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Abstract: The control of rougher flotation circuits represents a challenging control problem
due to the non linearities, multiple inputs-multiple outputs and the wide variety of disturbances
acting on the system. Many concentrators rely on regulatory control loops to maintain a stable
operation and on the plant operators to find the best operational results. As a mean of using the
operator’s knowledge in a consistent manner Expert Systems have been proposed to emulate
the current practices in flotation plants. In this work, an algorithmic supervisory system, as
opposed to rule-based systems, is proposed and analyzed using simulations of an industrial
rougher flotation circuit.
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1. INTRODUCTION

The control of flotation circuits plays an important role in
the final operational results of any concentrator plant. In
order to deal with the complex nature of this process sev-
eral authors have proposed the use of systematic advanced
algorithms such as adaptive self-tuning control algorithms,
Jamsa-Jounela (1992), and predictive control strategies for
controlling the metallurgical performance of the flotation
circuits, Hodouin et al. (2000). Notwithstanding the ben-
efits of these advanced strategies, the current practices
in many concentrators consider a two level hierarchical
control strategy. The lower level of regulatory control loops
for stabilizing the system and the upper level dealing with
the metallurgical optimization. The later is usually carried
out by the plant operators. Since the regulatory control
loops have a strong effect on the final metallurgical results,
there has been a renovated interest in improving their
performance, Jamsa-Jounela et al. (2003), Stenlund and
Medvedev (2002), Hulbert (1996).

The optimization of the flotation circuits operation by
means of Expert Systems has been proposed as a su-
pervisory level by Osorio et al. (1999), Jamsa-Jounela
(1988). Under this scheme a set of rules are designed
together with plant operators and engineers to keep a final
copper concentrate grade over a minimum value and the
final copper tailing grade below a maximum value. This
approach has provided good results, but in practice it
requires additional efforts, during its lifetime, in order to
keep the rule-based system updated. In addition, its tuning
can be time consuming and the overall design process can
not be coupled with the regulatory control loop design.

The aim of this work is to present a more systematic and
integrated form for designing supervisory systems, where

the dynamics can be taken into account during the design
stage.

Many contributions have been made during the last two
decades in the field of model-based on-line optimization
methods based on a two hierarchical level structure. The
classical Real Time Optimization (RTO) approach has
been one of the most widely studied. This approach consid-
ers the use of steady state models in the optimization level
to determine the optimal set-points to the regulatory level.
This means that the control system must wait for steady-
state conditions to perform the optimization, limiting its
performance in the face of disturbances. Many authors
have suggested alternative methods, based for instance on
evolutive strategies and disturbance estimations, Sequeira
et al. (2002). As pointed out in Saez, Cipriano and Ordys
(2002), predictive control approach has the flexibility to
be used as a building block in this application. Further-
more, predictive control tools are readily available in many
modern distributed control systems, Qin et al. (2003). The
use of model predictive controller as supervisory control
system has been analyzed in Saez, Cipriano and Ordys
(2002) and Lee et al. (2000), where the supervisory algo-
rithm has the same sampling time as that of the lower
level control strategy. However, in practice the data used
by supervisory systems has a slower sampling time. In ad-
dition, some kind of data processing may also be required
by the supervisor level in order to avoid gross errors and
to ensure consistency of the data. This additional data
processing must be taken into account in the design of the
supervisory strategy.

In the context of flotation circuits, a hierarchical optimal
control strategy was proposed by Zaragoza and Herbst
(1988) based on an economic static objective function. The
optimal control variables were found by using the Nelder-
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Mead Algorithm. As this approach is based on steady
state data, it inherits the drawbacks of the classical RTO
approaches. This works proposes an on-line optimization
method based on the use of dynamic data and taking into
account the required data processing.

This paper is organized as follows: Section 2 describes
the proposed hierarchical control structure. Section 3
describes the model used to test the level of performance
that can be attained by this approach. In section 4,
some simulations results demonstrate the flexibility of the
proposed approach. Finally, in section 5 some conclusions
are given.

