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Abstract: The output regulation problem for nonlinear time-delay systems can be solved under
the assumptions that certain integral regulator equations are solvable and the full information of
exosystems is available. This paper shows that these two assumptions can be removed for a class
of nonlinear time-delay output feedback systems by introducing a transfer matrix dependent on
the system delays. Based on a filtered transformation and an adaptive control, a global output
regulation method is developed in this paper for a class of nonlinear time-delay output feedback
systems under disturbances generated from unknown exosystems.

1. INTRODUCTION

In this paper, we consider the global output regulation
problem of a class of nonlinear time-delay systems de-
scribed by

ẋ(t) =Ax(t) + Φ(y(t), w(t)) + Ψ(ȳ(t− d), w(t)) +Bu(t)

y(t) =Cx(t)

e(t) = y(t) − q(w(t))

x(θ) = δ(θ), θ ∈
[

−d̄, 0
]

(1)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜ the control
input, y(t) ∈ ℜ the system output, and e(t) ∈ ℜ the
measurement output. The nonlinear functions

Φ(y(t), w(t)) = col(φ1(y(t), w(t)), · · · , φn(y(t), w(t))) ∈
ℜn,ȳ(t − d) = col(y(t − d1), · · · , y(t − dn)) ∈ ℜn,
Ψ(ȳ(t − d), w(t)) = col(ψ1(y(t − d1), w(t)), · · · , ψn(y(t −
dn), w(t))) ∈ ℜn, and the smooth vector fields φi(·, ·) : ℜ×
ℜm → ℜ and ψi(·, ·) : ℜ × ℜm → ℜ for i = 1, · · · , n are
polynomials of their variables and satisfy that φi(0, ·) = 0
and ψi(0, ·) = 0. di, i = 1, 2, · · · , n are the constant but
unknown time delays in the system output, d̄ is the upper
bound of time delays, and δ(θ) is the initial condition of
the system. The system matrices are given as

A =









0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0









, B =















0
...
br
...
bn















, C =







1
...
0







T

,
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and the function q(w) ∈ ℜ is the disturbance to be rejected
or the desirable trajectory to be tracked. It is an unknown
polynomial of w(t) ∈ ℜ2m which is generated from an
exosystem

ẇ(t) = S(σ)w(t), (2)

where S(·) ∈ ℜ2m×2m is diagonalizable, and σ ∈ ℜns is
unknown.

It is observed that the system described by (1) and (2)
without time delays reduces to the class of output feedback
systems (see e.g. Ding [2001], Huang [2004], and Liu and
Huang [2006]). For simplicity, we also call this kind of time-
delay system as time-delay output feedback system. The
stabilization problem of this class of time-delay systems
has been studied in Hua et al. [2005].

The global output regulation problem concerns with sta-
bilization of dynamic systems as well as rejecting the
disturbances or tracking the desired trajectories within any
compact set. The measurement or the tracking error e(t)
converges to zero asymptotically. Recently, some global
adaptive output regulation approaches of output feedback
systems are reported in Ding [2001], and Chen and Huang
[2005]. In Ding [2003], an adaptive global output regula-
tion method is proposed for the output feedback systems
with completely unknown parameters, including the sign
of high frequency gain. This problem is also solved in Liu
and Huang [2006] for a class of uncertain nonlinear systems
with unknown high-frequency gain sign. However, to the
best knowledge of the authors, the global output regu-
lation method for nonlinear time-delay output feedback
systems has not been reported in the existing literatures.

