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Abstract: This paper deals with the global stabilization of a rigid body by means of a bounded
quaternion-based feedback. In addition to input bounds, the nonlinear control takes into account
the slew rate limits. The proposed control scheme is generic and can be applied to all systems
falling in the framework of rigid bodies. Furthermore, its extreme simplicity rendering it suitable
for embedded implementation. It is also shown that the control strategy can be applied to
attitude stabilization of a four-rotor mini-helicopter despite gyroscopic effects appear that are
not present in the rigid body framework. Several real-time experiments have been performed on
a real mini-helicopter in order to show the effectiveness of the proposed control approach.

1. INTRODUCTION

The problem of attitude stabilization of a rigid body has
been a subject that has attracted considerable amount
of interest over the past 30 years. Several approaches
have been applied such as feedback linearizing control,
Wie et al. (1989), Fjellstad and Fossen (1994), feedback
proportional-derivative control, Wen and Kreutz-Delgado
(1991), Joshi et al. (1995), predictive control in Wen et al.
(1997) and Hegrenas et al. (2005)), integral backstepping
in Kristiansen and Nicklasson (2005) and robust control
applied to tactical missiles, Song et al. (2005). This list is
not exhaustive. Within these mentioned approaches, the
feedback linearizing control and the feedback proportional-
derivative control are widely applied. This is due to the
fact that these control laws achieve global stabilization
and they are simples to implement. The major criticism
of the two last approaches is that for large attitude or
angular velocity error, the control law may yield a control
input that the actuators are unable to produce. This fact
becomes apparent due to their linear nature. In practice,
limitations on available energy impose bounded input sig-
nal. Moreover, it is common that due to sensors limitation
the output of the system are bounded. Actually, the above
cited attitude control approaches do not consider the prob-
lem which takes the input constraints into account. Few
publications have dealt with this problem.
In Tsiotras and Luo (2000), a saturating control law for
the kinematic system of an under-actuated rigid space-
craft is studied. This control law uses a non-standard
attitude representation, which allows the decomposition
of general motion into two rotations. In Belta (2004), a
control law that drives a rigid underwater vehicle between
arbitrary initial and final region of the state space while
satisfying bounds on control and state is proposed. The
approach is based in a control of multi-affine systems.

