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Abstract: In this paper stochastic approximation theory is used to produce Iterative Learning
Control (ILC) algorithms which are less sensitive to stochastic disturbances, a typical problem
for the learning process of standard ILC algorithms. Two algorithms are developed, one to
obtain zero mean controlled error and one to minimise the mean 2-norm of the controlled error.
The former requires a certain knowledge of the system but in the presence of noise can give
reasonably rapid convergence. The latter can either use a model or be model free by employing
a second experiment.

1. INTRODUCTION

Iterative Learning Control (ILC) is a technique used to
enhance the tracking performance of systems that perform
repetitive operations. Drawing on the principles of human
learning, information ‘learnt’ from previous repetitions is
used to improve the performance of the system during the
next repetition/iteration i.e. reduce the tracking error. ILC
has been shown to be very effective for systems that are
predominately affected by deterministic, repetitive distur-
bances, which are learnt from one iteration to the next.
However, when the system is affected by stochastic, non-
repeating disturbances the tracking performance is greatly
diminished (Gunnarsson and Norrlöf, 2006; Butcher et al.,
2008). It is, therefore, important to develop ILC algorithms
that have reduced sensitivity to their presence.

Although the deterministic aspects of ILC have received
greater attention, certain researchers have already pro-
posed algorithms which are robust to the presence of
stochastic disturbances.

(1) The use of a forgetting factor in ILC was first pro-
posed in Heinzinger et al. (1989) for a D-type ILC law.
It was then proposed in Arimoto (1990) for P-type
ILC. It is shown there that by introducing the forget-
ting factor the system’s output converges to a neigh-
bourhood of the desired one, despite the presence of
norm-bounded initialisation errors, fluctuations of the
dynamics and random disturbances. However, in Saab
(2005) and Butcher et al. (2008), it is shown that,
statistically, the use of a forgetting factor can increase
the expected value and variance of the error signal,
compared to standard ILC algorithms.

(2) The filtering of the ILC command has been proposed
in certain papers as a way of reducing the influence
of noise on the error (Norrlöf and Gunnarsson, 2001).
However, whilst it reduces the error variance, it causes
a nonzero converged expected value of the error.

⋆ This work is supported by Swiss National Science Foundation
under Grant No. 200021-116156/1.

(3) Kalman filtering-type techniques have also been ap-
plied to ILC to estimate the controlled output, in
the presence of disturbances (Tao et al., 1994; Saab,
2001a,b; Norrlöf, 2002; Ahn et al., 2006). In the
case of perfect knowledge of the disturbance covari-
ance matrices and, for most methods, perfect system
knowledge, convergence to optimal tracking, in a cer-
tain sense, can be shown. However, exact knowledge
of these parameters is, typically, unrealistic.

(4) In Tao et al. (1994) another ILC algorithm is pro-
posed using a learning gain that decreases each it-
eration and has the form of a Stochastic Approxima-
tion (SA) algorithm. No detailed analysis is, however,
carried out. The application of SA theory to ILC is
most directly considered in Chen (2003) and Chen
and Fang (2004) for the linear and nonlinear cases
respectively. It is shown that the proposed ILC law
converges almost surely to the optimal input and
the output error is minimised in the mean square
sense as the number of iterations tend to infinity.
The algorithm requires only that the optimal input
is realizable. Neither knowledge of the disturbance
covariance matrices nor the system is required. The
disadvantage is slow convergence.

The aim of this paper is also to apply SA theory to
ILC for linear systems affected by stochastic disturbances.
Two methods are proposed. In the first, an algorithm
is proposed to solve a root-finding type criterion to set
the expected value of the controlled error equal to zero.
In the second method, an ILC command to minimise a
mean square criterion is developed. Conditions for almost
sure convergence to the solution input are given for both
methods. In addition, monotonic convergence of the error
signal from one iteration to the next and robustness to
system uncertainty are considered.

The proposed methods differ from that in Chen (2003) as
there a simultaneous perturbation SA type algorithm is
employed, which uses random perturbations to estimate
the gradient. Here, either the use of a, possibly uncertain,
system model or a second model-free experiment, using re-
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Fig. 1. System with a repetitive desired output

versed time inputs, is proposed. These proposed techniques
will typically lead to faster convergence.

