (m − 1)T

(k + 1)mT (k + 1)mT +

(M − m − 1)T

(k + 1)mT

+ (M − m)T

Fig. 2. Time index for optimal problem
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Fig. 3. Control architecture

to choose time step size T and other parameters as well
as terminal control inputs so that nonlinear MPC parking
controller is stable. Besides, obstacle avoidance is realized
by adding constraints based on the real time sensor data
and the generated trajectory has the minimum curvature
according to the requirement of vehicle. The detail control
process is as follows.
Step 1. Get the current error state χe(t

0
k).

Step 2. Solve the following optimal control problem on
time index t0k, t1k, . . . , tM−1

k .

min
uM

J(tjk,uM ) =

χe(t
M
k )′χe(t

M
k ) +

M−1∑

j=0

[χe(t
j
k)′Qχe(t

j
k) + u(tjk)′Ru(tjk)]

(11)

Subject to:

χe(t
j+1
k ) = f(χe(t

j
k),u(tjk))

for j = 0, · · · ,M − 1

u ≤ u(tjk) ≤ u

ρ(tj+1
k ) = ‖[x(tj+1

k ) y(tj+1
k )]′ − [xh

o yh
o ]′‖ ≥ D

for h = 1, · · · ,H
χe(t

M
k ) ∈ Ω.

(12)

Get the optimal control sequence û = (u0
k,u1

k, . . . ,uM−1
k )

and apply u0
k,u1

k, . . . ,um−1
k to the error state system.
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Step 3. Use χe(t
0
k+1) as initial state and u0

k+1,u
1
k+1, . . . ,

uM−m−1
k+1 , 0, . . . , 0 as initial solution of the optimal problem

and solve (11) and (12) again, we get a new optimal control
sequence among it the first M − m local optimal control
inputs and m terminal control inputs together as (13) will
be the new initial solution for the optimal control problem.

ũ = (

local optimal control
︷ ︸︸ ︷

u0
k+1, . . . , u

M−m−1
k+1 ,

terminal control
︷ ︸︸ ︷

uM−m
k+1 , . . . , uM−1

k+1 ) (13)

where

uj
k+1 = [vj

k+1 ωj
k+1]

′

= [η
√

(xe(t
j
k+1))

2 + (ye(t
j
k+1))

2 ξθe(t
j
k+1)]

′

for j = M − m, . . . ,M − 1.

(14)

Step 4. Solve (11) and (12) once more. The first m control
inputs among the solution sequence will be applied to error
state system.
Step 5. k + 1 → k and continue this procedure till the
parking error is small enough.

As shown in (12), actuator saturations and minimum
curvature requirements are considered as constraints in
the optimal problem. Besides, the constraint of keeping
safe Euclidean distance to each obstacle can assure the
generated trajectory would be collision-free. Then, the big
concern is how to choose time step T and output feedback
gain η and ξ and other parameters so that the NMPC
algorithm is stable.

3.2 Stability Proof and Parameter Setup

Define V (tjk) and V̂ (tjk) as the value function for MPC
and optimal control respectively. Denote L = χ′

eQχe +
u′Ru. χe is the real state by applying control solutions
from MPC to the error system and χ̂e is the virtual
error state by applying control solutions from the optimal
problem in each iteration. χ̃e is the error state by applying
the control sequence ũ. Considering the m control inputs
u0

k,u1
k, . . . ,um−1

k are applied to the error state system at
the beginning of each iteration(Step 2), first we try to get
decreasing series V (t0k), k = 0, 1, 2, . . . at the end of each
applied future control action. Then, at each time instant
t0k, we have

V̂ (t0k+1, χ̃e(t
0
k+1)) ≥ V̂ (t0k+1, χ̂e(t

0
k+1)) = V (t0k+1, χe(t

0
k+1))

And

V̂ (t0k+1, χ̃e(t
0
k+1)) − V (t0k, χe(t

0
k)) = χ̃e(t

M
k+1)

′χ̃e(t
M
k+1)

−χ̂e(t
M
k )′χ̂e(t

M
k ) +

M−1∑

j=0

L̃(t0k+1 + jT ) −
M−1∑

j=0

L̂(t0k + jT )

Since we know χ̂e(t
M
k ) = χ̃e(t

M
k ) from Step 3, the following

relation can be achieved.