⋆ This work was supported in part by CONACYT-Mexico

The authors in Boskovic et al. (1999) have studied the
robust sliding mode stabilization of the spacecraft attitude
dynamics in presence of control input saturation based
on the variable structure control (VSC) approach. The
application of optimal control to attitude problem of a
rigid body has been also the interest of many research,
(see Scrivener and Thompson (1994) and the references
therein). In order to circumvent the solution of Hamilton-
Jacobi equations, different works have used the so-called
inverse optimal method, Osipchuck et al. (1997), Krstić
and Tsiotras (1999). Unfortunately, the above cited meth-
ods are either non smooth or computationally expensive
(optimal control). This renders difficult their practical
implementation.
In the present work a bounded control law for the global
attitude stabilization of a rigid body is proposed. With the
proposed approach, the control bounds along the three axis
can be completely freely chosen. The bounded control law
can force the closed-loop angular velocity to any a priori
specified region of the state space and maintains them in
it thereafter. Therefore, in addition to input constraints,
the control law enforces angular velocity constraints, i.e.
slew rate limits. Hence, the control law is robust towards
bounded angular velocities measurements as it happens
with classical rate gyros. Furthermore, the control law
is robust towards modelling errors because it does not
depend on the knowledge of the inertial parameters of the
system. The proposed control is inspired by the nested
saturation functions approach proposed by Teel (1992) for
the problem of stabilizing linear systems with bounded
controls. The attitude is parameterized using the unit
quaternion, which allows nonlinear large angles attitude
manoeuvres. This makes a distinct contrast from the case
using three parameters representation, where an inherent
geometric singularity appear (see Shuster (1993) for more
details on attitude representations). The principal prop-
erty of proposed control law is its extreme simplicity com-
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pared to the other existing approaches, rendering it very
suitable for embedded implementation, where on-board
computational resources are challenging. Furthermore, the
control signal computed with this control law is smooth.
In recent years, significant research effort has been directed
toward the control, modelling and design of flying robots.
This interest arise principally of military purposes but also
of civilian application such as disaster monitoring, environ-
mental surveillance or even cinematography. Within flying
robots, the four-rotor helicopter has aroused great interest
because of its highly manoeuvrability and the ability to
hover. This Vertical Take-Off and Landing (VTOL) vehicle
has some advantages over conventional helicopters: owing
to symmetry, this vehicle is simple to design and construct.
The low moment of inertia of this aerial robot makes it
vulnerable to large angular acceleration. Therefore, for
many potential missions an efficient attitude control is
crucial, since it allows the vehicle to maintain a desired
orientation. Several control techniques have been used
for the attitude stabilization of the four-rotor helicopter,
for instance, PID and LQ control in Bouabdallah et al.
(2004), sliding mode control in Bouabdallah and Siegwart
(2005) and Backstepping approach applied in Tayebi and
McGlivary (2006). Although the results presented in the
above cited works are nice and founding, the boundedness
of the control input is not considered.
One particular aspect in the four-rotor helicopter dynam-
ics, is that the dynamical model for the attitude may be
reduced to this one of a rigid body. Therefore, the proposed
approach for the stabilization of a rigid body, is naturally
extended to the attitude stabilization of the four-rotor
mini helicopter. Owing to the extreme simplicity and the
smoothness of the control approach, a real-time stabiliza-
tion was performed successfully on the four-rotor mini heli-
copter, developed at gipsa-lab control system department
(former LAG) in Grenoble. The control capabilities were
tested for different scenarios, showing a good performance
in terms of settling time stabilization, robustness towards
disturbance rejection and tracking trajectories capability.
This paper extends the initial work proposed in Guerrero-
Castellanos et al. (2007) by proposing a control law with
more tuning parameters, established robustness properties
and a real-time implementation.
The present paper is organized as follows. In section 2,
a rigid body quaternion-based orientation is given. Then
the main problem is formulated in section 3. The section
4 is devoted to the control law design, where its stability
is proved and its properties are presented. The extension
of the proposed control law for the attitude stabilization
of the four-rotor helicopter is demonstrated in section 5.
Then, the implementation and experimental results are
presented and discussed in section 6.

2. MATHEMATICAL BACKGROUND

The attitude of a rigid body can be represented by a
quaternion, consisting of a unit vector e, known as the
Euler axis, and a rotation angle β about this axis. The
quaternion q is then defined as follows

q =






cos
β

2

e sin
β

2




 =

(
q0
q

)

∈ H (1)

where

H = {q | q20 + qTq = 1, q = [q0 q]T , q0 ∈ R, q ∈ R
3} (2)

q = [q1 q2 q3]
T and q0 are known as the vector and scalar

parts of the quaternion respectively. In attitude control
applications, the unit quaternion represents the rotation
from an inertial coordinate system N(xn, yn, zn) located
at some point in the space (for instance, the earth NED
frame), to the body coordinate system B(xb, yb, zb) located
at the center of mass of the rigid body. The rotation
matrix C(q) corresponding to the attitude quaternion q,
is computed as C(q) = (q2

0
− q

T
q)I3 + 2(qq

T − q0[q×]). where
I3 is the identity matrix and [ξ×] is the skew symmetric
tensor associated with the axial vector ξ.
Denoting by ω = [ω1 ω2 ω3]

T the angular velocity vector
of the body frame B relative to the inertial frame N ,
expressed in B, the kinematics equation is given by

(
q̇0
q̇

)

=
1

2

(

−qT

I3q0 + [q×]

)

ω

=
1

2
Ξ(q)ω

(3)

The attitude error is used to quantify the mismatch be-
tween two attitudes. If q defines the current attitude
quaternion and qd is the reference quaternion, i.e. the de-
sired orientation, then the error quaternion that represents
the attitude error between the current orientation and the
desired one is given by

qe = q ⊗ q−1
d (4)

⊗ denotes the quaternion multiplication and q−1
d is the

complementary rotation of the quaternion qd, which is
the quaternion conjugate (see (Shuster (1993)) for more
details).
The attitude dynamics of a rigid body is described by

Jω̇ = −ω × Jω + Γ (5)

where J ∈ R
3×3 is the symmetric positive definite constant

inertial matrix of the rigid body expressed in the B frame
and Γ ∈ R

3 is the vector of control torques. Note that these
torques also depend on the environmental disturbance
torques (aerodynamic, gravity gradient, etc.).