As far as the time-delay systems is concerned, a solution
of output regulation problem was introduced in Gilliam
et al. [2002] for linear state delay system, where a pair
of finite dimensional regulator equations were proposed in
the infinite dimensional state space. The same equations
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are also discussed in Byrnes et al. [2002]. The solutions for
such equations are dependent on the matrix S of (2) and
the transfer function of the linear system. Therefore, it is
very difficult to extend this method into nonlinear time-
delay systems. More recently, based on center manifold
theory, it was reported in Fridman [2003] that the output
regulation problem is solvable for a special class of time-
delay nonlinear systems if and only if the integral regulator
equations are solvable. It should be noted here that it is
also difficult to solve the regulator equations even though
there exists an invariant manifold π(t) on which the
exosystem is immersed into the dynamical delay system.
Moreover, the feedback controller design in Fridman [2003]
depends on the full information of π(t). Thus this approach
cannot be applied to solve the output regulation problem
if there are unknown parameters in the dynamic systems
and/or in the exosystems.

In order to overcome the difficulties caused by regulator
equations and the full information of invariant manifold
π(t), we extend the internal model design and parameter-
ization technique (see Ding [2001, 2003]) into the time-
delay systems (1) and (2) by introducing a transfer matrix
Td(σ, d). Most importantly, this matrix does not need to
be known. Based on an adaptive internal model, a mea-
surement feedback control method is proposed to solve the
global output regulation problem.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The objective of this paper is to design a feedback con-
troller u(t) capable of forcing the regulated variable e(t)
to zero while keeping all variables of (1) bounded.

In the following, we list two standing assumptions.

Assumption 1. The system (1) is of minimum phase, i.e.

the polynomial B(s) ,
∑n

i=r bis
n−i is Hurwitz.

Assumption 2. The eigenvalues of S are distinct and of
zero real parts.

For the simplicity of regulator design, two kinds of coor-
dinate transformation are to be conducted to the system
(1). One is so-called filtered transformation which is used
to deal with the high relative degree of (1). The resulting
system is then dealt with by the other transformation to
extract the zero dynamics.

For the system (1) with relative degree r > 1, we firstly
apply the following filtered transformation (see Marino
and Tomei [1993], and Ding [2003]):

ξ̇(t) =Aξξ(t) +Bξu(t) (3)

where ξ(t) = col(ξ1(t), · · · , ξr−1(t)),

Aξ =













−λ1 1 0 · · · 0
0 −λ2 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · −λr−1













, Bξ =













0
0
...
0
1













∈ ℜr−1

and the positive scalars λi for i = 1, 2, · · · , r − 1 are the
adjusting parameters.

Now, define a new variable vector as z̄(t) = x(t) −
h̄ξ(t), where h̄ =

[

h̄1 · · · h̄r−1

]

, h̄r−1 = B, h̄i = (A +

λi+1I)h̄i+1, i = 1, 2, · · · , r − 2.

Then the system (1) is transformed into

˙̄z(t) =Az̄(t) + Φ(y(t), w(t)) + Ψ(ȳ(t− d), w(t)) + hξ1(t),

y(t) =Cz̄(t), (4)

where h = col (h1, · · · , hn) , [A+ λ1I]h̄1. It can be easily
seen that h1 = br and

H(s) ,

n
∑

i=1

his
n−i = B(s)

r−1
∏

i=1

(s+ λi). (5)

Thus, it follows from Assumption 1 that this polynomial is
Hurwitz. Moreover, it has been shown that the system (4)
is of relative degree one and minimum phase with respect
to the input ξ1(t).

Secondly, considering the relation of

ξ1(t) = ( ˙̄z1 − z̄2 − φ1(y(t), w) − ψ1(y(t− d1), w(t)))/h1

from (4) and substituting it into the other equations of (4)
yields that

ż(t) =Hz(t) + Θ(y(t), ȳ(t− d), w(t))

ẏ(t) = z1(t) + Ξ(y(t), ȳ(t− d), w(t)) + ξ1(t), (6)

where the new variable z(t) is defined as z(t) = z̄2:n(t) −
1
h1

h2:ny(t). The notation (·)2:n refers to the extracted
vector or matrix formed by the 2nd row to the nth row.
The other notations in (6)are given by

H =









−h2/h1 1 · · · 0
...

...
. . .

