
1. INTRODUCTION

To achieve a dependable manufacturing control system it must

be fault tolerant. This due to that mechanical problems must be

cooped with since they are unavoidable. The machinery will be

ageing and eventually break down. Thus the control system

must be flexible enough to handle different configurations and

avoid operations that can not be performed. It is also desirable

that the system can automatically back out of a blind alley due

to the emergence of some mechanical or software problem.

Anyhow the control system must be helpful to ease manual re-

covery.

The CHAMP (Chalmers Architecture and Methodology for

Flexible Production) system is developed to fulfill the de-

mands for fault tolerant manufacturing. At present it is a model

for controlling one entity, e.g. a manufacturing cell, but is now

being developed further to encompass an entire production.

The model is seen as an “operating system” for production

which means that the products are described in recipes with op-

erations which will be scheduled to the different producers.

Thus introducing new products and/or machinery will not need

any change in the control system. Only new mappings in the

database and corresponding basic producer programs, e.g.

PLC programs, have to be developed. This can be added to the

control system even when it is running. The scheduling, dis-

patching and handshake protocols are given and implemented

once for all. Different scheduling algorithms can be introduced

separately, but they only change the suggestions for which op-

eration to choose from all eligible. The algorithm that decide

what operations are eligible is hardcoded into the system.

The present model has been implemented in Java using a rela-

tional database.

2. THE CHAMP ARCHITECTURE

The present version of CHAMP is focused on the cell level and

admits manual, semi-automatic as well as fully automatic con-

trol of discrete-event manufacturing processes (Adlemo et. al.

1995). It consists of a Dispatcher that sends orders to the Re-

sources after getting production suggestions from a Scheduler,

see Fig. 1. They all share information in a common database.

2.1 The CHAMP Data Design

The production is described as recipes for products stored in

the database. The recipe gives the different operations that

should be performed to make the product and in which order

they must be done if necessary. The recipe might give different

choices of operations or groups of operations. It can also be

controlled by two different type of flags, one that give different

choices when a product recipe is compiled (when an individual

product is entering the system) another that is valid and can be

changed until a choice is actually made at runtime. In the reci-

pe it is also possible to describe what can be executed in paral-

lel or what can be executed in any order.

The production units, Resources, are also described in the da-

tabase. A Resource can be a Producer, a Mover, an Inbuffer or

an Outbuffer. All Resources though can act as a Producer. For

the resource to be able to perform an operation it must have a

corresponding program to execute. To be able to find a re-

source for an operation these programs are mapped to the re-

source in the database. A program for an operation is unique

Towards a Fault Tolerant Manufacturing Control System

Sven-Arne Andréasson

Department of Computer Science and Engineering

 Chalmers University of Technology

S-412 96 Göteborg, SWEDEN

e-mail: andreasson@cs.chalmers.se

Abstract: The CHAMP (Chalmers Architecture and Methodology for Flexible Production) system is a gen-

eral control system for manufacturing that can be configured for arbitrary production. The system consists

of producers that can perform operations on products and movers that can move products between produc-

ers. Each product is described by a number of operations that are mapped to global operations in the data-

base. A producer can perform any global operation for which it has a program. The mappings of global

operations, programs and producers are also present in the database. Since a global operation can be per-

formed by more than one producer there is an inherent possibility for fault tolerance. In the product descrip-

tion variations can be described which also increases the fault tolerance. The system can be run offline

where the production is simulated. Thus the control system that is tested by simulation is the real control

system.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6560 10.3182/20080706-5-KR-1001.2613

for an individual resource since many of these programs must

be continually trimmed to its resource as the resource is wear-

ing out. There are also programs for the different movers to

move the products between the resources. For each operation

there is also registered a variable number of handshake steps

for how to load and unload the product. These are also mapped

to programs for corresponding resources and movers. For each

program there is also registered which tools it might need and

for each resource which tools are available. A conceptual mod-

el of the database is given in Fig. 2. When a product arrives an

individual record is created for it from the corresponding tem-

plate giving the operations. Then for each operation a resourc-

es that has a program for it can perform it. The Scheduler

algorithm decides which of these that might be performed at

each moment from the template recipe. The recipe gives the

Fig. 1. The CHAMP control system architecture.

