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Abstract: This paper deals with the Cross-Entropy method application in the control theory.
The method is a the combinatorial optimization technique that is mostly used in the networks
theory and could be used in deterministic optimization problems as well. The paper shows
the possibiliy of the Cross-Entropy usage in the control parameter tuning. Similar to genetics
algorithms, this method minimizes a given performance function in order to find optimal
parameters. The appropirate conclusions about relability and the convergence rate of the method
were experimentaly supported. The first two experiments used PI controller with different
performance functions, where the optimal controller values have been obtained through the
simulation. The third experiment used LQR controller to control a complex system. The tunining
of four parameters of a LQR control matrix and obtained values were compared with the ones
generated by LQR algorithm.

1. INTRODUCTION

The idea of the Cross-Entropy method, as a relatively new
approach for combinatorial optimization problems, was
first explored in complex stochastic networks (Rubinstein
[1997]). It was used for probability estimations of rare
events. In Rubinstein [1999] and Rubinstein [2001], the
possiblity for solving combinatorial optimization problems
was presented as well. The idea was to adapt the determin-
istic optimization problem to a related stochastic one and
to use the technicques for rare events estimation, explored
in Rubinstein [1997]. One of the main advantages of the
Cross-Entropy method is presence of relativly large learn-
ing rate, based on simulations. There are already some
combinatorial optimization techniques such are simulated
annealing (Aarts et al. [1989]), tabu search (Glover et al.
[1993]) and genetics algorithms (Goldberg [1989]). Genetic
algorithms are widely explored in the control theory as a
technique for optimization of the given index of perfor-
mance. The idea of this paper is to show the simple ability
of using the Cross-Entropy method in the control theory.

In the second section, overview of the maximum entropy
principle is given. The choice of the probability density
function that is used for exploration of controller pa-
rameter space is based on this principle. The Gaussian
multivariate distribution is the one that maximizes the
differential entropy and it is used in the paper.

In the third section short overview of the originated Cross-
Entropy method was presented. In order to understand the
final algorithm of the method, minimization of Kullback-
Leibler distance was described as well as maximization
of likelihood function. These techniques are already well
known in the probability theory.

Finaly, the different simulations where used in order to
present the Cross-Entropy approach in the control theory.
These simulations used not only different systems and
controllers but also various performance functions that
should have been minimized.

2. MAXIMUM ENTROPY PRINCIPLE

Suppose we have a set of values of a random variable
X generated with an unknown probability distribution
with its constraints derived (learned) from the data. These
constraints could be any order moments calculated from
these data. The goal is to choose the most appropriate
probability model that is the optimum in some sense and
that satisfies these constraints. There are infinite solutions
of possible models to be chosen from. Maximum entropy
principle (Jaynes [1957]) gives the possibility to solve
this problem. The correctness of the maximum entropy
principle was proved in Shore et al. [1980].

The maximization of the differential entropy could be
described as a constrained optimization problem. The
objective function is

h(x) = −
∫ ∞
−∞

fX(x)logfX(x)dx (1)

that is the differential entropy over all probability density
functions fX(x) of a random variable X. The constraints
are:

1. fX(x) ≥ 0

2.
∫∞
−∞ fX(x)dx = 1

3.
∫∞
−∞ fX(x)gi(x)dx = αi,

where g(x) is any order function and α is obtained value
from the data.
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The third constraint gives the prior knowledge of this
random variable X. If these constraints are moments of
the first and the second order then the optimal probability
distribution is the Gaussian one. This means that for the
given mean µ and variance σ2 the Gaussian random vari-
able has the largest differential entropy and this entropy
is given by:

h(x) =
1
2
[1 + log(2πσ2)] (2)

Similar to single variable Gaussian distribution, if there
are N random variables, given in vector X, then the
multidimensional Gaussian probability distribution is the
one with maximum entropy. This entropy is given by:

h(X) =
1
2
[N + log(2π) + log|det(Σ)|] (3)

where Σ is the second order statistic of the vector X.

In order to optimize the given objective function of the
system to be controlled, all values of considered random
variables, given in the vector X, are generated by mul-
tivariate Gaussian probability distribution. The optimal
parameters of the Gaussian probability distribution has
been derived by Cross-Entropy method.

3. CROSS-ENTROPY METHOD

This method was motivated by an adaptive algorithm
for estimating the probabilities of rare events in complex
stochastic networks (Rubinstein [1997]). By converting a
deterministic optimization problem into an appropriate
stohastic one, it was also shown that this method could
be used in order to solve combinatorial optimization prob-
lems.

