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1. INTRODUCTION

System identification deals with a problem of establishing
a formulae governing a system or phenomenon. Identifica-
tion algorithms exploit two types of information:

• theoretical, given a priori in a form of laws and
resulting equations, and

• empirical one, i.e. measurements collected during
experiments.

Due to an obvious variety of nonlinear dynamic systems
there is no one-fits-all approach to the problem of their
identification and the selection of the proper algorithms
is determined by the available prior knowledge about
systems and signals. Note also that there is a kind of
Catch 22 here – the prior knowledge is necessary for
the experiment to be properly designed and then for the
results to be correctly interpreted but – simultaneously –
when new problems are explored it is quite obvious that
such a knowledge is not available. Therefore, the methods
and algorithms capable to work with a small a priori
knowledge and able to take into account an additional
knowledge in a course of experiment are of special interest.
Remark 1. One can point out the determining by Gauss
the orbit of the dwarf planet, Ceres, accomplished over 200
years age – in 1801 – as the first successful system iden-
tification experiment. He used Kepler’s laws – as a priori
knowledge – and a collection of observations gathered by
Piazzi – as the measurements; cf. Abdulle and Wanner
[2002]. Moreover, the mathematical tools proposed then
by Gauss constituted the cornerstones of the modern sys-
tem identification: probability and statistics, accompanied
by linear algebra (to which one can only add functional
analysis, supporting recent nonparametric developments).

In the paper we present a class of algorithms working under
a common assumption that a system structure, vis. its
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components (blocks) types and interconnections between
them are known. The components are simple subsystems
being either a static (memoryless) nonlinearity or a linear
dynamic element. The approach is called block-oriented
and the goal of the identification algorithms is to establish
the characteristics of these blocks. It can be advocated by
the following arguments:

• Since the blocks can be described independently,
the algorithms can be tailored appropriately to a
different a priori knowledge (ranging from a reach
– parametric to a poor – nonparametric) available for
either of them separately.

• The resulting algorithms convergence can formally
be shown for ample classes of admissible character-
istics (e.g. for nonlinearities being (dis-)continuous,
(non-)invertible, (piecewise-)polynomial and for dy-
namics with finite or infinite impulse responses).

• It eventually leads to computationally tractable algo-
rithms (as opposed to the algorithms derived within
a black-box approach, where the system structure is
assumed to be unknown, and a where numerically
complex, generic Volterra/Wiener kernels methods
need to be employed; Billings [1980]).

Within the class of block-oriented systems, the two have
attracted a significant interest in the literature: the Ham-
merstein system, and the Wiener one. Both are quite (yet
somehow deceptively) simple as they are merely cascades
of either a static nonlinearity followed by a linear dynamics
(the former, Fig. 1) or the dynamics followed by the nonlin-
earity (the latter, Fig. 2). These systems are met in many
practical applications to date and they are representative
for the broader class of block oriented systems including
Uryson systems, parallel-cascade systems, multichannel
Sm systems, etc.; see Giannakis and Serpedin [2001], e.g.
in biocybernetics, Hunter and Korenberg [1986], Panescu
et al. [1994], Hunt et al. [1998], Jyothi and Chidambaram
[2000], Lortie and Kearney [2001], Westwick and Kear-
ney [2001], Dempsey and Westwick [2004], Kukreja et al.
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[2005], chemistry, Eskinat et al. [1991], control, Lin [1994],
Zi-Qiang [1993], Zhu and Seborg [1994], and in economy,
Capobianco [2002].

1.1 The systems descriptions

We consider the discrete-time systems (for algorithms
for nonparametric continuous-time systems, see e.g., Gre-
blicki [1998, 2000]; for parametric and nonparametric ap-
proaches embedded in frequency-domain analysis, see e.g.
Bai [2003], Pintelon et al. [1994], Schoukens et al. [1998]).
In this vein, Hammerstein and Wiener systems can be, in
general, described by the following input-output relations
(note how the blocks correspond to the basic mathematical
notations of a function (nonlinear block, µ) and of a
convolution (dynamics, γi).

yk =
∞∑

i=0

γi ·m (uk−i) + zk (1)

yk =m

( ∞∑
i=0

γi · uk−i + zk

)
(2)

We use impulse response description, however, one would
prefer difference or state space equations as well. An
additive signal, zk, is a zero-mean noise disturbing the
system.

m(u) { }i°
uk wk yk

zk

vk

Fig. 1. A Hammerstein system

Remark 2. Neither of interconnecting signals wk and vk

are available for measurements. Thus, in general, the
system characteristics can be recovered up to some, system
dependent, multiplicative and additive constants. It will
be further shown in more details, however it is noted here
to emphasize that this inability is a consequence of the
systems assembled structures and hence a result of a lack
of measurements of interconnecting signals rather than a
shortcoming of any of the proposed algorithms.

m(v){ }i°
uk ykwk

zk

vk

Fig. 2. A Wiener system

2. MATHEMATICAL TOOLS

The main tool the identification algorithms are based upon
is a regression function, i.e. a conditional expectation of
the system output given the input.