2. HIERARCHICAL CONTROL STRUCTURE

The hierarchical structure considers a process which has
been decomposed into two sub-systems. One describing
the relationship between the control variables and some
internal measured variables and the second part describing
the part of the process concerning with the optimization.
Usually, the supervisory level has a different sampling
time (larger) than that of the regulatory control level and
considers some data processing stages such as filtering,
data reconciliation, among others.

The local controllers are such that try to enforce the
equality ym(t) = r, in spite of the disturbances z.

Optimizing Level

Local controllers

Actuating process Optimized Process

Process

z w

y
y
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Data Processing

slow
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Fig. 1. Hierarchical control structure

The load disturbance w represents changes in the incoming
mineralogical composition, particle liberation, degree of
oxidation, etc. The the feed flowrate, z, is a disturbance
coming from the grinding stage, u are the valve openings,
ym are the tank levels and r are their corresponding set-
points.

The optimization objective is the minimization of the
copper tailing grade in each flotation bank given a desired
final copper concentrate grade L∗

C . The cost function P at
a given sampling time,k, is expressed as follows:

P (kT ) = |(L∗

C(kT ) − LC(kT ))| + λ
N∑

j=1

|LTcu,j(kT )| (1)

where λ is a weighting constant and LC represents the
cumulative copper concentrate grade resulting by adding
the concentrate mass flowrate of each bank, which is
usually measured on-line in flotation plants. The copper
tailing grade of each bank is denoted by LTcu,j . Further

details concerning the equations for calculating LC and
LTcu,j are provided in section 3.

3. DYNAMIC MODEL OF A ROUGHER FLOTATION
CIRCUIT

The state equations of the dynamic models are based on
the mass and volume balance equations described in Casali
et al. (2002), Perez-Correa et al. (1998).

The mass balance corresponding to the mineralogical class
i in the bank j is given by:

dMSPij

dt
= GSTj−1

LTi(j−1)
− k̃ijMSPij

− (2)

(
QTj

AT hPj

)MSPij
(3)

where MSPij
is the Mass of solid in the pulp of the miner-

alogical class i in the bank j in [t], hPj
the level of bank j

in [mm], k̃ij is the flotation constant of the mineralogical
class i in bank j, [h−1], QTj

is the tailing volumetric flow

rate of bank j, [m3/h], QCj
is the concentrate volumetric

flow rate of bank j in [m3/h], QFj
is the feeding volumetric

flow rate of bank j in [m3/h], AT is the cross-sectional area
of the flotation in [m2], GSTj−1

is tailing mass flow rate of
tank j − 1 in [t/h], and LTi(j−1)

is the tailing grade of the

mineralogical class i in the bank j − 1 in [%].

On the other hand, the volumetric balance for the bank j
is:

AT

dhPj

dt
= QFj

− QTj
− QCj

[m3] (4)

where QFj
and QCj

are the feeding volumetric flow rate
of bank j and concentrate volumetric flow rate leaving the
bank j respectively.

Rearranging terms we have the following state space
representation:

dMSPij

dt
= −[k̃ij +

QTj

AT hPj

]MSPij
+ GSTj−1

LTi(j−1)
(5)

AT

dhPj

dt
= QFj

− QTj
− QCj

(6)

i = {1, . . . , Ne} and j = {1, . . . , N} where Ne is the
number of mineralogical classes and N is the number of
banks in the flotation circuit.

The feeding and tailing volumetric flow rates depend on
the pulp levels of the adjacent tanks. The concentrate
volumetric flow rate, however, is a linear function of the
froth depth hEj

of the same tank, which it is assumed to
be the difference between the total height of the bank and
the pulp level;i.e. hEj

= HC − hPj
.

QFj
= Kvj−1

vj−1

√
hPj−1

− hPj
+ δhP ,

j = {2, . . . , N}

QTj
= Kvj

vj

√
hPj

− hPj+1
+ δhP ,

j = {1, . . . , N}
QCj

= c0j − c1j · hEj
, j = {1, . . . , N}

(7)
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where vj is the percentage of the valve opening i the tail of
bank j, Kvj

is the valve gain, δhP is the height difference
between banks, and c0j , c1j are empirical constants.