3. PROBLEM STATEMENT

The objective is to design a control law that drives the
rigid body attitude to a specified constant orientation
and maintains this orientation. Let qd denote the desired
constant rigid body orientation, then the control objective
is described by the following asymptotic conditions

q → qd, ω → 0 as t→ ∞ (6)

The quaternion error that represents the attitude error
between the current orientation and the desired one is
given by equation (4). If the the desired attitude is qd =
[±1 0 0 0]T (inertial coordinate frame), the quaternion
error (4) coincides with the current attitude quaternion,
that is, qe = q. This control objective is then

q → [±1 0 0 0]T , ω → 0 as t→ ∞ (7)

In this study the case qd = [1 0 0 0]T that represents
the attitude aligned up with the inertial coordinate system
axes is considered. Nevertheless, the results can be applied
to another desired orientation.
It is well known that actuator saturation reduces the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3168



benefits of the feedback. When the controller continuously
outputs infeasible control signals that saturate the actua-
tors, system instability may follow. Therefore, besides the
asymptotic stability, the objective of the control law is to
take into account the physical constraints of the control
system, in order to apply only feasible control signals to
the actuators.

4. BOUNDED ATTITUDE CONTROL
FORMULATION

In this section, a control law that stabilizes the system
described by (3) and (5) is proposed. The goal is to design
a control torque that is bounded.

Definition 1. Given a positive constant M, a continuous,
nondecreasing function σM : R → R is defined by

(1) σM (s) = s if |s| < M ;
(2) σM (s) = sign(s)M elsewhere;

Theorem 1. Consider the rigid body rotational dynam-
ics described by (3) and (5) with the following bounded
control inputs Γ = [Γ1,Γ2,Γ3]

T such that

Γi = −αiσMi
(λi[ωi + ρiqi]) (8)

with i ∈ {1, 2, 3} and where σMi
are saturation functions

with Mi ≥ 3λiρi. αi, λi and ρi are positive parameters.
Then the inputs (8) globally asymptotically stabilize the
rigid body to the origin (q0 = 1, q = 0 and ω = 0).

Proof. Consider the candidate Lyapunov function V ,
which is positive definite, radially unbounded and which
belongs to the class C2. V represents the total energy of
the system

V =
1

2
ωTJω + κ((1 − q0)

2 + qTq)

=
1

2
ωTJω + 2κ(1 − q0)

(9)

where J is defined as before, and κ > 0 must be deter-
mined. The derivative of (9) after using (3) and (5) is given
by

V̇ = ωTJω̇ − 2κq̇0

= ωT (−ω × Jω + Γ) + κqTω

= ω1Γ1 + κq1ω1
︸ ︷︷ ︸

V̇1

+ω2Γ2 + κq2ω2
︸ ︷︷ ︸

V̇2

+ ω3Γ3 + κq3ω3
︸ ︷︷ ︸

V̇3

(10)

V̇ is the sum of three terms (V̇1, V̇2, V̇3). First V̇1 is
analyzed. From Γ1 in (8) and equation (10), one gets

V̇1 = −α1ω1σM1
(λ1[ω1 + ρ1q1]) + κq1ω1 (11)

Assume that |ω1| > 2ρ1, that is |ω1| ∈ ]2ρ1,+∞[. Since
|q1| ≤ 1, it follows that |ω1 + ρ1q1| ≥ ρ1 + ǫ for any ǫ > 0
sufficiently small. Therefore, ω1 + ρ1q1 has the same sign
as ω1. From equation (11) and the norm condition on the

quaternion, V̇1 takes the following form

V̇1 = −α1ω1σM1
(λ1[ω1 + ρ1q1]) + κω1q1

≤ −α1|ω1|σM1
(λ1(ρ1 + ǫ)) + κ|ω1|

(12)