Hammerstein system. We can rewrite (1) into the equiv-
alent form (see Fig. 1)

yk = µ (uk) + ξk + zk (3)

in which the past observations {xk−i} induce an additive
stationary ’system noise’

ξk =
∞∑

i=1

γi [m (uk−i)− Em (u1)]

correlated because of system dynamics, and disturbing
together with the external one, zk, the output of a system
nonlinearity

µ (u) = γ0m (u) + ζ

where ζ = E {m (x1)
∑∞

i=1 γi} is a system dependent
constant, cf. Remark 2. This, since Ezk = Eξk = 0, leads
eventually to the observation that Eyk = Eµ (uk) and
hence that µ (u) = E (yk|uk = u), i.e. that µ (u) is in fact
a regression function of yk on uk; cf. Greblicki and Pawlak
[1986]. Thus, to recover the nonlinearity, we merely need
to estimate the regression function µ (u). As for the linear
subsystem, we note that

E {yiu0} = γiE {m (u1)u1} (4)

and use correlation estimate to recover impulse response
coefficients γi.

Wiener system. In this case the identification problem
is much more intricate. First of all, for Gaussian input uk

and noise zk we have that (see Fig. 2)

E (uk|wk+i = w) = αiw

where αi = γiα with α = 1/
(∑∞

i=0 γ
2
i + σ2

z/σ
2
u

)
, being a

system-dependent constant (a usual notation of variance
of uk and zk by σ2

u and σ2
z, respectively, is applied). Then,

for any invertible nonlinearity m (y) we have

E (uk|yk+i = y) = αim
−1 (y) = µ (y) (5)

that is, a scaled inverse of the nonlinear characteristic is a
regression function of uk on yk (i.e. a conditional expecta-
tion holds in with input and output measurements being
replaced each other). Hence, estimating the regression is
equivalent to estimate the inverse of the nonlinearity (up
to the constant αi, cf. Remark 2). For linear system we
have

E {u0yi} = βγi (6)

where β = αE {v1m (v1)} is an another system-dependent
constant, cf. Greblicki and Pawlak [1992], Greblicki [1994,
1997].

3. IDENTIFICATION ALGORITHMS

Depending on a scope of the prior information at hand,
we will present algorithms recovering nonlinearity in Ham-
merstein and Wiener systems employing either parametric
or nonparametric estimates of regression function. In par-
ticular, in a former case, a least squares-based estimates
will be used, and when only nonparametric knowledge is
available, various nonparametric algorithms will exploit a
kernel-based Nadaraya-Watson estimate, or an orthogonal
series one (with a wavelet series in particular). Also mixed
parametric-nonparametric algorithms are presented.
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3.1 Least squares identification of Hammerstein system

Prior knowledge. In the classical parameter approach
(Narendra and Gallman [1966], Chang and Luus [1971],
Billings and Fakhouri [1982], Ljung [1987], Stoica and
Söderström [1989], Bai [1998]) a rich a priori knowledge
of the system is required, and specific structure on the
system description is imposed. Most often the nonlinear
system is assumed to be linear in (the finite number of)
parameters, i.e.,

yk =
n∑

i=0

γiµ(uk−i) + zk, µ(u) =
m∑

i=1

cifi(u) (7)

where the orders n and m are known and the form of
functions f1(),...,fm() are given a priori (e.g. polynomial
representation is used, i.e., fi(u) = ui−1), and zk is
immeasurable zero-mean random noise. The purpose is to
estimate the parameter vectors

c = (c1, ..., cm)T and Γ = (γ0, ..., γn)T (8)

representing the static characteristic and the linear dy-
namics, using the measurements {(uk, yk)}N

k=1 of the whole
system. Since the internal signal wk = µ(uk) is not ac-
cessible for a direct measurement, the systems with the
parameter vectors Γ, c and aΓ, c/a are, for each a 6= 0,
indistinguishable from the input-output point of view.
Remark 3. To obtain a uniqueness of the solution we
assume that ||Γ||2 = 1, where ||.||2 is the euclidean vector
norm, and that first nonzero element of Γ is positive.

Let

θ= (γ0c1, ..., γ0cm, ..., γnc1, ..., γncm)T = (9)

= (θ1, θ2, ..., θ(n+1)m)T

be the aggregated parameter vector of the Hammerstein
system, and φk be the generalized input of the form

φk = (f1(uk), ..., fm(uk), ..., f1(uk−n), ..., fm(uk−n))T (10)

Since yk = φT
k θ + zk, for k = 1, ..., N we obtain the

following measurement equation
YN = ΦNθ + ZN (11)

where YN = (y1, ..., yN )T , ΦN = (φ1, ..., φN )T , and ZN =
(z1,..., zN )T .