Let S(X) be the performance function where
X = [X1X2 · · ·Xm]T

is the vector of parameters of m dimensional performance
function S(X), where each parameters of the vector X will
be considered as a random variable, where Xi ∼ f(Xi;ui)
and ui (i = 1,m) is the parameter vector of related
distribution.

Similar to a variant of genetic algorithm, this method is
also based on elitism. This means that, in every iteration
step (generation), method generates N samples that are
consited of a fixed number of parameter space points
(chromosoms) giving related values of performance func-
tion S(X). In the second phase of every iteration the best
parameter space points are involved in providing the major
part of information for the next iteration. Unlike genetic
algorithms, in the Cross-Entropy method, every parameter
space points are generated using multivariate probability
density function. This probability density function has its
own vector of distribution parameters (for Gaussian prob-
ability distribution, the appropriate distribution parame-
ters are mean and variance). The only way for improoving
the next generation of parameter space points is to adapt
these distribution parameters. The adaptation algorithm
of these probability distribution parameters is the main
goal of the Cross-Entropy technique.

In order to use the Cross-Entropy technique as a combi-
natorial optimization method, apropriate stohastic opti-
mization problem should be defined (Boer et al. [2005]).

Let l be the probability that the object function S(X)
will be greater than the given level γ, l = P (S(X) ≥ γ).
The main goal of the stohastic optimization problem is to
estimate this probability. The reason why this estimation
is realted to maximization problem of S(X) will be given
in subsection 3.2.

If a set of indication functions is given I{S(X(i))≥γ}, then l
could be estimated with Crude Monte Carlo method using
equation:

l̂ ≈ 1
N

N∑
i=1

I{S(X(i))≥γ} (4)

because l could be considered as the excpected value

l = EI{S(X)≥γ} =
∫ ∞
−∞

I{S(X(i))≥γ}fX(x)dx (5)

of the indication function with respect to distribution
X ∼ f(X;u). This means that N samples of Xj =
(x1jx2j . . . xmj), where j = 1, N , are generated using
different probability density functions for each random
variable Xi.

For large γ the probabiliy l will be very small and, in order
to estimate it, N should be very large (indication function
is eqal to zero for almost every sample Xj). This means
that the main disadvantage of Crude Monte Carlo method
is very large simulation time.

3.1 Importance Sampling

In order to decrease simulation time, Importance Sampling
(Smith et al. [1997]) is used. Importance Sampling could
be considered as an adaptation, making an adequate model
that speed up generation of rare events for the case when
γ is large enough.

If X ∼ g(X; v) is another probability density function,
where v is its distribution parameter vector, then l could
be rewritten as:

l =
∫ ∞
−∞

I{S(X(i))≥γ}
fX(x)
gX(x)

gX(x)dx = EI{S(X(i))≥γ} (6)

if holds g(x) = 0 ⇒ I{S(X(i))≥γ}fX(x) = 0. Now, l could
be considered as expected value of indication function with
respect to the distribution X ∼ g(X;u). This means that
l could be estimated using following equation:

l̂ ≈ 1
N

N∑
i=1

I{S(X(i))≥γ}W (Xi), (7)

where W (X;u, v) = f(X;u)
g(X);v) and X is now a random

variable generated with distribution g(X; v), that is X ∼
g(X; v). Function g is called the importance sampling
density, function W the likelihood ratio (LR) function ,
while l̂ is called the likelihood ratio (LR) estimator.

The main goal of introducing importance sampling was
to decrease simulation time of the probabilty l estimation
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comparing to Crude Monte Carlo method. This pulls
the question: ’What is the best vector parameter v , of
the distribution gX(X; v), that gives the most accurate
estimation of l for a given simulation effort?’

Let us suppose that only one sample of the variable X is
nedded in order to obtain the probability l, that is

l = I{S(X(i))≥γ}
f(Xi;u)
g∗(Xi; v)

∀i, (8)

where g∗ is the optimal distribution given for the cho-
sen parameter vector v = v∗. This is the case when
the variance of the random variable X is equal to zero
because every sample Xj produces the same value of the
probability l. In that case, function g could be found as:

g∗(X, v) = I{S(X)≥γ}
f(X;u)

l
, (9)

The problem is that this case is not possible because the
probability density g depends on the uknown value l.

The best vector v∗, that could be used for simulation given
with (7) , could be found such that the chosen distance
between considered optimal density function g∗ and the
density function g(X; v) is minimal. The possible measure
of this distance could be Kullback-Leibler distance.