Taking
κ < α1 min(M1, λ1ρ1 + ǫ) (13)

one can assure the decrease of V1 i.e. V̇1 < 0. Consequently,
ω1 enters Φ1 = {ω1 : |ω1| ≤ 2ρ1} in finite time t1
and remains in it thereafter. In this case, (ω1 + ρ1q1) ∈
[−3ρ1, 3ρ1].
Let M1 verify the following inequality M1 ≥ 3λ1ρ1,
equation (13) then becomes:

κ < α1λ1ρ1 + ǫ (14)

For t2 > t1, the argument of σM1
will be bounded as

follows
|λ1(ω1 + ρ1q1)| ≤ 3λ1ρ1 ≤M1 (15)

Consequently, σM1
operates in a linear region

Γ1 = −α1λ1[ω1 + ρ1q1] (16)

As a result, (11) becomes

V̇1 = −α1λ1ω
2
1 − α1λ1ρ1ω1q1 + κω1q1 (17)

Choosing κ = α1λ1ρ1 which satisfies inequality (14), one
obtains

V̇1 = −α1λ1ω
2
1 ≤ 0 (18)

The same argument is applied to V̇2 and V̇3, (10) becomes

V̇ = V̇1 + V̇2 + V̇3 (19)

=−(α1λ1ω
2
1 + α2λ2ω

2
2 + α3λ3ω

2
3) ≤ 0 (20)

In order to complete the proof, the LaSalle Invariance
Principle is invoked. All the trajectories converge to the
largest invariant set Ω̄ in Ω = {(q, ω) : V̇ = 0} = {(q, ω) : ω = 0}.
In the invariant set, Jω̇ = −[α1λ1ρ1q1 α2λ2ρ2q2 α3λ3ρ3q3]

T = 0

that is, Ω̄ is reduced to the origin. This ends the proof of
the asymptotic stability of the closed loop system.

�

Remark 1. Since a quaternion and its negative represent
the same physical angular position, there exist two equi-
librium points: (q0 = ±1, q = 0,ω = 0). The equilibrium
point (q0 = −1, q = 0,ω = 0) can be considered a repeller
point (see Joshi et al. (1995)). However, it can be reached
using the control law Γi = −αiσMi

(λi[ωi − ρiqi]) instead
of (8). Therefore, applying

Γi = −αiσMi
(λi[ωi + sign(q0)ρiqj ]) (21)

ensures that, of the two rotations of angle β and 2π−β, the
one of smaller angle is chosen. This can be demonstrated
by adapting the previous proof.

Remark 2. Note that the stability analysis has been
carried out considering the asymptotic condition (7). In
the case that the asymptotic condition (6) is considered,
the control law to be applied becomes

Γi = −αiσMi
(λi[ωi + sign(qe0)ρiqej ]) (22)

where qe represents the attitude error between the current
orientation and the desired one.

4.1 Some properties of the control law

In practice, the measure of the angular velocity is generally
obtained by rate gyros. These sensors can measure the
angular velocity in an a priori specified range depending
on the sensors and its technology. Therefore, the ability to
maintain rotation about a rotational axis without exceed-
ing a certain limit in the angular velocity arises essential.
The control (8) allows to take into account the angular
velocity constraints, i.e. slew rate limits.
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Let ωimax denote the maximum magnitude angular veloc-
ity allowed for the rigid body manoeuvre about the i axis.
Let us consider the following state constraint

|ωi| ≤ ωimax (23)

then, one has the following result:

Property 1. (Slew rate constraints). The control law (8)
globally asymptotically stabilizes the rigid body described
by (3) and (5) to the origin. Moreover, the state constraint
|ωi| ≤ ωimax is guaranteed to remain satisfied, for any
t1 > t0 if |ωi(t0)| > ωimax and for all t if |ωi(t0)| < ωimax ,
setting ρi =

ωimax
2 .