The identification algorithm The estimation may be
performed as follows.

Step 1. Compute the least squares estimate

θ̂
(LS)

N = (ΦT
NΦN )−1ΦT

NYN (12)

of θ, and construct the estimate Θ̂(LS)
Γc of the matrix

ΘΓc = ΓcT using plug in method.

Step 2. Perform the Singular Value Decomposition (SVD)
of Θ̂(LS)

Γc

Θ̂(LS)
Γc =

min(n,m)∑
i=1

σiµ̂iν̂
T
i (13)

and compute the estimates of Γ and c

Γ̂(LS)
N = sgn(µ̂1[κµ1

])µ̂1

ĉ
(LS)
N = sgn(µ̂1[κµ1

])σ1ν̂1

where κx = min{k : x[k] 6= 0}.
It was proved in Bai [1998] that

Γ̂(LS)
N → Γ and ĉ

(LS)
N → c (14)

with probability 1 as N →∞.

Similar approach can be applied also for the Hammerstein
systems with the IIR linear subsystems (described by
the ARMA equation). However for the correlated {zk}
the least squares estimate is biased then. One of the
techniques which allow to avoid this problem is application
of instrumental variables (see e.g. Wong and Polak [1967],
Söderström and Stoica [1982]).

3.2 Nonparametric identification of Hammerstein system

Prior knowledge. The following assumptions (typical for
nonparametric system identification tasks; cf. Greblicki
[1989], Hasiewicz et al. [2005], Śliwiński and Hasiewicz
[2005], Pawlak and Hasiewicz [1998]) hold: 1) the input
signal, {uk}, and the external additive noise, {zk}, are
zero-mean random processes with finite variances; they
are mutually independent and {uk} is an i.i.d. process
with a density function f (u), 2) the density, f (u), and
the static nonlinearity, m (u), are bounded and continuous
with some Hölder smoothness exponents νf , νm > 0 (in
particular, they do not have to be invertible), 3) the
linear dynamic subsystem is asymptotically stable and
its impulse response, {γi}, is unknown, 4) only a set of
input-output measurements {(uk, yk)}, k = 1, . . . , N , is
available.

Kernel algorithm. Assume that input signal is arbitrar-
ily distributed (and in particular, it has no density). The
algorithm we employ in such case is based on a kernel
function K (u) (satisfying only some additional technical
conditions, cf. Greblicki and Pawlak [1989]):

µ̂N (u) =

N∑
k=1

ykK
(

u−uk

h(N)

)
N∑

k=1

K
(

u−uk

h(N)

) (15)

The convergence of the estimate is governed by the follow-
ing theorem (cf. Greblicki and Pawlak [1989]):
Theorem 1. Let

N →∞ and Nh (N) → 0

then

µ̂K (u) = µ (u) +O(N− γ
2γ+1 ) in probability,

for almost all τ (u) where τ is a probability measure of the
input uk and where γ = min {νm, νf , p} with p being a
number of vanishing moments of the kernel functionK (u).
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Orthogonal (wavelet) algorithm. When the input signal
uk has a density, one can apply wavelet based algorithm,
cf. Hasiewicz et al. [2005], Śliwiński and Hasiewicz [2007]
and (3):

µ̂K (u) =
ĝK (u)

f̂K (u)
(16)

where ĝK (x) and f̂K (x) are the estimates of the wavelet
approximations at some scale K acting as a smoothing
parameter, cf. [Hasiewicz et al., 2005, Hasiewicz, 2001,
Remark 5.1], of a product g (u) = µ (u) · f (u), and of the
input signal density f (u). The estimates presented below
in a vector-like form for conciseness and to emphasize
similarities of the computations needed by ĝK (u) and
f̂K (u):

[
ĝK (u)
f̂K (u)

]
=

b2M u−s1c∑
n=d2M u−s2e

ϕMn (u) ·
[
α̂Mn

âMn

]

+
K−1∑
m=M

b2mu−t1c∑
n=d2mu−t2e

ψmn (u) ·

[
β̂mn

b̂mn

]

with the empirical coefficients, α̂Mn, âMn, β̂mn, and b̂mn,
calculated as[

α̂Mn

âMn

]
=

1
N

N∑
k=1

ϕMn (uk) ·
[yk

1

]
[
β̂mn

b̂mn

]
=

1
N

N∑
k=1

ψmn (uk) ·
[yk

1

]
where [s1, s2] and [t1, t2] are supports of the father and
mother wavelets, ϕ and ψ, respectively. For m = M,M +
1, . . . , some fixed M , and n = . . . ,−1, 0, 1, . . . , {ϕMn} and
{ψmn} constitute an orthogonal basis of L2 (R) space.