3.2 Kullback-Leibler Distance (Cross Entropy)

Cross-entropy or Kullback-Leibler distance (divergence)
between two probability functions g and h (Kullback
[1968], Gray [1990] and Cover et al. [1991]) is defined by

D(g, h) = Egln
g(X)
h(X)

=
∫
ln
g(x)
h(x)

g(x)dx (10)

In order to minimize D(g∗, g), supposing that the chosen h
probability function is taken from the same family as the
probability function f (For our case, this is the Guassian
one), that is g(.; v) = f(.; v), the expression of the interest
becomes:

D(g∗, f) =
∫
g∗(x)lng∗(x)dx−

∫
g∗(x)lnf(x)dx (11)

This means that the expression
∫
g∗(x)lnf(x)dx has to be

maximized, that is to find the solution of the problem:

max
v

∫
g∗(x)lnf(x)dx (12)

If (9) is used, the optimization problem becomes:

max
v

∫
I{S(X)≥γ}

f(x;u)
l

lnf(x; v)dx (13)

that is equivalent to:

max
v

D(v) = max
v

EI{S(X)≥γ}lnf(X; v) (14)

If the distribution of the random variables belongs to a
natural exponential family, then the solution of the given
optimization problem (14) could be derived analitically.

When Kullback-Leibler distance is minimized, the most
accurate estimation of l will be obtained for the given
simulation effort. Suppose that γ has been chosen to
be close to the maximum of the function S(X). The
most accurate estimation of l will be for the case when
function f(.; v) assigns the most of its probability mass
arround the optimal point where the function S(X) has
its maximum, that is, when S(X ≥ γ). This means that
this information could be used in order to approximate the
optimal solution.

3.3 Maximum Likelihood Estimation

In this subsection, the relation between optimization prob-
lem (14) and the well known Maximum Likelihood Es-
timation, Fisher [1925], will be illustrated. Maximum
Likelihood Estimation is a statistical method making an
optimal model according to the given data.

Let x1, x2, ..., xn be the sample data, drawn from the
known distribution f(., v), where v is the parameter vector
to be tuned in order to find the best fitting model for this
data. The likelihood function is defined as:

L(v) = fυ(x1, x2, ..., xn; v). (15)

The solution to this optimization problem is given as:

v̂ = argmax
v

L(υ) (16)

The method of maximum likelihood estimation gives
υ that maximize the probability density function (15).
Assuming that all data are the outcomes from the
independent, identically distributed random variables
X1,X2, ...,Xn, then multivariate density function could be
described as a product of n univariate probability density
functions (17).

L(v) =
n∏
i=1

fυ(xi; v). (17)

Furthermore, the optimization problem is invariant to
monotonic transformation. If the natural logarithm, that is
incereasing function, is used, then (17) could be rewritten
into (18)

L∗(v) =
n∑
i=1

lnfυ(xi; v). (18)

The maximization of (18) is similar to the maximization
problem given in (14). The only difference is that in (14)
there is an indication function. This means that only
data that satisfies given conditions (14) will be exclusively
involved in the caluculation of the maximum.

The optimal vector parameter for the Gaussian density
function, υ = [µ∗, σ∗2], could be analitically derived (see
Rubinstein et al. [2004]) and the solution is:
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µ∗ =
1
n

n∑
i=1

xi

σ∗2 =
1
n

n∑
i=1

(xi − µ∗)2
(19)

Because each random values related to specific control
parameter are independant and identically distributed,
these formulas could be used for every control parameter.

4. SIMULATION

The algorithm used in the simulation was based on adap-
tive update of γ. This algorithm was nicely described in
Boer et al. [2005].

The posibility of the algorithm usage in a control parame-
ters optimization is shown in three different examples. The
first two examples use the same system that is controlled
by PI algorithm but the performance functions to be
optimized are different. In the third example, the more
complex system of invertum pendulum is used.

Let G(s) = 1
s+1e

−0.2s be the transfer function of the
system. This system will be controlled with PI control
algorithm given in the form G(s) = kp + ki

1
s . The

optimum value of the vector of control parameters k∗u =
[kp ki]T , obtained by the brutal force search algorithm,
that minimizes the performance function

J =
∫ ∞

0

|e(t)|dt, (20)

is k∗u = [2.99 2.94]T . The related value of the performance
function is J∗ = 13.326.