Proof. Assume that the system’s initial condition lies
anywhere in the state space where ωi belongs to the
ensemble Φi with Φi = {ωi : |ωi| ≤ 2ρi}. From the proof
of Theorem 1, one observes that if ωi belongs to Φi, ωi
remains in Φi for all time t > 0. Therefore, if ρi =

ωimax
2 ,

one concludes that |ωi| ≤ 2ρi = ωimax , for all time t > 0.

�

In several situations, the body angular velocities exceed
the capability of the rate gyros (for instance, in the case
that an external disturbance is present). The following
propriety establish the robustness of the proposed control
law towards bounded angular velocities measurements.

Property 2. (Robustness ). Let ω̂imax represent the max-
imum magnitude angular velocity that can be measured by
the rate gyro along the i axis. Let ρi be chosen accordingly

to property 1, that is, ρi =
ω̂imax

2 . Assume that the angular
velocity exceeds the rate gyro limits, such as ωi > ω̂imax .
The control inputs (8) globally asymptotically stabilize the
rigid body to the origin, in spite of measure saturation.

Proof. Assume that |ωi| > |ω̂imax | and sign(ωi) =
sign(ω̂imax) because to gyro rate saturation.
Consider the candidate Lyapunov function (9). The deriva-
tive of (9) after using (3) and (5) and the control law (8)

is given by (10). Analyzing for V̇1 one gets,

V̇1 = −α1ω1σM1
(λ1[ω̂1max + ρ1q1]) + κq1ω1 (24)

Since ρ1 =
ω̂1max

2 , it follows that |ω̂1max + ρ1q1| ≥
1
2 ω̂1max .

Because sign(ω1) = sign(ω̂1max), from equation (24) and the

norm condition on the quaternion, V̇1 takes the following
form

V̇1 = −α1ω1σM1
(λ1[ω̂1max + ρ1q1]) + κω1q1

≤ −α1|ω1|σM1
(λ1(

1

2
ω̂1max)) + κ|ω1|

(25)

Taking

κ < α1 min(M1, λ1
1

2
ω̂1max) (26)

one can assure the decrease of V1. Consequently, ω1 enters
Φ1 = {ω1 : |ω1| ≤ 2ρ1}, that means |ω1| < |ω̂1max |. Hence,
the rate gyro is not saturated and the system evolves
in the same way that the nominal system (no rate gyro

saturation). The same argument is applied to V̇2 and V̇3.

�

Note that in addition to control torque constraints, the
slew rate constraints and the robustness towards bounded
angular velocities measurements are established.

5. APPLICATION TO FOUR-ROTOR HELICOPTER

In this section one shows that the control attitude strategy
proposed previously can be stabilize in attitude a four-
rotor helicopter. This mini helicopter (see Fig.1) has four
fixed-pitch rotors mounted at the four ends of a simple
cross frame. Given that the front and rear motors rotate
counter-clockwise while the other two rotate clockwise,
gyroscopic effects and aerodynamic torques tend to cancel
in trimmed flight. The collective input (or throttle input)
is the sum of the thrusts of each rotor (f1 + f2 + f3 + f4).
Pitch movement (θ) is obtained by increasing (reducing)
the speed of the rear motor while reducing (increasing)
the speed of the front motor. The roll movement (φ) is
obtained similarly using the lateral motors. The yaw move-
ment (ψ) is obtained by increasing (decreasing) the speed
of the front and rear motors while decreasing (increasing)
the speed of the lateral motors. This should be done
while keeping the total thrust constant. In order to model
the system dynamics, two frames are defined: the inertial
frame N(xn, yn, zn) and the body-fixed frame B(xb, yb, zb)
as shown in Fig.1. For more details the reader can refer to
Pounds et al. (2002).