Steepest descent algorithms have been applied to ILC for
the discrete-time case by Hatonen et al. (2003). Although
certain similarities exist between the proposed SA based
algorithm and steepest descent algorithms, the major
difference is the conditions on the step sizes between
iterations. These conditions are necessary for SA to assure
almost sure convergence to the optimal input in the
presence of stochastic disturbances. It is shown in this
paper that the step sizes proposed in Hatonen et al.
(2003) do not satisfy the SA conditions. Hence, whilst
their algorithm provides rapid convergence to the optimal
input in the deterministic case, this cannot be shown when
stochastic disturbances are present.

This paper is organised as follows. In Section 2 the
notational framework is defined and the assumptions are
stated. In Section 3 Zero Mean Error ILC is proposed
and analysed. Then in Section 4 the alternative criterion
of minimising the mean 2-norm of the controlled error is
examined. Finally in Section 5 conclusions are made.

2. PRELIMINARIES

2.1 Notation

We consider the SISO, linear, discrete-time, stable system
G(q), shown in Fig. 1, that carries out a repetitive task and
whose controlled output, zk(t), at repetition k is given by:

zk(t) = G(q)uk(t) + dk(t), (1)

where uk(t) is the input to the system, dk(t) the load
disturbance and q the forward-shift, time domain operator.
The system’s measured output, yk(t), is:

yk(t) = zk(t) + nk(t), (2)

where nk(t) is the measurement disturbance. It should be
mentionned that if G(q) represents a closed-loop transfer
function then dk(t) and nk(t) will be the signals resulting
from the filtering of external disturbances by the corre-
sponding closed-loop transfer functions.

The controlled tracking error signal is defined as:

ǫk(t) = yd(t) − zk(t), (3)

where yd(t) is the desired system output, which is defined
over the finite repetition duration for t = 0, . . . , N−1, and
the measured error signal is given by:

ek(t) = yd(t) − yk(t). (4)

As the signals are defined over a finite duration, it is
possible to express the system’s input-ouput relationship
by a matrix representation. Taking advantage of the non-
causal filtering possibilities of ILC, the lifted-system rep-
resentation is typically used. For a system with a relative
degree of m we define the vectors:

uk = [uk(0), uk(1), . . . , uk(N − m − 1)]T and (5)

zk = [zk(m), zk(m + 1), . . . , zk(N − 1)]T , (6)

with yk, dk, nk and yd defined similarly to zk. Using these
vectors, the measured output of the system is:

yk = Guk + dk + nk, (7)

where G is:

G =









gm 0 . . . 0
gm+1 gm . . . 0

...
...

. . .
...

gN−m−1 gN−m−2 . . . gm









, (8)

gi being the ith Markov parameter of G(q). The controlled
error vector is:

ǫk = yd − zk = yd − Guk − dk (9)

and the measured error vector:

ek = yd − yk = ǫk − nk. (10)

2.2 Assumptions

The disturbances dk and nk are assumed to be zero-mean,
weakly stationary random vectors with covariance matri-
ces Rd and Rn, respectively, and bounded higher order
moments. Additionally, they are considered uncorrelated
with each other. Moreover, realisations of dk and nk are
mutually independent between repetitions.

2.3 Definitions

In this paper, a non-symmetric, real matrix X is called
positive definite X > 0 if and only if its symmetric part
(X + XT )/2 is positive definite.

3. ZERO MEAN ERROR ILC

The ideal aim of ILC is to achieve a zero controlled error.
When there are stochastic disturbances present in the
system this objective is, unfortunately, not possible. A
reasonable aim, in this case, is to make its expected value
equal to zero. The goal of Zero Mean Error ILC (ZME-
ILC) is, thus, to iteratively calculate the optimal input
signal u∗ such that:

E{ǫ(u∗)} = E{e(u∗)} = 0 (11)

where E{·} denotes the mathematical expectation and
ǫ(u) and e(u) explicitly state that the error signals are
functions of u.

It is straightforward to see that the solution to criterion
(11) is:

u∗ = G−1yd. (12)

To calculate u∗ exact knowledge of G is needed, which
is not possible. Nevertheless, u∗ can be found using an
iterative stochastic approximation (SA) procedure, such as
the Robbins-Monro algorithm (Robbins and Monro, 1951),
which proposes:

uk+1 = uk + γkek. (13)

This algorithm has the form of a standard ILC law, but
uses an iteration varying gain γk.
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3.1 Almost Sure Convergence

Certain conditions must be fulfilled in order that the
algorithm converges:

Theorem 1. Under the assumptions of Subsection 2.2, the
iterative update algorithm (13) converges almost surely to
the solution u∗ of (11) when k → ∞, provided that:

(C1) The sequence γk of positive steps satisfies:
∞
∑

k=1

γk = ∞ and

∞
∑

k=1

γ2
k < ∞. (14)

(C2) E{e(u)} is monotonically decreasing:

Q(u) =
d

du
E{e(u)} < 0. (15)

Proof. The proof is similar to that of the Robbins-Monro
stochastic approximation algorithm.