...
−hn−1/h1 0 · · · 1
−hn/h1 0 · · · 0









,

Θ(y(t), ȳ(t− τ ), w(t)) =H
1

h1
h2:ny + φ2:n(y(t), w)

+ψ2:n(ȳ(t− τ ), w(t))

−
1

h1
h2:n(φ1(y(t), w)

+ψ1(ȳ(t− τ), w(t)),

Ξ(y(t), ȳ(t− τ ), w(t)) =
h2

h1
y + φ1(y(t), w(t))

+ψ1(ȳ(t− τ), w(t)).

Note that Θ(0, 0, w(t)) = 0 and Ξ(0, 0, w(t)) = 0. The
subsequent discussion is based on the transformed system
(6).

3. INTERNAL MODEL DESIGN

It is well known that the crucial step for solving output
regulation problem is the internal model design. The in-
ternal model can produce the desired steady state output.
In order to design an internal model for the time-delay
system (1), we need the following lemma and assumption.

Lemma 1. Given the exosystem (2) and a constant delay
d, there exists a constant matrix Td(σ, d) such that w(t−
d) = T̄d(σ, d)w(t).
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Proof. Given the exosystem (2), there exists a state
transformation w̄(t) = Dw(t) with an invertible constant
matrix D ∈ ℜ2m×2m such that ˙̄w(t) = S̄(σ)w̄(t), where
S̄(σ) = DSD−1 = diagblock{S̄1, · · · , S̄m} and

S̄i =

[

0 ωi

−ωi 0

]

= T

[

jωi 0
0 −jωi

]

T−1, T =

[

−j j
1 1

]

,

ωi for i = 1, · · · ,m are the frequencies of the signal w(t).

The time response of w(t) is given by

w(t) = D−1eS̄(σ)tDw(0) = D−1T̄ T̄e(t)T̄
−1Dw(0),

where T̄ = diagblock{T1, · · · , Tm}, Ti = T , T̄e(t) =
diagblock{Te(ω1t), · · · , Te(ωmt)}, Te(ωit) = diag{ejωit,
e−jωit} for i = 1, · · · ,m, and w(0) is the initial condition
of (2).

Moreover, we have

w(t − d) =D−1T̄ T̄e(t− d)T̄−1Dw(0)

=D−1T̄ T̄e(−d)T̄
−1DD−1T̄ T̄e(t)T̄

−1Dw(0)

= T̄d(σ, d)w(t)

with the transfer matrix

T̄d(σ, d) = D−1diagblock{Td(ω1, d), · · · , Td(ωm, d)}D,

Td(ωi, d) = TTe(ωid)T
−1 =

[

cosωid − sinωid
sinωid cosωid

]

, (7)

for i = 1, · · · ,m. This completes the proof.

Based on Lemma 1, we have q(w(t−di)) = q(T̄d(σ, di)w(t))
for i = 1, · · · , n. Since col(q(w(t − d1)), · · · , q(w(t − dn)))
is a vector function of w(t), we can define it as p̄(w(t)).
Thus we are ready to present the following assumption.

Assumption 3. There exists an invariant manifold

π(w(t), σ) , col(π1, · · · , πn−1) ∈ ℜn−1

satisfying

∂π(w(t), σ)

∂w(t)
S(σ)w(t)

=Hπ(w(t), σ) + Θ(q(w(t)), p̄(w(t)), w(t)). (8)

Remark 1. With the assistance of T̄d(σ, d), the delay
(functional) differential equations defined in Lemma 2 of
Fridman [2003] reduce to the standard differential equation
(8) which is similar to the one in Ding [2001, 2003] for
non-delay systems. Most importantly, it will be shown in
a moment that Assumption 3 facilitates us to apply the
reformulation technique of internal model design. It thus
avoids solving the finite dimensional equations in Byrnes
et al. [2002] and Gilliam et al. [2002], and the integral
equation in Fridman [2003].