� �

�
�

�
�

�
�

�
�

�
�

�

��

��

��

��
��

��

�
��

�

�
�

�
�

Fig. 1. Four-Rotor helicopter configuration: the iner-
tial frame N(xn, yn, zn) and the body-fixed frame
B(xb, yb, zb)

According to Pounds et al. (2002) and section 2, the
four-rotor helicopter model may be expressed in terms of
quaternions as

ṗ= v (27)

v̇ = gN −
1

m
CT (q)T (28)

q̇ =
1

2
Ξ(q)ω (29)

Jhω̇ =−ω × Jhω − ΓG + Γ (30)

m denotes the mass of the helicopter, gN is the vec-
tor of the gravity acceleration expressed in the N -frame.
p = (x, y, z)T and v = (vx, vy, vz)

T represent the position
and the linear velocity, respectively, of the origin of the B-
frame expressed in the N -frame and ω denotes the angular
velocity of the helicopter expressed in the B-frame. Γ ∈ R

3

is the vector of the control torques and T = [0 0 T ]T is
the total thrust expressed in the B-frame. The attitude
model of the four rotor aircraft differs from the general
model (3)-(5) in the gyroscopic torques ΓG. ΓG ∈ R

3 is
the result of the rotational motion of the mini helicopter
and the speed of the four rotors.
Equations (27)-(30) describe the 6 degrees of freedom of
the system and can be separated into translational (27)-
(28) and rotational (29)-(30) motions.
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5.1 Four-rotor Torque Control Design

In order to stabilize the attitude of the four-rotor heli-
copter, equations (29)-(30) are used. The angular motion
of the helicopter responds to control torques arising from
the linear mapping of the rotation speed of the rotors.
Hence, the maximum airframe control torque depends of
the much higher rotation speed capability of the motors
that are used.
In this application, the rotors are driven by DC permanent
magnet motors which support a maximum voltage of 9 V.
When this voltage is applied to the motor the rotation
speed reaches si,max = 260 rad/sec. Consequently, from
the motor characteristics mentioned above and the from
aerodynamical characteristics of the propeller, the max-
imum torque that is applied to influence the helicopter
rotational motion is given by

Γ̄1 = 0.40 Nm Γ̄2 = 0.40 Nm Γ̄3 = 0.15 Nm

In order to avoid unwanted damages in the actuators
and to maximize its effectiveness, the bounded attitude
control presented in the previous section is applied to the
subsystem (29)-(30).

Lemma 1. Consider the four-rotor helicopter rotational
dynamics described by (29) and (30) with the following
bounded control inputs

Γ1 = −α1σMφ
(λ1[ω1 + ρ1q1])

Γ2 = −α2σMθ
(λ2[ω2 + ρ2q2])

Γ3 = −α3σMψ
(λ3[ω3 + ρ3q3])

(31)

where σMφ,θ,ψ
are saturation functions such as

Mφ ≥ 3λ1ρ1, Mθ ≥ 3λ2ρ2, Mψ ≥ 3λ3ρ3

with αi, λi and ρi positive parameters. Then the inputs
(31) globally stabilize the four-rotor helicopter to the
origin (q0 = 1, q = 0 and ω = 0).

Mφ,θ,ψ and αi are chosen to satisfy the following equations

Γ̄1 = α1Mφ Γ̄2 = α2Mθ Γ̄3 = α3Mψ

Proof. The steps of the proof are identical to the ones of
Theorem 1. Indeed, the only difference lies in the vector
ΓG that adds a term canceled because of the relation:

ωTΓG = ωT (ω × zb)
4∑

i=1

Jr(−1)i+1si = 0

where Jr represents the inertia of the rotor.

�

6. EXPERIMENTAL RESULTS

The aim of this section is to show the effectiveness of the
proposed control approach. For this purpose, an attitude
stabilization in real-time was performed on the four-rotor
mini helicopter prototype of “gipsa-lab”. This prototype
is based in the mechanical structure (airframe, motors
and blades) of the Draganflyer III developed by RC Toys.
For the elaboration of real-time processing board, it was
used an embedded microcontroller (µC) C8051F022 man-
ufactured by Silicon Laboratories, an inertial measurement
unit (3DM-G from Microstrain), a bi-directional commu-
nication unit (SPM2-433-28 from Radiometrix), a power
module to drive the motors (MOSFET transistors) and
four optical sensors attached to the ends of the mechanical