Condition (C1) should be fulfilled by an appropriate
choice of the sequence γk. Condition (C2) is thus the pri-
mary requirement for convergence. Q(u) can be rewritten
as:

Q(u) =
d

du
E{e(u)}

=
d

du
E{yd − (Gu + d + v)}

= −G (16)

and so condition (C2) requires:

G > 0. (17)

The condition (17), however, restricts the use of the
algorithm to a relatively small class of systems. It is,
nonetheless, possible to define the alternative criterion:

E{Lǫ(u∗)} = E{Le(u∗)} = 0, (18)

where L is a non-singular matrix, which has the same
solution (12) as criterion (11). The iterative procedure
used to minimise this new criterion is:

uk+1 = uk + γkLek, (19)

and the condition corresponding to (17) is:

LG > 0. (20)

This means that even if the system is such that G is not
positive definite, an L can be sought which will make their
product positive definite.

Criterion (18) will be considered for the rest of this section.

Remarks:

1) An obvious choice of L to satisfy condition (20) is
L = G−1. In certain cases, however, G can be badly
conditioned so it is undesirable to use its inverse. In
general, condition (20) can be seen to be a Linear
Matrix Inequality (LMI) and, thus, a feasible solution
L, other than the exact inverse, could be calculated
using standard LMI solvers.

2) More intuitively, if L is the matrix representation of a
causal, LTI filter L(q), it is shown in Hatonen (2004)
that a sufficient condition for (20) is that L(q)qmG(q)
be strictly positive real (SPR) i.e.

Re[L(ejωh)ejmωhG(ejωh)] > 0 for ω ∈ [0, ωN ],
(21)

where ωN is the Nyquist frequency and h the sam-
pling period. Thus, by a judicious choice of L(q),
condition (20) can be satisfied, even when qmG(q)
is not strictly positive real.

3) The selection of L appears to require exact knowledge
of G, which is never obtainable. Nonetheless, conver-
gence of (19), using an L chosen based on a model
of G, can still be assured despite a certain amount of
uncertainty in the model. This issue will be examined
in a later section.

3.2 Monotonic Convergence

Whilst almost sure convergence of the input sequence to
the solution u∗ when k → ∞ is, obviously, of utmost im-
portance, practically it is not the only type of convergence
of interest. The monotonic convergence, from one iteration
to the next, of a norm of the controlled error is also of
concern.

By combining equations (9), (10) and (13) we can obtain
the error evolution as:

ǫk+1 = (I − γkGL)ǫk + dk − dk+1 + γkGLnk. (22)

We see that ǫk+1 is now a function of dk and nk due to
them being fed back into the system from the previous
iteration. Taking the expected value of equation (22) we
get:

E{ǫk+1} = (I − γkGL)E{ǫk}, (23)
where the zero mean assumptions on the disturbance
signals have been used.

For convergence of the expected value of the controlled
error to zero in 1 iteration we can see that the optimal
choice of design variables is L = G−1 and γk = 1. However,
as already remarked, even if G were to be exactly known, it
may not be desirable to use its inverse. Nevertheless, even
without this choice of variables, the 2-norm of the expected
value of the controlled error converges monotonically if the
following condition is satisfied (see e.g. Theorem 2, Norrlöf
and Gunnarsson (2002)):

σ(I − γkGL) < 1 ∀k (24)

where σ is the maximum singular value.

Lemma 2. If GL is positive definite, then condition (24)
can be satisfied by making γ0 sufficiently small.