Scheduler Dispatcher

Resources

Physical Resources

Product Editor

Simulation Center

Cell Editor

Database

Resource Simulation

CHAMP CONTROL SYSTEM

N

1

Tool_id

Tool_types

Tool_individuals

Resource_individuals

Movements

Resource_Templates

Handshakes

Mover_individuals

Programs

Operations

Product_Individual

Tool_type

1

N

Producer_id

Handshakes
mapping

Tool
Requirements

NM

Operations
mapping

Movement
mapping

To

From

Program_id

Move

From To
Resource_Template

Handshake

P_id

Operation

Op_no

Prod_ind_Operations

1
1

1

N

1 N

N

1

N

N

1 N

pre

post

Fig. 2. Main part of the Entity-Relationship (ER) schema of the conceptual design of the database. Only enti-

ties, relationships and their key attributes are given.

1N
1 N

Handshakes
mapping

Product_template_operations

Product_templates

Product_template

Operation_list
N 1

1

N

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6561

necessary order of operations and/or possible parallel execu-

tion.

2.2 The CHAMP Control System

The implementation of the CHAMP model consists of differ-

ent programs that all use the database (Andréasson 2004). The

resources are represented by Resource programs which are of

four types, Producer, Mover, Inbuffer and Outbuffer. The last

three types can also act as a Producer. The cell control is per-

formed by a Dispatcher program that sends commands to the

different Resource programs. When performing the hand-

shakes between movers and resources it is performed by using

local commands between the Mover and Resource programs

following protocols that can be different for each type of deliv-

ery. A Scheduler program sends information about possible

operations to the Dispatcher program according to product rec-

ipes and possible operation mappings. It is possible to load

separate scheduling algorithms into the Scheduler program to

give different priorities to the suggestions in order to optimize

production. From the list it gets from the Scheduler the Dis-

patcher program normally chooses the first operation that can

be performed by an unoccupied Resource and for which there

is a Mover free that is able to transport the corresponding prod-

uct to that Resource. There is also manual mode where an op-

erator chooses from the given list.

In order to perform simulation there is also a Simulation Client

that can simulate an external system sending products to the

manufacturing cell. This can be done in two ways, by unan-

nounced deliveries to an Inbuffer or by deliveries to any Re-

source after announcing the product to the Dispatcher which

appoints the receiving Resource after consulting the Schedul-

er. In addition to these programs there is also a Product Editor

which can be used for defining products in the database and a

Cell Editor that is used for entering cell data into the database.

A program for diagnosing and fixing errors is also underway.

3. FAULT TOLERANCE STRATEGIES

3.1 Configuring a Manufacturing System

For a manufacturing system to be fault tolerant it must be able

to perform a reconfiguration in case of a failure within the sys-

tem. To perform such a reconfiguration, the system must be

able to react to spontaneous events such as resource failure,

tool breakdown, or product jam.

We have identified three different types of configuration; the

Hardware Configuration, the Mission Configuration and the

Work Configuration (Adlemo and Andréasson 1992, Adlemo

et. al. 1993):

 • Hardware Configuration can be represented as a tree

showing how the Resources are grouped, e.g. in produc-

tion cells. Hardware Reconfiguration means to change

this tree, e.g. moving a Resource from a cell to another

cell.

 • Mission Configuration can be represented as a tree repre-

sentation of a product recipe. This shows how operations

can be divided into sub recipes as well as which order they

must follow. A Mission Reconfiguration is to use alterna-

tives within the recipe to perform the production.