frame to measure the rotor speed. The power is supplied
by a 9 Volts Lithium Polymer battery. On the other hand,
a communication unit (SPM2-433-28 from Radiometrix)
is linked to a PC, in order to provide and to obtain the
process data. The µC acquires the angular velocity and at-
titude (quaternion) provided by the IMU and it obtains the
desired attitude incoming from the ground station. Thus,
the µC executes the attitude control law and computes
the PWM level to control the four motors. Optionally,
the embedded system provides the process data to the
ground station, in order to monitor the experiment . The
attitude control loop runs at fs = 76Hz, this is due to
IMU constraints.
Three experiments have been accomplished. At the first
and second case the goal was the attitude stabilization
at the origin (qd = [1 0 0 0]. i.e. φd = θd = ψd = 0).
In the third case a command following was performed.
The desired thrust is fixed to T = mg = 4.59N and
the maximum torque frame that can be applied is Γ̄ =
[0.40 0.40 0.15]T Nm. The tuning parameters of the
control input are as follows: αi = 1, ρ1 = ρ2 = 2.1,
ρ3 = 0.87. The Euler angles are shown, nevertheless, the
algorithm is carried out in the quaternion formalism.

• Stabilization

The first experiment tests the control capabilities to sta-
bilize the system at the origin. The obtained results are
depicted in Fig.2 - Fig.4. According to the angles trajec-
tories, the stabilization is achieved in 1.5 sec, which is a
very suitable time. Moreover, the constraints in the control
signal are largely satisfied.

• Disturbance rejection

For the second experiment, the robustness of the proposed
controller towards disturbance rejection has been tested.
The disturbances along each axis (in both directions) are
introduced into the system after to achieve the attitude
stabilization. As can be seen in the Fig. 5 and Fig. 6, the
disturbance produces a large error in the yaw angle as
well as in angular velocity ωz. Consequently, the control
signal Γ3 reaches its limit (±0.15N ·m) (see Fig. 7) and
takes action on the system to overcome the disturbances.
A similar rejection disturbance is observed for the pitch
and the roll angle, while only feasible control signals are
applied to the system. This study case shows that the
controller proposed in this paper is robust with respect to
external disturbances, and the more important, the control
law maximize the effectiveness of the actuators without
endanger the system stability. The robustness property is
essential in real missions where aerodynamic forces and
others factors are presents.

• Command following

The third experiment deals with the attitude tracking. It is
observed (see Fig. 8) that the controller is able to following
the reference signal rt = 9◦ +9◦ sin(15

π
t) along the axis zb.

In the case that step signals are considered to be tracked,
the problem results in an stabilization problem (see remark
2). This experiment enables to show the performance of the
proposed control scheme to tracking a reference attitude,
even thought the controller was designed for stabilization.
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Fig. 2. Stabilization: The convergence of the roll, pitch and
yaw angles with initial conditions φ = −28◦, θ =
13◦, ψ = −23◦.
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Fig. 3. Stabilization: The evolution of the angular velocity.
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Fig. 4. Stabilization: The bounded control torque.
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Fig. 5. Disturbance rejection: The convergence of the roll,
pitch and yaw angles, while the system is subject to
external disturbances.
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Fig. 6. Disturbance rejection: The evolution of the angu-
lar velocity, while the system is subject to external
disturbances.
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Fig. 7. Disturbance rejection: The bounded control torque
signal, while the system is subject to external distur-
bances. The control constraints are satisfied.
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Fig. 9. The four-rotor min-helicopter in flight.

7. CONCLUSIONS

In this paper, a new bounded control law for the global
stabilization of a rigid body is proposed. The objective of
this control approach is to maximize the effectiveness of
the actuators without taking a risk in the system stability.
The control design takes into account the slew rate lim-
its, avoiding possible rate gyro saturation. The presented
scheme control is especially simple. It is based on nested
saturation approach and the attitude is parameterized by
the unit quaternion. The proposed approach is extended
to the stabilization of a four-rotor helicopter. Thus, the
implementation in real-time is achieved. Several tests are
performed showing the performance in term of settling
time, disturbance rejection and trajectory tracking. Re-
main to compare the proposed approach with other con-
trol schemes. However, owing to simplicity, the proposed
control law is suitable for application where on-board
computational resources are challenging.
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