The properties of the reference algorithm is established by
the following lemma, being a ’decomposed’ version of the
Theorem 2 in Hasiewicz et al. [2005] with respect to the
numerator of the estimate, and pointing out the behavior
of the mean square error components (see proof of Th. 2
in Hasiewicz et al. [2005]).
Theorem 2. Let the wavelet family used in the estimate
µ̂K (u) in (16) have p vanishing moments. Selecting the
estimate scale K according to the rule

K =
⌊

1
2γ+1 log2N

⌋
where γ = min {νm, νf , p}

makes the algorithm µ̂K (u) converge to µ (u) as N → ∞
with the rate

µ̂K (u) = µ (u) +O(N− γ
2γ+1 ) in probability, (17)

for arbitrary u, for which f (u) > 0.

Note that the convergence given in (17) is not affected
by a structure of a dynamic subsystem {γi}; cf. discus-
sions in Pawlak and Hasiewicz [1998], Hasiewicz et al.
[2005]. Moreover, provided that, for a given number of
vanishing moments of the wavelet family, it holds that
p ≥ min {νm, νf}, this rate is asymptotically optimal, i.e.,
the best attainable by any nonparametric estimate of a

nonlinearity for which the Hölder exponent is only known
(see Stone [1980]).

Generalized nonparametric estimates. Recall that the
fundamental meaning for the identification routine of
Hammerstein system has the following dependence be-
tween the regression functions Rc(u) and the genuine
system characteristic m()

Rc(u) =E{yk|uk−c = u} (18)

=E{γcm(uk−c) +
∑
i 6=c

γim(uk−i) + zk|uk−c = u}

= γcm(u) + δc

where δc = Em (u)
∑∞

i 6=c γi, and c is any time-lag between
input and output. Due to (18), the characteristic µ()
may be estimated only up to some scaling and shifting
constants γc and δc, provided that we can estimate Rc(u).
This feature is however independent of the identification
method and it is a simple consequence of inaccessibility
of the interior signal {wk} for a direct measurement. In
the standard nonparametric methods, the Hammerstein
system is treated in fact as a nonlinear static element
corrupted by a correlated noise. One can namely specify
three components of the output

yk = γcm(uk−c) +
∑
i 6=c

γim(uk−i) + zk (19)

In such a description only the cth term of the sum in (7)
is privileged, which means that the most part of the signal
yk is in a sense ignored, although the ”system noise”

ξk ,
∑
i 6=c

γim(uk−i) (20)

also depends on the identified function m(). To avoid this
problem the generalized approach has been proposed in
Mzyk [2007]. The following combined regression function

Rc1,c2(u) ,
Rc1(u) +Rc2(u)

2

=E

{
yk+c1 + yk+c2

2
|uk = u

}
is estimated, which allows to reduce the error by a proper
selection of c1 and c2.

Identification of the linear part The relation in (4)
suggests the following simple estimates of the impulse
response coefficients

γ̂i =
1

N − i

N−i∑
k=1

yk+iuk (21)

for which holds the mean square convergence holds in a
coefficient-wise manner, that is, (cf. Greblicki and Pawlak
[1989]):
Theorem 3. For any fixed i

lim
N→∞

E (γi − γ̂i)
2 = 0

The same algorithm can be used to estimate coefficients
of the impulse response in Wiener systems, as well, cf.
Greblicki [1997].
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3.3 Least squares identification of Wiener system

Since in the Wiener system the nonlinear block precedes
the linear dynamics, the identification task is much more
difficult. Till now, the sufficient identifiability conditions
have been formulated and the convergence of the proposed
estimates has been proved only fore some special cases.
Many methods require the non-linearity to be known,
invertible, differentiable or require special input sequences
(see e.g. Billings and Fakhouri [1977], Hasiewicz [1987],
Haber and Keviczky [1999]). For example the Wiener
system with the polynomial static characteristic and the
FIR linear dynamics

yk =
p∑

i=0

c0w
i
k + zk, wk =

m∑
i=0

γiuk−i (22)

can be described similarly to (11)
YN = ΦNθ + ZN (23)

but now, the meaning and the structure of the matrix
ΦN = (φ1, ..., φN )T and the vector θ are more sophisti-
cated, i.e.,

φk =
[
|α|!
α!

uα
k

]
|α|6p

∈ Rd (24)

θ=
[
c|α|Γα

]
|α|6p

∈ Rd

where
α = (α1, α2, ..., αm+1)T ∈ Nm+1

0

is the multi-index of order m + 1 (see Lacy and Bern-
stein [2003]), |α| =

∑m+1
i=0 αi, α! =

∏m+1
i=1 αi, uk =

(uk, uk−1, ..., uk−m)T , uα
k =

∏m+1
i=1 uαi

k−i−1, Γα =
∏m+1

i=1 γαi
i−1,

d =
∑p

i=0
(m+i)!

m!i! , and [f(α)]|α|6p denotes the column
vector whose components are evaluated at every multi-
index α such that |α| 6 p under some established ordering.
Step 1 of the identification procedure is the same as for
Hammerstein system (see (12)), Step 2 requires application
of multi-dimensional SVD.