Proof. This follows as (24) implies:

λ([I − γkGL]T [I − γkGL]) < 1 ∀k, (25)

where λ is the maximum eigenvalue. This, in turn, gives:

λ(I − 2γkGL + γ2
k(GL)T (GL)) < 1 ∀k

⇒1 − λ(2γkGL − γ2
k(GL)T (GL)) < 1 ∀k

⇒λ(2GL − γk(GL)T (GL)) > 0 ∀k, (26)

where λ is the minimum eigenvalue. Furthermore the
eigenvalues are given by:

[2GL − γk(GL)T (GL)]xi = λixi, (27)

where xi are the eigenvectors corresponding to the eigen-
values λi. Left multiplying by xT

i we get:

xT
i [2GL − γk(GL)T (GL)]xi = λix

T
i xi. (28)

So if GL is positive definite then in order for all λi to be
positive, as required by (26), γk should satisfy:

2xT
i GLxi − γkxT

i (GL)T (GL)xi > 0, (29)
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which can be achieved by choosing γk sufficiently small.

Additionally in order to satisfy condition (C1) the se-
quence γk should decrease from one iteration to the next.
This means that γ0 > γk ∀k > 0. Thus if condition (29)
is satisfied for k = 0 it will be satisfied for all other k.

Remarks:

1) It should be noted that the requirement of Lemma 2
that GL be positive definite is satisfied when L and
G commute and condition (20) is satisfied.

2) When L represents a causal LTI filter, a frequency
domain insight is given by noting that a sufficient
condition for (24) to be fulfilled is the following (see
e.g. Theorem 8, Norrlöf and Gunnarsson (2002)):

max
ω∈[0,ωN ]

∣

∣1 − γkejmωhG(ejωh)L(ejωh)
∣

∣ < 1 ∀k.

(30)
Condition (30) can be interpreted as requiring the
Nyquist plot of ejmωhG(ejωh)L(ejωh) to remain
within the circle of radius 1/γk centred at the point
(1/γk,0). This frequency domain condition is com-
plementary to that of (21). Since L(q) is considered
causal and thus commutes with ejmωhG(q), once con-
dition (21) has been satisfied, γk can be chosen to
satisfy (30). As before, this can be done by letting
γk → 0+. Again as the sequence γk should decrease
from one iteration to the next, it is only necessary to
satisfy condition (30) at k = 0.

3.3 Robustness

As stated before, the true system G is never known
exactly in practice. It is therefore important to know the
conditions on the modelling uncertainty that are allowable
in order that the algorithm will converge when used on the
real system.

We have that the real system can be represented as:

G(q) = Ĝ(q)[1 + ∆(q)] (31)

where Ĝ(q) is a model of the system with relative degree
m̂ and ∆(q) represents the multiplicative uncertainty. This
representation is given in lifted-system form as:

G = Ĝ[I + ∆] (32)

Substituting equation (32) into condition (20) we find:

LĜ[I + ∆] > 0. (33)

In the design of the algorithm we calculate L to assure

LĜ > 0, however, in order to obtain almost sure converge
of the input on the real system condition (33) should be
satisfied.
Remarks:

1) For the specific choice of L = Ĝ−1 condition (33)
becomes:

I + ∆ > 0. (34)

A sufficient condition for (34) is that the filter
qm−m̂[1 + ∆(q)] is SPR. So in the case that m = m̂,
almost sure convergence of (19) is attained when
‖∆(q)‖∞ < 1. This condition occurs frequently in the
model uncertainty representation. Similar results are
found in Harte et al. (2005) for this case.

2) If condition (33) is fulfilled, m ≥ m̂, which implies
that ∆ is lower triangular Toeplitz, and also L is lower
triangular Toeplitz then LG = GL is positive definite.
In this case, the monotonic convergence condition
(24) can still be satisfied by letting γ0 → 0+. This
follows from Lemma 2.

3.4 Asymptotic Distribution

The asymptotic distribution of the input estimates can be
found according to the following theorem:

Theorem 3. Assume that:

i) Algorithm (19) converges almost surely to the solu-
tion u∗ as k → ∞.

ii) The sequence of step sizes is chosen as γk = α
k+1 .

iii) The matrix D = I/2 + αQ(u∗) has all eigenvalues
with negative real parts.

Then the sequence
√

k(uk − u∗) ∈ As N (0, V ) i.e it
converges asymptotically in distribution to a zero-mean
normal distribution with covariance

V = α2

∫

∞

0

exp(Dx)P exp(DT x)dx (35)

where P is the covariance matrix of Le(u∗):

P = E{Le(u∗)(Le(u∗))T } (36)

Proof. The proof can be found in Nevelson and Hasmin-
skii (1973) (Theorem 6.1 p.147).