The initial parameters used in the Cross-Entropy algo-
rithm are: N = 1000, ρ = 0.2, vkp = [µkp σ

2
kp
]T = [1 10]T

and vki = [µki σ
2
ki
]T = [1 10]T , where N is the number

of samples, ρ the number correlated with adaptation of γ
(Nρ is equal to the number of cases when S(x) ≥ γ) and
vkp

, vki
are the vectors of distribution parameters related

to control parameters kp and kp, respectively.

Fig.1 shows the best performance function convergence
through the number of iterations. Fig.2 presents the av-
erage history of the best values of the performance func-
tion, obtained by 30 different Algorithm runs, through
iterations. Further, in order to stress the uncertainties of
the algorithm, standard deviations, caluclated from the
history of the performance function using 30 different
simulations, are given in Fig.3.

In the second experiment, the same system was used but
the performance function was:

J =
∫ ∞

0

e2(t)dt, (21)

The optimum value of the vector of control parameters
k∗u = [kp ki]T , obtained by the brutal force search algo-
rithm, that minimizes the given performance function J
is k∗u = [4.01 2.65]T . The related value of the performance
function is J∗ = 15.41.
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Fig. 1. Performance function through iterations
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Fig. 2. The averaged history of the best values of the
performance function through iterations
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Fig. 3. The uncertaincies of the best values of the perfor-
mance function through iterations

As in the first experiment, the same diagrams were ob-
tained and are given in Fig. 4 and 5. It could be conlcuded
that the convergence rate and the relability of the algo-
rithm are satisfactory.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7799



1 2 3 4 5 6 7 8 9
13

13.5

14

14.5

15

15.5

16

iterations

A
ve

ra
ge

d 
hi

st
or

y 
of

 th
e 

be
st

 s
ol

ut
io

ns

Fig. 4. The averaged history of the best values of the
performance function through iterations
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Fig. 5. The uncertaincies of the best values of the perfor-
mance function through iterations
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Fig. 6. The averaged history of the best values of the
performance function through iterations

In the third experiment, a complex system given in the
state space model was used (Fig. 6 and Fig. 5). The system
was linearized and the state space matricies are:
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Fig. 7. The uncertaincies of the best values of the perfor-
mance function through iterations

A =

⎛
⎜⎝
0 1 0 0
0 0 −4.905 0
0 0 0 1
0 0 29.43 0

⎞
⎟⎠ , B =

⎛
⎜⎝

0
0.5
0
−1

⎞
⎟⎠ (22)

C = ( 0 1 0 0 ) , D = ( 0 ) ,

The system was controlled by LQR algorithm using four
parameters in the control gain K. The optimal value of
the control matrix, for the given case, is:

K∗ = [1 2.0416 − 1.6482 − 1.3343].
The LQR algorithm optimizes the following performance
function:

J =
∫ ∞

0

xTQx+ uTRudt, (23)

where x is the state vector, u the control variable, and Q,
R are matrices that penalize the states and the control,
respectively. For this experiment, the chosen values of
these matrices are: Q = I4x4 and R = I1x1, where I is
the identity matrix.

In order to use the Cross-Entropy algorithm, the same
LQR control structure and performanse function were used
in the simulation. The goal was not to find the optimal
control gain K with LQR algorithm to approach the
minimum of the performance function (23) but using the
Cross-Entropy method. As in the previous experiments,
the same diagrams were obtained and given in Fig. 6 and
7. Even for the case where the control algorithm has large
number of parameters, the Cross-Entropy method gives
satisfactory results.

5. CONCLUSION

The paper presents the possibility of using the Cross-
Entropy algorithm in a control system design. This pos-
siblity was shown through systems using controllers with
various number of parameters. Also, different performanse
functions to be minimized were used. For this purpose, the
system of the first order with a time delay was chosen.
This system was controlled with PI control algorithm.
The method has shown good results for the integrate
absolute error performance function (IAE) as well as for
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the integrate square error (ISE). The results were com-
pared with the values obtained by the brutal force search
algorithm. The rate of the algorithm convergence and
the method relability were also concluded in the paper.
This conclusion was derived from the data obtained from
30 different algorithm runs. The main advantage of this
algorithm comparing to other techniques of combinatorial
optimization is relatively large learning rate. Also, the
same conclusion has been derived from the more complex
case where a multivariable system was controlled by LQR
controller. This controller had four parameters whoos op-
timal values could be easly obtained by LQR algorithm.
The performance function that the LQR algorithm uses is
also an integrate square error criteria. This performance
function was used for the Cross-Entropy method as well.
The conclusion about convergence and the reliability of
the method, considering 30 different algorithm runs, was
also presented for this case. Furthermore, it should be
emphesises that the convergence rate is rather independent
on the number of parameters.
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