The flotation constant of the mineralogical classes in each
bank are modelled as :

k̃ij = aij + bij

QFj
LTi(j−1)

hEj

[h−1] (8)

where aij and bij are empirical constants.

The concentrate grades LCij
and tailing grade LTij

of
the mineralogical class i in the bank j are given by the
following expressions:

LCij
=

k̃ijMSPij

Ne∑

i=1

k̃ijMSPij

[%] (9)

LTij
=

MSPij

Ne∑

i=1

MSPij

[%] (10)

The cumulative copper concentrate grade LC and the
copper tail grade for each cell LTcu,j

are given by the
following expressions:

LC =

N∑

j=1

k̃i∗jMSPi∗j

Ne∑

i=1

N∑

j=1

k̃ijMSPij

[%] (11)

LTcu,j
=

MSPi∗j

Ne∑

i=1

MSPij

[%] (12)

where the index i∗ corresponds to copper. The model can
be calibrated using the available physical information and
the steady state information of any industrial flotation
circuit.

4. A RECEDING HORIZON CONTROLLER AS REAL
TIME OPTIMIZER

The optimizing level will consider the minimization of a
future cost function with respect to the level set-points;
i.e

I = P (kT + HT ) (13)

subject to constant future set points; i.e.

ri(kT + T ) = .... = ri(kT + HT ) (14)

and constraints

r1(kT + T ) < ... < rn(kT + HT ) (15)

The parameter H is also known as prediction horizon.
Even though a more complex cost function can be de-
signed, the extended horizon strategy has the property
that as H tends to infinity the problem is transformed
into a steady state optimization algorithm.

If the lower level stabilizes the system, then by properties
of the receding horizon controller, it is always possible to
find a finite H that renders the upper level stable.

In order to obtain reasonable estimates of the concentrate
and tail grades without resorting to the full nonlinear
model, the variation of the tail and concentrate grades
are modelled as linear models with the level set-points as
inputs; i.e.

LC(k + 1) = A1(q
−1)LC(k) +

N∑

j=1

B1,j(q
−1)ri(k) + d1 (16)

LTcu,j
(k + 1) = A2(q

−1)LTcu,j
(k) + (17)

N∑

j=1

B2,j(q
−1)ri(k) + d2

where the polynomials Ai(q
−1) and Bij(q

−1) are defined
as:

Ai(q
−1) = 1 + ... + ai

nq−n, (18)

Bij(q
−1) = bij

0 + ..... + bij
mq−m.

where q is the shift operator.

The parameters of these models are calculated on-line
using the least squares algorithm. For this application,
however, it is worth using constrained identification al-
gorithms as the one presented in Chia et al. (1991). This
avoids convergence problems due to the transients of the
identification algorithm.

The H-step ahead predictions are:

LC(k + H) = G1(q
−1)LC(k) +

N∑

j=1

F1(q
−1)B1,j(q

−1)rj(k) + F1(1)d1 (19)

LTcu,j
(k) = G2(q

−1)LTcu,j
(k) +

N∑

j=1

F2(q
−1)B2,jrj(k) + F2(1)d2 (20)

where Fi and Gi are polynomials of order H − 1 and n− 1
satisfying the Diophantine equation:

1 = q−HGi(q
−1) + Fi(q

−1)Ai(q
−1) (21)

Equations (19) and (20) can be written in terms of current
and future control signal as:

LC(k + H) =

n∑

j=i

α1
i LC(k − i + 1) +

N∑

i=1

m+H∑

j=1

β1
i,jrj(k + T − j) + δ1 (22)

LTcu,j
(k + H) =

n∑

j=i

α2
i LTcu,j

(k − i + 1) +

N∑

i=1

m+H∑

j=1

β2
i,jrj(k + T − j) + δ2 (23)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11020