V̂ (t0k+1, χ̃e(t
0
k+1)) − V (t0k, χe(t

0
k)) = χ̃e(t

M
k+1)

′χ̃e(t
M
k+1)

−χ̃e(t
M
k )′χ̃e(t

M
k ) +

m−1∑

j=0

L̃(tMk + jT ) −
m−1∑

j=0

L̂(t0k + jT )

≤ χ̃e(t
M
k+1)

′χ̃e(t
M
k+1) − χ̃e(t

M
k )′χ̃e(t

M
k ) +

m−1∑

j=0

L̃(tMk + jT )

= [χ̃e(t
M
k + mT )′χ̃e(t

M
k + mT ) − χ̃e(t

M
k + mT − T )′

·χ̃e(t
M
k + mT −T )] + [χ̃e(t

M
k + mT −T )′χ̃e(t

M
k + mT −T )

−χ̃e(t
M
k + mT − 2T )′χ̃e(t

M
k + mT − 2T )] + . . .

+[χ̃e(t
M
k +T )′χ̃e(t

M
k +T )−χ̃e(t

M
k )′χ̃e(t

M
k )]+

m−1∑

j=0

L̃(tMk +jT )

=
m−1∑

j=0

[χ̃e(t
M
k + (j + 1)T )′χ̃e(t

M
k + (j + 1)T )−

χ̃e(t
M
k + jT )′χ̃e(t

M
k + jT ) + L̃(tMk + jT )]

Substitute (8) in the above equation and omit the time
index. One item among the summation items can be
analyzed as follows.

OneItem = −

Term1
︷ ︸︸ ︷

[2x̃ev cos θ̃eT + 2ỹev sin θ̃eT − ṽ2T 2 − q11x̃
2
e − q22ỹ

2
e − r11ṽ

2]

−

Term2
︷ ︸︸ ︷

[2θ̃eω̃T − ω̃2T 2 − q33θ̃
2
e − r22ω̃

2]

It worth noting that the related control inputs here are
corresponding to the terminal control duration. When
ṽ = η

√

x̃2
e + ỹ2

e and ω̃ = ξθ̃e, we have

Term1 = [2ηT
x̃e

√

x̃2
e + ỹ2

e

cos θ̃e + 2ηT
ỹe

√

x̃2
e + ỹ2

e

sin θ̃e

−(η2T 2 + q11 + r11η
2)](x̃2

e + ỹ2
e)

and (15) will be one constraint for the terminal control so
that Term1 ≥ 0.

x̃e
√

x̃2
e + ỹ2

e

cos θ̃e +
ỹe

√

x̃2
e + ỹ2

e

sin θ̃e

≥
(η2T 2 + q11 + r11η

2)

2ηT

(15)

Term2 = [2ξT − (ξ2T 2 + q33 + r22ξ
2)]θ̃2

e

and (16) will be another constraint for the terminal control
so that Term2 ≥ 0.

2ξT ≥ ξ2T 2 + q33 + r22ξ
2 (16)

Therefore, by choosing terminal control inputs, (17) can
be achieved.

OneItem = Term1 + Term2 ≤ 0 (17)

Since each item of the summation ≤0, we have

V̂ (t0k+1, χ̃e(t
0
k+1)) − V (t0k, χe(t

0
k)) ≤ 0 (18)

Therefore,

V (t0k+1, χe(t
0
k+1)) − V (t0k, χe(t

0
k)) ≤ 0 (19)

Now consider series V (tjk) where k = 0, 1, 2, . . .. while j is
fixed and j ∈ {1, 2, . . . ,m − 1}.

V (tjk, χe(t
j
k)) = V̂ (tjk, χ̂e(t

j
k)) = χ̂e(t

j+M
k )′χ̂e(t

j+M
k )

+
M−1∑

i=0

L̂(t
j
k + iT )

V (t0k, χe(t
0
k)) = V̂ (t0k, χ̂e(t

0
k)) = χ̂e(t

M
k )′χ̂e(t

M
k )

+
M−1∑

i=0

L̂(t
0
k + iT )
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Parameters T (s) q11 q22 q33 r11 r22 η ξ

Value 0.2 0.1 0.1 0.1 0.1 0.1 1 1

Table 1. Parameter values

V (tjk, χe(t
j
k)) − V (t0k, χe(t

0
k)) = χ̂e(t

j+M
k )′χ̂e(t

j+M
k )

−χ̂e(t
M
k )′χ̂e(t

M
k ) +

j−1
∑

i=0

L̂(tMk + iT ) −

j−1
∑

i=0

L̂(t0k + iT )