3.4 Nonparametric identification of Wiener system

Assumptions here resemble, to some extent, the assump-
tions posed for nonparametric Hammerstein system algo-
rithm. They are, however, much more stringent. Namely
(cf. Greblicki [1992, 1994, 1997]) hold: 1) the input sig-
nal, {uk}, and the additive noise, {zk}, are zero-mean
Gaussian processes, 2) the static nonlinearity, m (u), is
invertible and has P = 1, 2, . . . continuous derivatives, 3)
the linear dynamic subsystem is asymptotically stable and
its impulse response, {γi}, is unknown, 4) only a set of
input-output measurements {(uk, yk)}, k = 1, . . . , N , is
available.

The kernel algorithms is of the form

µ̂N (y) =

N∑
k=1

ukK
(

y−yk

h(N)

)
N∑

k=1

K
(

y−yk

h(N)

)

i.e. it is a version of the algorithm in (15) with switched
input and outputs..

The following theorem describes the behavior of the algo-
rithm Greblicki and Pawlak [1992]:
Theorem 4. Let the kernelK satisfies the following restric-
tions

sup |K (y)| <∞ and
∫
|K (y)| dy <∞

and yK (y) → 0 as y →∞. If, moreover, K (y) has P + 1
vanishing moments, then for N → ∞ and Nh (N) → 0 it
holds that

µ̂N (y) = µ (y) +O
(
N− P

2P+1

)
.

We would like to point at the end of the Wiener system
identification algorithms presentation that the interesting
idea of nonparametric identification of Wiener systems
with non-invertible characteristics and IIR filters has been
proposed in Mzyk [2007b], where the static characteristics
is estimated by data pre-selection and local averaging; see
also Pawlak et al. [2007] for algorithms working with FIR
filters.

3.5 Parameter identification of Hammerstein systems with
the help of nonparametric regression methods

Prior knowledge In this section parameter estimation is
supported with the nonparametric regression. We admit
the IIR linear dynamics, correlated output noise and
the nonlinear characteristic which is not linear in the
parameters.
Assumption 1. The form of a static nonlinearity is known
up to the parameters, i.e. we are given the function µ(u, c)
such that µ(u, c∗) = µ(u), where c∗ = (c∗1, c

∗
2, ..., c

∗
m)T is a

vector of the unknown true parameters of the nonlinearity.
The function µ(u, c) is by assumption differentiable with
respect to c, and the gradient5cµ(u, c) is bounded in some
convex neighborhood O(c∗) of c∗:

‖5cµ(u, c)‖ 6 Gmax <∞, c ∈ O(c∗)
Assumption 2. The linear element is of the ARMA(s, p)
type, i.e. it can be described by the following difference
equation
vk = α0wk + ...+ αswk−s + β1vk−1 + ....+ βpvk−p (25)

p > s, with unknown parameters α0, α1, ..., αs and
β1, β2, ..., βp, or equivalently as

β(q−1)vk = α(q−1)wk

where

α(q−1) = α0 + α1q
−1 + ...+ αsq

−s

β(q−1) = 1− β1q
−1 − ...− βpq

−p

and q−1 is a backward shift operator

As it will be seen, when identifying dynamic subsystem
Assumption 1 may be omitted, and conversely Assumption
2 may be omitted during identification process of the
static part. The aim is to discover the true parameters
of subsystems, respectively c∗ = (c∗1, c

∗
2, ..., c

∗
m)T and θ =
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(α0, α1, ..., αs, β1, β2, ..., βp)T , using a set of input-output
data {(uk, yk)} collected from the whole system in an
identification experiment.

Estimation of the nonlinearity parameters First, ex-
ploiting a nonparametric regression estimation technique,
the immeasurable inner signal {wk} is estimated from
the measurement data (uk, yk). Then, the least squares/
instrumental variables method is used to the independent
estimation of the two subsystems parameters using, re-
spectively, the pairs (uk, ŵk) and (ŵk, yk) where {ŵk} is
the estimate of the interaction sequence obtained by a
nonparametric method.