 • Work Configuration is the way the control system has de-

cided to perform the operations. The operations are

mapped to corresponding resources that should perform

the execution. Work Reconfiguration is to reallocate the

mapping for one or more operations.

3.2 Fault Tolerance in the existing system

Work Configuration: Since the existing system allocates which

resource to perform a given operation just before it is to be per-

formed there will not be any allocation to a faulty resource.

Thus there will be fault tolerance if there are another resource

that can perform the operation, i.e. it has a program for the ex-

ecution of the operation. If the error occurs during the execu-

tion of the operation, then the product must be unloaded in

order to be rescheduled. For this we have introduced Excep-

tions in the recipes. These can be used for describing the un-

loading handshake. This handshake might be different than the

handshake after a successful execution. The exception might

include a measuring or check operation that decides if or how

to continue. The product is then rescheduled the normal way

and if there is another Resource that can perform the operation

the production can go on. Otherwise the product must be taken

aside until the operation can be performed.

Mission Configuration: The possibility to describe variants

within a recipe can be seen as having mission reconfiguration.

Also here the actual choice can be postponed until just before

the specific operation execution. Thus faulty resources can be

avoided. Exceptions can also be used here to start a variant of

the recipe.

Hardware Configuration: Since we are controlling only one

entity with the present system there is no need for automatic

hardware reconfiguration. A way to do hardware reconfigura-

tion though is to introduce new resources. However, this must

be done manually by registering them in the database with their

operation mappings. For a new resource there must also be in-

stalled a driver program to link it to the control system.

4. HIERARCHICAL ARCHITECTURE

4.1 Reasons for a hierarchical architecture

Since the production units will be clustered at least on different

factories or sub companies we believe that it is wise to struc-

ture the resources hierarchically. Also the products are natural-

ly structured as trees since we have operations that contains

sub operations. And the production units and product opera-

tions have to be mapped to one another.

We are aware that hierarchical systems are not always popular.

Recent systems tends to be modeled according to heterarchical

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6562

principles as the Holonic approach (Morel et.al. 2007, Wullink

et. al. 2002, Valckenaers and van Brussel 2005). Having a hi-

erarchical model, though, will give a clear responsibility chain

for the production and thus the time out alarms when an oper-

ation is not ready when expected. Also there might be a choice

between a local Resource or on another continent. Such a

choice should be treated differently (e.g. with a corporate level

scheduling algorithm) than a choice between local Resources

(e.g. with a manufacturing cell level scheduling algorithm).

However, although the main structure is hierarchic, the empha-

sis of the architecture is to keep interactions as well as infor-

mation at lowest possible level. Thus the upper level of our

existing system is not involved at all in handshakes and their

states and messages. The handshakes are initiated by the mov-

ers directly to corresponding producers. For the proposed ar-

chitecture this will still be case. Upper levels only give order

about a complete operation and then is informed when it is

ready or if it has problems. Upper levels also have to keep

watch that lower level operations terminates in due time.

4.2 Proposed system architecture

The main design principle for the hierarchical architecture is to

use the same architecture for each level. For a manufacturing

system this means that the Cell Control System is the same as

the Area Control System (controlling products between cells)

and the Factory Control System (controlling products between

areas). Also the same control system should be used for each

entity (node) within the same level. Hence we will call this

control system the Entity Control System. Obviously there is a

different need for different type of scheduling for different lev-

els and/or different entities at the same level but this is

achieved by choosing different scheduling algorithms in the

Scheduler. The present implementation actually allows new

scheduling algorithms to be written and plugged into and used

by the Scheduler even during runtime.

The resources are added to the system by introducing a driver

program for it in the system or instead an adapter in the re-

source. Thus the system can also be introduced partially in an

existing plant by writing adapters to existing control systems.

The hierarchy will be achieved by adding a drive routine in the

Resource program that allows the Dispatcher program of the

level below to act as a Physical Resource. The Dispatcher part

of this connection already exists and is used by the Simulation

Client. The Scheduler program doesn’t have to be changed.