≤ χ̂e(t
j+M
k )′χ̂e(t

j+M
k ) − χ̂e(t

M
k )′χ̂e(t

M
k ) +

j−1
∑

i=0

L̂(tMk + iT )

= [χ̂e(t
M
k + jT )′χ̂e(t

M
k + jT ) − χ̂e(t

M
k + (j − 1)T )′

·χ̂e(t
M
k +(j−1)T )]+ [χ̂e(t

M
k +(j−1)T )′χ̂e(t

M
k +(j−1)T )

−χ̂e(t
M
k + (j − 2)T )′χ̂e(t

M
k + (j − 2)T )] + . . .

+[χ̂e(t
M
k +T )′χ̂e(t

M
k +T )−χ̂e(t

M
k )′χ̂e(t

M
k )]+

j−1
∑

i=0

L̂(tMk +iT )

=

j−1
∑

i=0

[χ̂e(t
M
k + (i + 1)T )′χ̂e(t

M
k + (i + 1)T )−

χ̂e(t
M
k + iT )′χ̂e(t

M
k + iT ) + L̂(tMk + iT )]

Again, the related control inputs here are corresponding
to the terminal control duration. The similar process as
before is followed to achieve terminal control inputs. Ob-
viously,the constraints (15) and (16) can also assure (20)
is correct.

V (tjk, χe(t
j
k)) − V (t0k, χe(t

0
k)) ≤ 0 (20)

From (20), we know for some fixed j ∈ {1, 2, . . . ,m − 1},
and k = 0, 1, 2 . . .

0 ≤ V (tjk, χe(t
j
k)) ≤ V (t0k, χe(t

0
k)). (21)

From (19), we have

lim
k−→∞

V (t0k, χe(t
0
k) = 0. (22)

Then, according to the squeeze theorem, we have

lim
k−→∞

V (tjk, χe(t
j
k) = 0. (23)

According to Lyapunov theorem for discrete time systems,
in our case V is the lyapunov function, the nonlinear
discrete error system can be stabilized by the proposed
controller design. To satisfy (15) and (16), the parameters
are chosen as in Table 1.

4. SIMULATION RESULTS

In this section, simulation results are given to illustrate the
performance of NMPC algorithm for parking maneuver.
In Fig. 4, corresponding to 8 different initial positions as
follows,
(A)[20,−50, π/4] (B)[45,−50, π/4] (C)[45, 0,−3π/2]
(D)[45, 0,−3π/4] (E)[45, 0, 3π/4] (F )[45, 0, 3π/2]
(G)[45, 50,−π/4] (H)[20, 50,−π/4],
the parking trajectories are provided by control architec-
ture proposed in this paper. For all these initial setup, the
vehicle could arrive the final parking configuration, (0, 0,
π or -π), via a reasonable path. Compared with them, a
special case is given in Fig. 5. Since the initial position
is pretty close to the target point, the car is adjusted
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Fig. 4. Parking maneuver from different initial positions
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to a comfortable configuration by reverse maneuver, and
then driven to the set point. The algorithm provides a
parking maneuver just like what human driver will do in
this case. We set the bound for linear velocity v as between
-5 and 5m/s and angular velocity ω as between -1.5 and
1.5 rad/s. As shown in Fig. 6, the simulation results for
both of them are within the required range. Besides, the
curvature of the trajectory is also bounded since a vehicle
has minimum turning radius(1.5m in our case). By adding
the proposed constraints in our algorithm, the curvature
of the trajectory is smooth enough (Fig. 5).

The simulation results in Fig. 7 show the parking maneu-
ver with obstacle avoidance. By setting a safe distance D,
as we mentioned before, whenever the sensor detected an
obstacle entering this range, the predictive control strategy
will modify the path. The velocity v and ω for this case
is shown in Fig. 8. They are within the boundary and the
result path is smooth enough for our vehicle.
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5. CONCLUSION

In this paper, a model predictive control strategy is applied
to nonholonomic vehicle regulation problem. Based on
nonlinear discrete time system model, a stable controller
is designed in terminal region for each predictive length.
Parameters of the controller are chosen by considering the
control stability requirement. According to the terminal
region constraints, the corresponding requirement on dis-
crete step size is given. The input saturation and minimum
turning radius are considered as constraints in the optimal
problem so that the given trajectory is feasible for a real
car.
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