Based on Assumption 3, it follows from (6) that there
exists a function α(w(t), σ) such that

∂q(w(t))

∂w(t)
S(σ)w(t)

= π1 + Ξ(q(w(t)), p̄(w(t)), w(t)) + brα(w(t), σ).

Here, α(w(t), σ) is the desirable feedforward term for
output regulation to tackle q(w(t)).

Set an error state vector as z̃(t) = z(t) − π(w(t), σ), and
then we have the following error model for internal model
design,

˙̃z(t) =Hz̃ + Θ̃(t),

ė(t) = z̃1(t) + Ξ̃(t) + br(ξ1(t) − α(w(t), σ)), (9)

with

Θ̃(t) = Θ(y(t), ȳ(t− d), w(t)) − Θ(q(w(t)), p̄(w(t)), w(t)),

Ξ̃(t) = Ξ(y(t), ȳ(t− d), w(t)) − Ξ(q(w(t)), p̄(w(t)), w(t)).

It is easily seen that Θ̃(t)|e(t)=0 = 0 and Ξ̃(t)|e(t)=0 = 0.

Since all the nonlinear functions of the system (1) are poly-
nomials of their variables, it is known from Byrnes et al.
[1997] that there exists a mapping ζ(w(t), σ) satisfying the
immersion conditions

∂ζ(w(t), σ)

∂w(t)
S(σ)w(t) = Ω(σ)ζ(w(t), σ),

α(w(t), σ) = Γζ(w(t), σ), (10)

where the pair (Ω(σ),Γ) is observable. The matrices Ω(σ)
and Γ are constructed by the internal model principle (see,
e.g., Byrnes et al. [1997]). The spectrum of Ω(σ) contains
the distinct eigenvalues of the exosystem (2) and their
certain multiples. These multiples represent higher order
sinusoidal harmonics generated by the nonlinearities of the
system (6).

Choose a controllable pair {F,G} with compatible dimen-
sions such that there exists an invertible real matrix M(σ)
satisfying the Sylvester equation M(σ)Ω(σ) − FM(σ) =
GΓ. Based on this equation, we can re-formulate (10) into

η̇(t) = Fη(t) +Gα(w(t), σ),

α(w(t), σ) =LT η(t), (11)

where η(t) = M(σ)ζ(w(t), σ) ∈ ℜs and LT = ΓM−1(σ) ∈
ℜs. Since η(t) and L are both dependent on the unknown
parameter σ, we introduce the following internal model,

˙̂η(t) = F η̂(t) +Gξ1(t). (12)

Consider the mismatch of the states between the internal
model (12) and the mapping (10), and define an auxiliary
error as η̃(t) = η(t) − η̂(t) + b−1

r Ge(t).

It follows that
˙̃η(t) = F η̃(t) − b−1

r FGe(t) + b−1
r G(z̃1(t) + Ξ̃(t)). (13)

Then the controller design and stabilization for the overall
system with combinations of (3), (9) and (13) is to be
analyzed in the next section.

4. CONTROLLER DESIGN AND STABILIZATION
ANALYSIS

If r = 1, i.e. the system (1) is of relative degree one, let
ξ1(t) be the control input u(t) for (9). For the case of r > 1,
a kind of backstepping technique will be used to obtain an
adaptive control law.

Introduce a new vector ξ̃(t) = ξ(t)−ξ̂(t), where ξ̂ ∈ ℜr−1 is
the virtual control vector. It can also be considered as the
estimate of the desirable value of ξ(t) with which the con-
troller u(t) stabilizes the overall system aforementioned.