Now the easy way of achieving the hierarchical system would

be to implement the drive routine for the dispatcher and then

build it from a number of the existing system using separate

databases (i.e. separate database accounts or catalogs) where

the data for each entity is given in the corresponding database.

However, there are drawbacks to this approach. Since movers

will have to cross entity boundaries to deliver products the

physical position for the deliveries must be known globally.

When using different databases many physical positions then

have to be registered into more than one database and this will

be a source of errors. Another drawback with this approach is

that the movers must have access to different databases in or-

der to find the Resources login ports in order to be able to open

connection for handshakes. This will lead to problems with da-

tabase login names and passwords, since the movers must be

able to login to many database accounts. A database that offers

proper catalogs as MySql could deal with this problem but oth-

Fig. 3. The new hierarchical CHAMP control system architecture.

Physical Resources

Product Editor

Simulation CenterCell Editor

Database

Scheduler Dispatcher

Resources

CHAMP CONTROL ENTITY

S D S DS D

S DS D

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6563

er databases such as Oracle can not handle this. Our aim is to

use a strategy that can be implemented by using most of the ex-

isting commercial databases.

The chosen strategy then instead is to use the same database

(account) for the entire system. The overall architecture then

will be like in Fig. 3. This implies a redesign of the database

that will inflict all programs in the system. However, the ad-

vantage of this approach is big enough to justify this. Especial-

ly since the system already is designed with a common library

that implements proxies for the database tables.

The question now is to decide which data that is to be treated

as local for an entity and what is to be treated as globally

known. As already stated the physical positions have to be glo-

bally known. Since the delivering of the products will be done

by leaf entities the handshake also have to be found globally

since there has to be agreement on handshakes between differ-

ent entities.

To be able to perform reconfiguration for fault tolerance it is

also important that the operations are treated globally.

In the present system a Product Template represents a product

type and is used for defining what to do with each product in-

dividual. In the hierarchical system a Work Template in an en-

tity will represent an operation in the entity above. This applies

for a change in the mapping tables to be able to map an opera-

tion to a Work Template in a lower entity rather than a specific

program. Then the name of the database tables should be

changed to more intuitive names. Whether a global identity for

the product should be recorded at each level can be disputed

but it should however not be made compulsory since we might

want to produce parts that are not dedicated for a specific indi-

vidual from the beginning.

The proposed conceptual design for the hierarchical system is

given in Fig. 4. The local entities are marked as weak entities,

i.e. each record must be coupled to an Entity record to be

unique. In this way the production planning for each entity can

be performed locally without having to consider identities in

other system Entities. The global known data is recorded in the

entities: Locations, Entities, Operations, Movements, Hand-

shakes and Product Individuals. For these entities the identifi-

cation must be globally unique. The entities for tools are left

out for diagram readability reasons. They can be easily added

Fig. 4. Main part of the Entity-Relationship (ER) schema of the proposed conceptual design of the database.

Only entities and relationships are given.

Movements

Handshakes

Mover_individuals

Handshakes
mapping

Operations
mapping

Movement
mapping

To

From

Work_ind_operations

1

1

1

N

N

1

N

N

1 N

1 N

Handshakes
mapping

Work_template_operations

N

1

1

N

Locations

Entities

Resource_individuals

1

N

Work_individuals

1

N

Work_templates

1

N

Resource_types

Operations

Programs

1

N

1

Npre

post

Product_Individuals

1

N

or

1

N

N

1

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6564

according to the present system but will subsequently be weak

entities.

Grouping the Resources with different Locations into Entities

gives possibility to fully utilize the parallelism given in the re-

cepis. A product might be operated on by several robots at the

same time while located in an Entity, e.g. robots performing

soldering.

There are also data for product flags and operation parameters

that are left out in the diagram.