If all the future control set-point are assumed to be
constant, as in (14), then

LC(k + H) =

n∑

j=i

α1
i LC(k − i + 1) +

N∑

i=1

H∑

j=1

β1
i,jri(k) +

N∑

i=1

m+H∑

j=H+1

β1
i,jri(k + T − j) + δ1(24)

LTcu,j
(k + H) =

n∑

j=i

α2
i LTcu,j

(k − i + 1) +

N∑

i=1

H∑

j=1

β2
i,jri(k) +

N∑

i=1

m+H∑

j=H+1

β2
i,jri(k + T − j) + δ2.(25)

Thus the optimization problem can be expressed as:

min I = η +
N∑

i=1

H∑

j=1

β2
i,jri(k) (26)

subject to

L∗

C −

n∑

j=i

α1
i LC(k − i + 1) +

N∑

i=1

H∑

j=1

β1
i,jri(k) +

N∑

i=1

m+H∑

j=H+1

β1
i,jri(k + T − j) + δ1 < η

n∑

j=i

α1
i LC(k − i + 1) − L∗

C −
N∑

i=1

H∑

j=1

β1
i,jri(k) +

N∑

i=1

m+H∑

j=H+1

β1
i,jri(k + T − j) + δ1 < η

ri(k − 1) − ri(k) < µ

ri(k) − rk−i(k) < 0

ri(k) > rmin

rN (k) < rmax

(27)

where µ defines the step change at each iteration. This
restriction avoids performing big step changes, which can
lead to a lost of precision in the linear estimates.

As the control horizon tends to infinity the prediction
tends to

L̄C =

∑N

j=i B1,i(1)r̄i

1 − A1(1)
+

d2

1 − A1(1)
(28)

L̄Tcu,j
=

∑N

j=i B2,i(1)r̄i

1 − A2(1)
+

d2

1 − A2(1)
(29)

and the problem defined by (26) is transformed in a static
optimization problem.

5. SIMULATIONS

The simulations consider a model with five cells and three
mineralogical classes; i.e copper, iron and gangue. The

parameters were adjusted by using physical parameters
and data from an industrial flotation circuit. Figure 2
shows the steady state validation results for the proposed
model.

Fig. 2. Steady state model validation a) Concentrate
solid mass flow rate [t/h]. b) Copper tailing grade
LTij

[%Cu]. c) Concentrate volumetric flow rate

[m3/h]. d) Copper concentrate grade LC1j
[%Cu]

The supervisor controller considers an Horizon H = 2
and λ = .1. Previous results, Maldonado et al. (2007)
have shown that the optimal solutions mainly considered
movements in the first three cells. Thus, in this work the
optimization problem will only consider the first three set-
points as independent variables.

A constrained identification algorithm was implemented in
order to identify the linear models. The step size changes
for the setpoint signals was δ = 5. The incoming feed flow
rate into the first cell has a continuous variations as shown
in figure 3.
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In the simulations, the optimizer starts working at time
.5min, and at time 6 minutes a sudden reduction in
the copper head grade occurs. As seen in figure 4, the
supervisory system adjusts the set-points in order to
minimize the cost function. If the head grade decreases the
set-points are increased to maintain the concentrate grade
around the desired value. Figure 5 shows the concentrate
and tailing copper grade.
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Fig. 4. Set points and Cost function
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Fig. 5. Concentrate and tailing grade

6. CONCLUSIONS

This paper has proposed an optimizing strategy, based on
a two hierarchical level structure, to deal with the optimal
control of flotation circuits. The supervisory level is based
on a constrained receding horizon control strategy, which
can be seen as a generalization of a steady-state optimizer.
The use of identified models requires the implementation
of constrained identification algorithms in order to add
some degree of robustness and avoid parameters incon-
sistencies. The modular approach offers benefits in terms

of their implementation in industrial plants, since it can
be developed over the existing regulatory systems. The
simulation results obtained with a calibrated simulator
demonstrate the feasibility of the strategy in optimizing
a rougher flotation circuit controlled by a set of PI level
controllers with decoupling.
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