Stage 1 (nonparametric): On the basis of M input-output
measurement data {(uk, yk)}M

k=1, for the selected N0 input
points {un; n = 1, 2, ..., N0} estimate the corresponding
interactions {wn = µ(un, c

∗); n = 1, 2, ..., N0} as

ŵn,M = R̂M (un)− R̂M (0), (26)

where R̂M (u) is a nonparametric estimate of the regression
function R(u) = E[yk|uk = u].

Stage 2 (parametric): Plug in the estimates ŵn,M obtained
in stage 1 to the following the loss function

Q̂N0,M (c) =
N0∑

n=1

[ŵn,M − µ(un, c)]
2 (27)

and minimize them, getting the solution ĉN0,M . Take the
computed ĉN0,M as the estimate of c∗.
Theorem 5. (Hasiewicz and Mzyk [2004b]) Assume that
the computed ĉN0,M is unique and for each M the mini-
mizers cN0,M , c∗ ∈ C, where C is a bounded convex set in
Rm. If in stage 1 it holds that

R̂M (un) = R(un) +O(M−τ ) in probability (28)

as M →∞ for n = 1, 2, ..., N0 and for un = 0 then
ĉN0,M = c∗ +O(M−τ ) in probability (29)

as M →∞.

3.6 Identification of ARMA dynamics by nonparametric
instrumental variables

Since vk = yk − zk thus

yk = ϑT
k θ + zk (30)

where θ = (α0, α1, ..., αs, β1, β2, ..., βp)T is a vector of
unknown true parameters of the linear dynamics (p >
s), ϑk = (wk, wk−1, ..., wk−s, yk−1, yk−2, ..., yk−p)T is a
generalized input vector and

zk = zk − β1zk−1 − ...− βpzk−p

is a proper, zero-mean and stationary resultant distur-
bance. For a set of N input-output data {(ϑk, yk)} we can
write concisely

YN = ΘNθ + ZN

where YN = (y1, y2, ..., yN )T , ΘN = (ϑ1, ϑ2, ..., ϑN )T and
ZN = (z1, z2, ..., zN )T .

Since the matrix ΘN contains among others the regressors
yk−1, yk−2, ..., yk−p and the noise {zk} is not white, the
least squares estimate of θ, of the form

θ̂
(LS)

N = (ΘT
NΘN )−1ΘT

NYN (31)

is obviously biased. As is well known, we can overcome
this weakness by using instrumental variables approach,
yielding the estimate (see Stoica and Söderström [1989])

θ̂
(IV )

N = (ΨT
NΘN )−1ΨT

NYN (32)

where ΨN is a matrix of properly selected instruments
ΨN = (ψ1, ψ2, ..., ψN )T , ψk = (ψk,1, ψk,2, ..., ψk,s+p+1)

T

such that the following two properties hold

(a) PlimN→∞
(

1
N ΨT

NΘN

)
exists and is not singular

(b) PlimN→∞
(

1
N ΨT

NZN

)
= 0

Under such conditions the estimation error

∆(IV )
N = θ̂

(IV )

N − θ =
(

1
N

ΨT
NΘN

)−1( 1
N

ΨT
NZN

)
(33)

tends to zero (in probability) as N →∞, i.e. θ̂
(IV )

N → θ in
probability as N grows large.

The conditions (a) and (b) require in fact the elements of
ΨN be correlated with inputs and simultaneously not cor-
related with the noise {zk}. The simplest ΨN -generation
techniques exploit directly former inputs of linear dynam-
ics (see e.g. Söderström and Stoica [1982]), i.e. we take

ψk,i = wk−i+1 (34)

which yields
ψk = (wk, ..., wk−s, wk−s−1, ..., wk−s−p)T (35)

or, more generally, are based on a linear filtering of the
input process

ψk,i = Fi(q−1)wk (36)

where Fi(q−1) is a polynomial in q−1 (a backward shift
operator).

However, as it was already pointed out, in the Hammer-
stein system the inputs wk, ..., wk−s−p of linear dynamics,
wk = µ(uk), are not accessible for measurements thus
precluding the direct use of such an instrumental variables
estimate. According to our leading idea to overcome this
drawback we propose instead implementation (in stage 2)
of the following plug in estimate

θ̂
(IV )

N,M = (Ψ̂T
N,M Θ̂N,M )−1Ψ̂T

N,MYN (37)

where

Θ̂N,M = (ϑ̂1,M , ..., ϑ̂N,M )T (38)

ϑ̂k,M = (ŵk,M , ..., ŵk−s,M , yk−1, ..., yk−p)T

Ψ̂N,M = (ψ̂1,M , ..., ψ̂N,M )T (39)