Since the nonlinear functions involved in Θ̃(t) and Ξ̃(t)

are polynomials with Θ̃(t) = 0 and Ξ̃(t) = 0 for e(t) = 0,
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and w(t) is bounded with constant unknown vector σ, the
following propositions hold,

‖Θ̃(t)‖2 ≤ r0(e
2(t) + e2p(t)) +

p
∑

i=1

n
∑

j=1

rjie
2i(t− dj),

‖Ξ̃(t)‖2 ≤ s0(e
2(t) + e2p(t)) +

p
∑

i=1

n
∑

j=1

sjie
2i(t− dj),(14)

where p is a known positive integer which depends on order
of the polynomials Θ̃(t) and Ξ̃(t). The positive scalars r0,
s0, rji and sji for i = 1, · · · , p, j = 1, · · · , n are unknown.

Now, design the virtual control vector ξ̂1(t) as follows:

ξ̂1(t) = L̂T (t)η̂(t) − b−1
r [c0e(t)

+ĉ1(t)(e(t) + e2p−1(t))
]

, (15)

with c0 > 0, where L̂(t) is the estimate of L, and the
adaptive tuning law of the parameter ĉ1 is

˙̂c1(t) = k(e2(t) + e2p(t)), k > 0. (16)

Thus the resulting error dynamics of (9) can be shown as

ė(t) = z̃1(t) + Ξ̃(e(t), ē(t− d), w(t)) + br(ξ̃1(t) − LT η(t)

+L̂T η̂(t)) − c0e(t) − ĉ1(t)(e(t) + e2p−1(t)). (17)

For the case of r > 1, we present the other virtual control
variables as follows:

ξ̂2 =−bre(t) − c2ξ̃1(t) + λ1ξ̂1(t) − k1

(

∂ξ̂1(t)

∂e(t)

)2

ξ̃1(t)

+
∂ξ̂1(t)

∂L̂(t)
l1(t) + br

∂ξ̂1(t)

∂e(t)
(ξ1(t) − L̂T η̂)

+
∂ξ̂1(t)

∂η̂(t)
˙̂η(t) +

∂ξ̂1(t)

∂ĉ1(t)
˙̂c1(t), (18)

ξ̂ρ = −ξ̃ρ−2(t) − cρξ̃ρ−1(t) + λρ−1ξ̂ρ−1(t)

−kρ−1

(

∂ξ̂ρ−1(t)

∂e(t)

)2

ξ̃ρ−1(t) +
∂ξ̂ρ−1(t)

∂L̂(t)
lρ−1(t)

+br
∂ξ̂ρ−1(t)

∂e(t)
(ξ1(t) − L̂T η̂(t)) + γρ−2(t)

+
∂ξ̂ρ−1

∂η̂
˙̂η(t) +

∂ξ̂1(t)

∂ĉ1(t)
˙̂c1(t), 2 < ρ ≤ r (19)

where lρ−1(t) = brQ
[

∑ρ−1
i=1

∂ξ̂i(t)
∂e(t) η̂(t)ξ̃i(t) − η̂(t)e(t)

]

,

γρ−2(t) = brQ
∑ρ−2

i=1

∂ξ̂ρ−1
(t)

∂e(t)
∂ξ̂i(t)

∂L̂(t)
η̂ξ̃i(t), cρ > 0, kρ−1 > 1

for 2 < ρ ≤ r, and Q ∈ ℜs×s is a positive definite matrix.

Now we are ready to design the control law as

u(t) = ξ̂r(t). (20)

In order to analysis the stability of the closed system with
(20), define the following Lyapunov-Krasovskii functional
candidate

V (t) = α1z̃
T (t)P z̃(t) + α2η̃

T (t)Pη η̃(t) +
1

2

(

k−1c̃21(t)

+L̃T (t)Q−1L̃(t)
)

+ Ve(t) + Vξ(t) + Vd(t),

Ve(t) =
1

2
e2(t), Vξ(t) =

1

2

r−1
∑

i=1

ξ̃
2

i (t),

Vd(t) = α3

p
∑

i=1

n
∑

j=1

∫ t

t−dj

(rji + sji)e
2i(θ)dθ

with positive scalars αi, i = 1, · · · , 3, where P and Pη are
positive definite matrices satisfying PH+HTP = −I, and
PηF + FTPη = −I, L̃(t) = L − L̂(t), c̃1(t) = c1 − ĉ1(t),
and c1 is an unknown constant.