5. FAULT TOLERANCE IN THE PROPOSED SYSTEM

For the proposed architecture there will be a considerably po-

tential for fault tolerance. The most important features to

achieve this is the use of global Operations and global Loca-

tions. When an operation can not be performed at one entity

there might exist another entity that can execute it. This might

be solved automatically due to the global operation identifica-

tion. Also when finding other entities and sub entities the glo-

bal location identification is useful.

 • Hardware Reconfiguration will be applicable in the pro-

posed system. As an example a producer might logically

be moved from one production cell to another in order to

replace a faulty unit or give extra execution power to avoid

a bottleneck. However, this demands that the production

cells are reasonable close to each other.

To move a sub entity logically from one super entity to an-

other means that it will obey the latter Dispatcher program

instead of the first. There will be no need for changing Lo-

cation or Operation data in the database, only the sub enti-

ty super entity relation.

 • Mission Reconfiguration can be performed among the dif-

ferent entities at different levels. This will demand sched-

uling algorithms that use information from levels below in

the hierarchy. The scheduling algorithms, especially on

the upper levels, must take into account the cost of moving

the product. A move might be across continents! The up-

per level algorithms might include manual acknowledge-

ment before taking costly actions.

 • Work Reconfiguration can also be done at different levels.

This will also require scheduling algorithms that use infor-

mation from deeper levels. Actually these will be required

anyway, since the scheduling algorithms must look at

deeper levels for performance reasons. This has not been a

big issue in the present system, the most advanced have

been to schedule randomly among possible choices.

As for the Mission Reconfiguration, the cost of product

movement must be taken into account before taking ac-

tion.

The delegation of control down in the hierarchy also provides

for fault tolerance. The upper level gives order about the exe-

cution of an operation as well as the product transportation and

then only waits for a completion message or if not, an error

message. If nothing is received within a time limit an exception

process will start to try reconfiguration. This is also performed

when an error is reported from the level below.

But mostly problems are avoided at first configuration of an

operation since all faulty units will be excluded from the begin-

ning.

6. CONCLUSION

We have described the new proposed hierarchical design of the

Champ system. It is shown that it will offer a high potential for

fault tolerance by using the concepts of Hardware Reconfigu-

ration, Mission Reconfiguration and Work Reconfiguration.

This will be practically possible by the use of global operation

identities and global location identities.

7. REFERENCES

Adlemo, A., Andréasson, S.-A. (1992). Models for Fault Tol-

erance in Manufacturing Systems, Journal of Intelligent

Manufacturing. vol. 3, no. 1, February 1992, pp. 1-10.

Adlemo, A., Andréasson, S.-A., Johansson, M. I. (1993). Fault

Tolerance Strategies in an Existing FMS Installation. Con-

trol Engineering Practice, vol. 1, no. 1, February 1993, pp.

127-134.

Adlemo, A., Andréasson, S.-A., Fabian, M., Gullander, P.,

Lennartsson, B. (1995). Towards a Truly Flexible Manu-

facturing System. Control Engineering Practice, 3, pp.

545-554.

Andréasson, S.-A. (2004). Implementation of the CHAMP

System. Real-Time Programming 2004, pp. 33 - 138.

ISBN/ISSN: ISBN: 0-08-044582-9 CPL 12478.

Morel, G., Valckenaers, P., Faure, J.-M., Pereira, C. E.,

Diedrich, C. (2007). Manufacturing plant control chal-

lenges and issues. Control Engineering Practice (2007),

doi:10.1016/j.conengprac.2007.05.005.

Wullink, G., Giebels M.M.T., Kals, H.J.J.(2002). A system ar-

chitecture for holonic manufacturing planning and con-

trol(EtoPlan). Robotics and Computer Integrated

Manufacturing 18 (2002) 313–318.

 Valckenaers, P., van Brussel, H. (2005). Holonic manufactur-

ing execution systems. 55th General Assembly of CIRP,

Antalya, Turkey, August 21-27, 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6565