ψ̂k,M = (ŵk,M , ..., ŵk−s,M , ŵk−s−1,M , ..., ŵk−s−p,M )T

and where appropriate ŵk−r,M are computed (in stage 1)
by a nonparametric technique (see (26)). If the nonpara-
metric estimate R̂M (u) is bounded, converges pointwise to
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the regression function R(u) and at the estimation points
u ∈ {0, uk−r; for k = 1, 2, ..., N and r = 0, 1, ..., s+ p} the
error behaves like∣∣∣R̂M (u)−R(u)

∣∣∣ = O(M−τ ) in probability (40)

then
(a’) PlimM,N→∞

(
1
N Ψ̂T

N,M Θ̂N,M

)
exists and is not singu-

lar
(b’) PlimM,N→∞

(
1
N Ψ̂T

N,MZN

)
= 0

provided that NM−τ → 0.
Theorem 6. (Hasiewicz and Mzyk [2004b]) For the esti-
mate (37) with Θ̂N,M and the instruments Ψ̂N,M as in (38)
and (39) it holds that

θ̂
(IV )

N,M → θ in probability (41)

asN,M →∞, provided thatNM−τ → 0. Particularly, for
M ∼ N (1+α)/τ , α > 0, the asymptotic rate of convergence
is ∥∥∥∥θ̂(IV )

N,M − θ

∥∥∥∥ = O(N−min( 1
2 ,α)) in probability (42)

Theorem 7. (Hasiewicz and Mzyk [2004b]) For Hammer-
stein systems, the index Q (ΨN ) is asymptotically optimal
for the instrumental matrix

Ψ∗
N = (ψ∗1, ψ

∗
2, ..., ψ

∗
N )T with (43)

ψ∗k = (wk, wk−1, ..., wk−s, vk−1, vk−2, ..., vk−p)T

where wk, wk−1, ..., wk−s are interactions and vk−1, vk−2,
..., vk−p are noise-free outputs of the system, i.e. for Ψ∗

N
as in (43) and all other admissible choices of ΨN it holds
that

lim
N→∞

Q(Ψ∗
N ) 6 lim

N→∞
Q(ΨN ) with probability 1 (44)

As compared to the parametric identification techniques
developed to date, the potential advantages of the ap-
proach are that: 1) we get simple estimates of both subsys-
tems, given by the explicit formulas, 2) the routine is not
using any type of alternate updating, 3) the method works
with systems having non-polynomial static characteristics,
4) the algorithm operates efficiently for both white and
colored noise, without the need of recovering the noise
model, 5) each part of the system is identified separately
making the estimates robust against lack or falsity of a
priori information about the other part, and 6) conver-
gence properties are established and rates of convergence
are given.

4. FINAL REMARKS

A priori knowledge incorporation As it was noticed in
the introduction, a desirable property of identification
algorithms is their ability to assimilate (preferable in a
systematic and elegant way) various kinds of prior informa-
tion. Let as shortly retrieve the presented algorithm in this
context. In parametric case the selection of basis function
spanning the model space can be adjusted to the informa-
tion about a special form of nonlinearity (e.g. polynomial
of known order can be used, or a model with piecewise-
smooth function can be applied, Vörös [1999, 2003]). In a

nonparametric case, for known range of the input signal
(in Hammerstein system) or known bound of the inverse
of the nonlinearity (in Wiener system) allows to employ
an appropriate orthogonal series, e.g. for unbounded in-
put one can use Hermite polynomial or wavelet series,
and trigonometric or Legendre, or Chebyshev polynomials
otherwise. Also, if the smoothness of the nonlinearity (or
its inverse) is known, the optimal bandwidth of kernel al-
gorithms together with optimal kernel can both be applied
– resulting in the fastest available convergence rate of the
algorithms.
Remark 4. In case of decoupled algorithms recovering in-
dependently a nonlinear and linear parts, an incorrect
information about the other subsystem does not affect the
quality of the identification (in particular, both convergen-
cies and their rates remain unchanged).

A note on computational complexity While both classes
of parametric and nonparametric algorithms complete
each other rather than compete (hence, in particular, can
not directly comparable), one can make a safe comparison
between them using a computational complexity criterion
(i.e. a number of operations necessary to evaluate a fi-
nal estimate). It seems to be intuitively clear and (can
somehow be supported by the proper interpretation of the
convergence rates of the presented algorithms), that the
smaller a priori knowledge, the more measurements need
to be collected to get similar quality of the identification
algorithm. Therefore, it would be favorable to have a
complexity of the computational routines corresponding to
algorithms decreasing with the smaller a priori informa-
tion since (intuitively) the smaller knowledge, the smaller
number of (usually simpler) formulae (relations binding
the measurement data) hold. These natural expectations
are sheerly fulfilled in presented algorithms, as:

• the parametric algorithms, based on least squares
principle, share a polynomial complexity O (Np) ,
p ≥ 3, while

• the complexity of their nonparametric versions re-
duces to a linear complexity O (N) in case of wavelet
and some kernel algorithms (for other orthogonal
series algorithms it grows to O (Np), p ≤ 2, however).