The time derivative of V (t) along the transformed overall
system can be obtained as follows:

V̇ (t) = α1

[

−z̃T (t)z̃(t) + 2z̃T (t)P Θ̃(t)
]

+α2

[

−η̃T (t)η̃(t) + 2b−1
r η̃TPη (−FGe(t)

+G(z̃1(t) + Ξ̃(t)))
]

− c̃1(t) ˙̂c1(t) − L̃T (t)Q−1 ˙̂
L(t)

+V̇e(t) + V̇ξ(t) + V̇d(t)

≤−
2

3
α1z̃

T (t)z̃(t) + 3α1‖P Θ̃(t)‖2 −
2

3
α2η̃

T (t)η̃(t)

+9α2b
−2
r

[

‖PηFG‖
2e2(t) + ‖G‖2(z̃2

1(t) + Ξ̃2(t))
]

−L̃T (t)Q−1 ˙̂
L(t) − c̃1(t)(e

2(t) + e2p(t))

+V̇e(t) + V̇ξ(t) + V̇d(t). (21)

For simplicity, we first obtain the derivative of Ve(t),

V̇e(t)≤−c0e
2(t) − ĉ1(t)(e

2(t) + e2p(t))

+(
3

2
α−1

1 + LTG+
3

4
α−1

2 b2rL
TL)e2(t)

+
α2

3
η̃T (t)η̃(t)) +

α1

3
z̃2
1(t) +

α1

3
Ξ̃2(t)

+bre(t)(ξ̃1(t) − L̃T (t)η̂(t)). (22)

If the adaptive law of L̂ is chosen as
˙̂
L = lr−1(t), (23)

then we obtain from (15)-(19) that

V̇ξ(t) =−brξ̃1(t)e(t) −

r−1
∑

i=1

(ci+1 + λi)ξ̃
2

i (t)

−

r−1
∑

i=1

ki

(

∂ξ̂i(t)

∂e(t)

)2

ξ̃
2

i (t) +

r−1
∑

i=1

ξ̃i(t)
∂ξ̂i(t)

∂e(t)
[−z̃1(t)

−Ξ̃(t) + brL
T η̃(t) − LTGe(t)

]

+L̃T (Q−1 ˙̂
L+ brη̂(t)e(t))

≤−brξ̃1(t)e(t) −

r−1
∑

i=1

(ci+1 + λi)ξ̃
2

i (t)

−
r−1
∑

i=1

(ki − 1)

(

∂ξ̂i(t)

∂e(t)

)2

ξ̃
2

i (t) + (r − 1)×
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[

z̃2
1(t) + Ξ̃2(t) + b2rη̃

T (t)LLT η̃(t) + |LTG|2e2(t)
]

+L̃T (Q−1 ˙̂
L+ brη̂(t)e(t)). (24)

Next, the derivative of Vτ is shown as

V̇d(t) = α3

p
∑

i=1

n
∑

j=1

(rji + sji)
[

e2i(t) − e2i(t− dj)
]

. (25)

Finally, it follows from (21)-(25) that

V̇ (t)≤−c0e
2(t) −

r−1
∑

i=1

(ci+1 + λi)ξ̃
2

i (t)

−(
1

3
α1 − ǫ1)z̃

T (t)z̃(t) − (
1

3
α2 − ǫ2)η̃

T (t)η̃(t)

−(c1 − ǫ3)(e
2(t) + e2p(t))

+ǫ4

p
∑

i=1

n
∑

j=1

(rji + sji)e
2i(t− dj) + V̇d(t) (26)

where

ǫ1 = 9b−2
r α2‖G‖

2 + r − 1, ǫ2 = (r − 1)b2rL
TL,

ǫ3 = 3α1‖P‖
2r0 + (ǫ1 +

α1

3
)s0 − (9b−2

r α2‖PηFG‖
2

+
3

2
α−1

1 + LTG+
3

4
α−1

2 b2rL
TL,

ǫ4 =max{3α1‖P‖
2, ǫ1 +

α1

3
}.