Using Theorem 3 we have that:

P = E{Le(u∗)(Le(u∗))T }
= E{(−L(d + n))(−L(d + n))T }
= L(Rd + Rn)LT , (37)

where the fact that dk and nk are uncorrelated has been
used. Also, as Q(u∗) = −LG, we have that:

D = (I/2 − αLG). (38)

The covariance matrix V is then the unique symmetric
solution of the following Lyapunov equation:

2α2L(Rd + Rn)LT + (I − 2αLG)V + V (I − 2αLG)T = 0
(39)

It is shown in Benveniste et al. (1990) (Proposition 4,
p.112) that if instead of taking α as a scalar it is taken
as a non-singular matrix α = K, then the optimal gain
matrix K∗ to mimimise the trace of V is given by

K∗ = −Q(u∗)−1 = (LG)−1. (40)

Using this gain matrix results in the learning law:

uk+1 = uk +
G−1

k + 1
ek, (41)

and the optimal asymptotic covariance matrix:

V ∗ = G−1(Rd + Rn)G−T . (42)

Thus with this optimal asymptotic covariance matrix, we
have that the sequence

√
k(uk − u∗) ∈ As N (0, V ∗).

Moreover we have that ǫk = −G(uk − u∗) − dk(t) so the
covariance matrix of ǫk is then given by:

cov(ǫk) = E{ǫkǫT
k }

= GE{(uk − u∗)(uk − u∗)T }GT + Rd. (43)
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So using the optimal gain matrix K∗ means that the
sequence ǫk will have a converged covariance matrix given
by cov(ǫk) = 1

k
(Rd + Rn) + Rd and in the limit we have:

lim
k→∞

cov(ǫk) = Rd. (44)

K∗ is, however, not implementable because exact knowl-
edge of G is not achievable. Nonetheless it gives an ideal
case to aim for in the design of a stochastic ILC algorithm.

4. MINIMISATION OF THE MEAN 2-NORM OF THE
CONTROLLED ERROR

A logical alternative objective to criterion (11) for an
ILC algorithm is to minimise the mean 2-norm of the
controlled error. In Minimal Error Norm ILC (MEN-ILC)
the criterion to be minimised is thus:

J(u) =
1

2
E{ǫ(u)T ǫ(u)}. (45)

The minimum of this criterion is found when:

J ′(u∗) =
dJ(u)

du

∣

∣

∣

u∗

= E

{

(

∂ǫ(u)

∂u

∣

∣

∣

u∗

)T

ǫ(u∗)

}

= −GT E{ǫ(u∗)} = 0, (46)

which clearly holds when u∗ = G−1yd, i.e. equation (12)
again. However, as before, exact knowledge of G is not
realistic, and it is not possible to measure ǫ directly in
order to calculate the optimal input iteratively using it.
Nonetheless, because equation (46) can be written as

J ′(u∗) = −GT E{ǫ(u∗)}
= −GT E{e(u∗)} = 0 (47)

it is possible to find the minimum of the criterion, again,
using the Robbins-Monro algorithm:

uk+1 = uk + γkGT ek. (48)

4.1 Convergence

Comparing (48) with (19) we see that L = GT . Thus the
almost sure convergence condition (20) is automatically
satisfied, as G is non-singular.

Additionally, monotonic convergence is assured with a
sufficiently small choice of γk. This property follows from
Lemma 2 and the fact that GL = GGT is positive definite.

4.2 Estimating the gradient

The algorithm converges to the minimum of (45) provided
that an unbiased estimate of J ′(uk), or alternatively GT e,
is used in (48).

a) Use of a model: An estimate of GT e can be achieved

by replacing GT with ĜT , the model. The model will have
uncertainty, however.

With L = ĜT , condition (33) gives:

ĜT Ĝ[I + ∆] > 0. (49)

If the assumption that the relative degree of G(q) is greater

than or equal to Ĝ(q) is made, then I + ∆ is a lower
triangular Toeplitz matrix. I+∆ therefore commutes with

Ĝ and (49) can be written ĜT [I+∆]Ĝ > 0. This condition

is fulfilled when Ĝ is non-singular and I + ∆ > 0. Ĝ is
always nonsingular because N is finite, thus it is necessary
only that I + ∆ > 0 i.e. the same condition as found in
Subsection 3.3 when L = Ĝ−1. This means that a certain
amount of uncertainty in the model can be accepted and
the algorithm will still almost surely converge to the
minimum of (45).