4.1 Gauss discovery revisited

Let us consider the Gauss discovery once again, now a bit
more from a ”various prior knowledge” perspective. First,
Ceres was spotted by Piazzi as a result of an exhaustive
search (in an attempt to verify Titius-Body rule governing
the distance of the Solar system objects from Sun). The
observation of its position were recorded yet no orbit
parameters had been established. Therefore, the dwarf-
planet was lost after traversing behind Sun. Several as-
tronomers (Body, von Zach, Olbers) tried to determine the
orbit. They however used a wrong model (inappropriate
a priori knowledge) assuming circular shape of the orbit
(which result in a biased model with systematic error), and
did also not correctly deal with error in measurements.
It was Gauss who ingeniously not only took into account
these errors (proposing his least squares algorithm to cope
with random errors) but also used a better model ad-
mitting elliptical orbits (e.g. the one based on Kepler’s
laws); Abdulle and Wanner [2002]. That the Kepler’s laws
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were not an ultimate model for celestial bodies motion
was discovered and explained another 100 years later by
another genius, Albert Einstein, whose general relativity
theory finally explained Mercury’s orbit anomalies.

This history has been recalled to illustrate a well known
fact that possessing a proper a priori information and
measurements are both conditia sine qua non of the suc-
cessful identification and that an improper prior knowledge
cannot automatically be compensated by the measure-
ments.

4.2 A proposition of identification based on semiparametric
approach

At the end of this short summary we would like to propose
an approach which would gain from both parametric and
nonparametric algorithms and moreover would furnish a
possibility of verification of the prior knowledge (repre-
sented by a parametric model). The approach is known in
statistics and econometric literature as a semiparametric
approach and therefore we would like to ’advertize’ in a
context of system identification.

Assume the underlying system is a Hammerstein one
and we are interested in recovering its nonlinear element
characteristic. The initial model is a polynomial one

µ̂p (u) =
P∑

i=0

α̂ipi (u)

and has been selected for its convenience – as a kind of
’quick’n’dirty’ solution. To establish parameters αi least-
squares algorithms is applied. There are three possibilities
now:

• The model is correct and its parameters are correctly
estimated (by happenstance).

• The model remains correct but its parameters are
wrongly estimated (e.g. because of correlation of the
external noise zk).

• Neither model nor its parameters are correct (e.g. the
genuine nonlinearity has jumps).

The proposed algorithm exploits wavelet, and particularly
their property of having P + 1 vanishing moments (vis.
of being orthogonal to all polynomials of order P, where
P can be set arbitrarily). Moreover, for simplicity, we
assume that the system input is bounded and of uniform
distribution. Hence, assuming that the nonlinearity is
square integrable (which is a non issue in practice) we
have (both scaling indices m,M and translation factors n
are assumed to run through the proper indices ranges in
order to represent µ (u) in a unit interval [0, 1]; see Cohen
et al. [1993])

µ (u) =
∑

n

αMnϕMn (u) +
∑
m

∑
n

βmnψmn (u)

Given a model µ̂p (u) we are interested in studying the
residue function

µr (u) = µ (u)− µ̂p (u)

Clearly, due to the aforementioned property of vanishing
moment of wavelet functions, it holds that

αMn =
〈
µ (u)− µ̂p (u) , ϕMn (u)

〉
βmn = 〈µ (u) , ψmn (u)〉

and therefore the semiparametric algorithm µ̂p (u)+µ̂r (u)
converges to the actual nonlinearity µ (u) regardless of
the initial model, with the wavelet expansion coefficients
computed as

α̂Mn =
1
N

N∑
k=1

ykϕMn (uk)− αMn

β̂mn =
1
N

N∑
k=1

ykψmn (uk) .

Examining the coefficients α̂Mn and β̂mn we can moreover
draw the following conclusions about the initial model:

• if all β̂mn ∼ 0 (i.e. they are statistically insignificant),
and if also all α̂Mn ∼ 0, then µ̂p (u) is a proper model,

• if all β̂mn ∼ 0 but any α̂Mn is significant, then the
model is correct yet has wrongly estimated parame-
ters,

• if any of β̂mn is significant, then the model is incor-
rect.

Semiparametric algorithms seem to be a valuable proposal
for nonlinear system identification since they are statisti-
cally and numerically advantageous for a wide range of
sizes of measurement sets: from small (when parametric
estimate works) to large (where nonparametric estimate
plays the main role).
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P. Śliwiński and Z. Hasiewicz. Computational algorithms
for multiscale identification of nonlinearities in Hammer-
stein systems with random inputs. IEEE Transactions
on Signal Processing, 53(1):360–364, 2005.
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