Thus it can be shown that there exists a sufficiently big
positive scalar α2 satisfying α2 > 6ǫ2, and then sufficiently
big positive scalars α1 and α3 satisfying α1 > 6ǫ1,α3 > ǫ4.
Finally, there exists a sufficiently big c1 satisfying c1 ≥ ǫ3+
α3ǫ5, where

∑p
i=1

∑n
j=1(rji+sji)e

2i(t) ≤ ǫ5(e
2(t)+e2p(t)),

so the following result holds

V̇ (t)≤−c0e
2(t) −

r−1
∑

i=1

ci+1ξ̃
2

i (t) −
1

6
z̃T (t)z̃(t) −

1

6
η̃T (t)η̃(t).

It thus implies that e(t), ξ̃i(t), z̃, η̃(t) ∈ L2 ∩ L∞ for

i = 1, 2, · · · , r − 1 and ĉ1(t) and L̂(t) are bounded.

Furthermore, it then implies the boundedness of ξ̂1(t)
and thus the boundedness of ξ1(t). It follows from the

boundedness of e(t), ξ̃1(t), ξ1(t), ξ̂1(t), η̂(t), ĉ1(t) and L̂(t)

that ξ̂2(t) is bounded. Together with the boundedness of

ξ̃2(t), the boundedness of ξ̂2(t) implies the boundedness
of ξ2(t). Similarly, we can establish the boundedness of

ξ̂i, i = 1, 2, · · · , r−1. Therefore, all variables are bounded.

It further implies the boundedness of ė(t),
˙̃
ξi(t), z̃(t), and

˙̂η(t), which implies, together with e(t), ξ̃i(t), z̃, η̃(t) ∈ L2 ∩
L∞, limt→∞ e(t) = 0, limt→∞ z̃(t) = 0, limt→∞ η̃(t) =

0, limt→∞ ξ̃i = 0, i = 1, 2, · · · , r − 1 based on Barbalat’s
Lemma. In summary, we have established the following
theorem.

Theorem 1. Under Assumptions 1-3, the feedback con-
troller composed of (3), (12), (16), (20) and (23) solves
the global output regulation problem for nonlinear time-
delay system (1) with the unknown exosystem (2).

5. ILLUSTRATIVE EXAMPLE

In order to illustrate the proposed output regulation
approach, consider a nonlinear system described by

ẋ1(t) = x2(t) + y2(t− d1)w2(t),

ẋ2(t) = u, y(t) = x1(t), e(t) = y(t) − w1(t) (27)

and set d1 = 2. The exosystem is described by ẇ1(t) =
σ, ẇ2(t) = −σ, with an unknown frequency σ. So the
transfer matrix in Lemma 1 is T̄d(σ, 2).

Since the system (27) is of relative degree 2, we choose

the filtered transformation as ξ̇1(t) = −2ξ2(t) + u. The
transformed model of (27) is thus obtained,

ż(t) =−2z(t) + Θ(y(t), ȳ(t− d), w(t)),

ẏ(t) = z + Ξ(y(t), ȳ(t− d), w(t)) + ξ1(t). (28)

with Θ(y(t), ȳ(t−d), w(t)) = −4y(t)−2y2(t−2)w2(t) and
Ξ(y(t), ȳ(t− d), w(t)) = 2y(t) + y2(t− 2)w2(t).

Observing the fact that the disturbance w(σ) = [w1 w2 ]
is bounded and the following relations,

Θ̃ = −4e(t)− 2e2(t− d1)w2(t)

−4e(t− d1)w1(t− d1)w2(t),

Ξ̃ = 2e(t) + e2(t− d1)w2(t) + 2e(t− d1)w1(t− d1)w2(t),

we get p = 2. Moreover, there exist unknown constants r0,
s0, r11, r12, s11 and s12 satisfying (14).