a) Use of an experiment: Alternatively, by noting that
e2 = GT ek can be interpreted as the following filtering
operations:

e1(t) = G(q)ek(N − t) (50)

e2(t) = e1(N − t), (51)

we see that, in the disturbance free case, the gradient can
be found by an experiment on the true system, where the
time reversed error signal is fed into the system as its input
and the system output is measured and then time reversed
itself before being used as GT e = e2. In reality the special
experiment will have its own disturbances d2(t) and v2(t)
associated with it. However, an unbiased estimate of GT e
can still be found as:

E{e2} = E{GT ek + d2 + v2}
= E{GT ek} + E{d2} + E{n2} (52)

= GT E{ǫk} + 0 + 0. (53)

This method of estimating the gradient is attractive as
avoids the problems of model uncertainty. It does, however,
require an additional, non-standard, experiment at each
iteration.

4.3 Connections to previously proposed algorithms

The proposed model free algorithm has similarities to that
proposed in Ye and Wang (2005) where reversed time
inputs are used to cancel the system phase and produce
monotonic convergence, but there stochastic aspects are
not considered.

It also has similarities to Hatonen et al. (2003), which as
mentioned beforehand uses the steepest descent method,
and calls GT the adjoint of G. It shows that by using
this ‘adjoint’ with an iteration-varying gain, monotonic
convergence occurs. The gain sequence is calculated via
an optimisation, which does not consider stochastic dis-
turbances. The gain at iteration k is given by:

γk =
‖GT ek−1‖2

w + ‖GGT ek−1‖2
, (54)

where w is a weight on γk in the cost function. Since
the measured error signal is used to calculate the gain,
it will be affected by stochastic disturbances. This means
limk→∞ ‖GT ek−1‖2 6= 0 and so limk→∞ γk 6= 0. This
means that the second series of condition C1 cannot be
satisfied. Therefore, whilst the algorithm developed can
lead to fast deterministic convergence to the optimal input,
it is not possible to prove this when stochastic disturbances
are present.

5. CONCLUSIONS

Stochastic approximation theory has been applied to Itera-
tive Learning Control to produce algorithms which are ro-
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bust to non-repetitive disturbances, a blight for the learn-
ing process of standard ILC algorithms. Two algorithms
have been proposed, one to obtain zero mean controlled
error (ZME-ILC) and one to minimise the mean 2-norm of
the error (MEN-ILC). ZME-ILC requires knowledge of the
system, to within certain uncertainty bounds, but in the
presence of noise can give reasonably rapid convergence.
MEN-ILC can either use a model or be model free, though
it then requires twice as many experiments to be carried
out on the system. Furthermore MEN-ILC can give good
tracking improvement for non-minimum phase systems.

It is noted that the algorithms proposed require the learn-
ing gain to tend to zero as the iterations tend to infinity.
This requirement seems to be essential for stochastic learn-
ing algorithms. Practically it means the learning ceases
after a large number of iterations and if the desired output
or repetitive disturbances change the algorithm will not
react and the tracking will deteriorate. It is thus necessary
to have a surveillance program that restarts the learning
when the errors rise above a certain threshold.
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M. Norrlöf and S. Gunnarsson. Time and frequency do-
main convergence properties in iterative learning con-
trol. International Journal of Control, 75(14):1114–
1126, 2002.

H. Robbins and S. Monro. A stochastic approximation
method. Ann. Math. Stat., 22:400–407, 1951.

S. S. Saab. Optimal selection of the forgetting matrix
into an iterative learning control algorithm. IEEE
Transactions on Automatic Control, 50(12):2039–2043,
December 2005.

S.S. Saab. A discrete-time stochastic learning control
algorithm. IEEE Transactions on Automatic Control,
46(6):877–887, June 2001a.

S.S. Saab. On a discrete-time stochastic learning control
algorithm. IEEE Transactions on Automatic Control,
46(8):1333–1336, August 2001b.

M.K. Tao, R.L. Kosut, and A. Gurcan. Learning feedfor-
ward control. In IEEE American Control Conference,
pages 2575–2579, Baltimore, Maryland USA, June 1994.

Y. Ye and D. Wang. Zero phase learning control using
reversed time input runs. Journal of Dynamic Systems,
Measurement and Control, 127:133–139, March 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1483