In order to show that Assumption 3 is satisfied with
the invariant manifold π(w(t), σ), we first consider the
invariant manifold of (27) as πx1(w(t), σ) = q(w(t)) =
w1(t) and

πx2 = σw2(t) − (cos2 2σ)w2
1(t)w2(t)

−2(cos 2σ)(sin 2σ)w1(t)w
2
2(t) − (sin2 2σ)w3

2(t).

In this case the desirable input term is given by

α(w(t), σ) =
∂πx2

∂w(t)
S(σ)w(t)

= (−2 cos2 2σ + 3 sin2 2σ)σw1(t)w
2
2(t)

−σ2w1(t) + (σ cos2 2σ)w3
1(t)

−2σ(cos 2σ)(sin 2σ)(w3
2(t) − 2w2

1(t)w2(t)).

Hence there exists a mapping υ(w(t), σ) satisfying

∂υ(w(t), σ)

∂w(t)
S(σ)w(t) = −2υ(w(t), σ) + α(w(t), σ).

It should be noted that the existence of υ(w(t), σ) is
established by observing the fact that it is the steady-
state response of the first-order linear system ξ̇1(t) =
−2ξ1(t) + µ(w(t), σ). To this end, the invariant manifold
is constructed as π(w(t), σ) = πx2 − υ(w(t), σ) − 2w1(t).
Thus Assumption 3 is satisfied.

Let

Ω(σ) =







0 σ 0 0
−σ 0 0 0
0 0 0 3σ
0 0 −3σ 0






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such that the function α(w(t), σ) can be generated by (10).
Furthermore, we can choose the controllable pair {F,G}
as

F =







−3 1 0 0
−2 0 0 0
0 0 −7 3
0 0 −4 0






, G =







0
1
0
1






.

Let σ = 1, c0 = 2, c2 = k1 = λ1 = 1, k = 5 and Q = 5I.
Based on the design procedure developed in Section 4, the
regulator for (27) can be constructed as follows,

u(t) =−e(t) − ξ̃1(t) + ξ̂(t) −N2ξ̃1(t)

+5η̂T (−η̂(t)Nξ̃1(t) − η̂(t)e(t))

+L̂T ˙̂η(t) +N(ξ1(t) − L̂T η̂) + (e+ e3) ˙̂c1(t),

N =
∂ξ1(t)

∂e(t)
= −2 − ĉ1(t)(1 + 3e2(t)),

˙̂η(t) = F η̂(t) +Gξ1(t),
˙̂c1(t) = 5(e2(t) + e4(t)),

˙̂
L(t) = 5I ∗ (Nη̂(t)ξ̃1(t) − η̂(t)e(t)).

The control results are then shown in Figs. 1-3 where the

initial conditions are set as x(s) = [−0.7 1 ]
T
, s ∈ [−2, 0],

u = 0, L̂(0) = η̂(0) = [ 0 0 0 0 ]
T
, ξ1(0) = 0 and ĉ1(0) = 0.
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Fig. 1. Actual output and desired output (solid line: q(t);
dash-dotted line: y(t)); dotted line: e(t))
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Fig. 2. Estimat variables L̂ and ĉ1(solid line: L̂1; dashed

line: L̂2; dotted line: L̂3; dash-dotted line: L̂4; marker
+: ĉ1)
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Fig. 3. The control input u(t)

6. CONCLUSION

An adaptive global output regulation method has been
proposed for a class of nonlinear time-delay output feed-
back systems. The assumption on the invariant manifold
of nonlinear delay systems is reduced to standard one for
non-delay systems via a delay dependent transfer matrix.
An adaptive internal model has been designed to deal with
the unknown disturbances in the measurement.
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