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Abstract: In this paper we present the analysis and design of distributed estimators for formation flying
spacecraft with time-varying sensing topologies. We first develop a discrete-time, switched linear model
of the formation translational dynamics in which the the measurement vector is characterized in terms
of the edge matrix of a graph associated with the sensing topology. Then a switched, linear estimator
is developed, called a λ-estimator, for a general class of discrete-time, switched linear systems. This
estimator is replicated on each spacecraft to estimate the entire relative translational state of a formation,
and estimator gain switching occurs as a function of the instantaneous sensing topology. These estimators
guarantee that the mean of the estimation error decays to the origin with a prescribed decay rate and that
the error covariance decays to an ultimate bound, also with a prescribed decay rate. In addition, linear
matrix inequality-based design procedures are developed for λ-estimators. It is proven that a stable
formation λ-estimator exists if all of the possible sensing topologies describe connected graphs. This
observation leads to the design of opportunistic λ-estimators for formations switching among connected
sensing topologies in which more sensing links are available than considered in estimator design.

1. INTRODUCTION
This paper presents the analysis and design of distributed esti-
mators for formation flying spacecraft with time-varying sens-
ing topologies. This research is motivated by NASA’s formation
flying missions, such as the Terrestrial Planet Finder Interfer-
ometer (TPF-I) [Lawson (2001)], in which several spacecraft
operate in a coordinated manner to achieve a common objec-
tive. Each spacecraft in a formation is assumed to estimate
a maximal, linearly independent set of inter-spacecraft (i.e.,
relative) translational states (see Smith and Hadaegh (2006) for
a similar distributed estimator structure). The resulting state
vector is referred to as the formation state. Each estimator
uses all available inter-spacecraft measurements, which form a
subset of the relative position vectors. This set of relative mea-
surements defines a sensing topology and an associated sensing
graph. It is also assumed that the overall measurement vector is
instantaneously available to all spacecraft. Subsequent research
will address extensions to account for communication delays.
We consider systems whose dynamics are accurately modeled
by linear, time-invariant ordinary differential equations, which
includes formations of an arbitrary number of spacecraft both
in deep space, such as TPF-I, and near-circular planetary orbits.

Formation maneuvers, such as reconfigurations, will change the
sensing topology. Further, with multiple sensing levels, specific
sensors can go in and out of lock. Previous work related to TPF-
I developed a steady-state-Kalman-based estimator for the three
levels of sensing available in the baseline TPF-I design [Scharf
et al. (2004)]. Mode changes and assumptions on timing were
used to ensure TPF-I estimator performance as sensors were
added or removed from the measurement vector. Both more
operational flexibility and more rigorous performance guaran-
tees are desired. To this end, we assume the sensing topology
can vary arbitrarily in time within a specified set of topolo-
gies. However, no a priori knowledge of the time sequence of
topologies from the set is assumed. An estimator determines

the instantaneous sensing topology in real-time upon receiving
the overall measurement vector. While the Kalman filter ad-
dresses this scenario, flight computers on-board formation fly-
ing spacecraft will perform a variety of autonomous operations
that restrict the complexity of formation estimation algorithms.
Computationally efficient algorithms are required. In this re-
gard, simply matching the steady-state Kalman filter gain to the
instantaneous sensing topology, as done previously, provides
no guarantee of stability. Further, the transient performance
of Kalman-based estimators can be significantly degraded by
errors in the initial covariance due to, for example, delays or
errors in inter-spacecraft communication of measurements.

Our objective is to develop formation state estimators that are:
(i) stable, (ii) exponentially convergent, (iii) precise, and (iv)
computationally inexpensive. Here, stability simply means that
the dynamics of the expected estimation error (mean error) are
asymptotically stable. Exponential convergence of the estima-
tor requires that the mean error converges to the origin at least
as fast as a prescribed decay rate. Precision is determined by
the error variance, and the estimator must minimize the error
variance in a sense described subsequently.

In the following sections, the dynamics of the formation state
are first formulated in discrete time. The measurements are
then expressed in terms of edge matrices and Laplacians of the
sensing graph. This system is shown to be observable when
the sensing graph is connected. Next, we describe a class of
fast estimators, termed λ-estimators, with desirable properties
of stability, fast decay, precision, and simplicity. The scalar
λ ∈ [0,1] specifies the decay rate.

For formation estimation, the λ-estimator on-board each space-
craft contains a copy of the relative state dynamics and a
feedback term that utilizes the measurement error (i.e., the
difference between the measurement vector and the current
estimate of the measurement vector). Hence, the λ-estimator
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has the same structure as a Luenberger observer [Luenberger
(1964)] or a Kalman filter [Kalman (1960)]. However, the the λ-
estimator gain is constant for each sensing topology, changing
only as the sensing topology changes, whereas the Kalman
gain is always varying. Also, the Luenberger observer does not
consider stochastic optimality of the estimation error. For λ-
estimator design, a linear matrix inequality (LMI)-based [Boyd
et al. (1994)] synthesis method minimizes the ultimate variance
of the estimation error vector while guaranteeing a decay rate
in the mean error that is specified by λ. The estimation error
covariance matrix also converges to an ultimate bound with a
decay rate determined by λ.

Related work in LMI-based estimator synthesis for switched,
discrete-time linear systems includes Luenberger-type observer
synthesis for linear [Alessandri and Coletta (2003); Alessandri
et al. (2005)] and nonlinear systems [Açıkmeşe and Corless
(2005)]. These LMI-synthesized observers establish globally
stable error dynamics but do not have stochastic performance
measures. The work presented here extends the LMI-design
methods to optimize such measures and adds a guaranteed, pre-
scribed decay rate. Such fast estimators can be useful in practice
when the estimator dynamics drive performance limits, such
as on the Spitzer Space Telescope [Bayard (1998)]. Another
contribution is to augment λ-estimator to utilize measurements
in addition to those specified in the design sensor topologies.
This opportunistic use of additional measurements preserves
stability and the exponential decay properties as well as im-
proves the error covariance beyond the designed level.

A partial list of notation is as follows: P = PT > (≥)0 implies P
is a positive (semi-) definite matrix; diag(A1, ...,An) is a block-
diagonal matrix with matrix entries A1, ...,An; trA is the trace
of square matrix A; A � 0 indicates each entry of matrix A is
strictly positive; λmax(P) and λmin(P) are the largest and small-
est eigenvalues of P; ⊗ is the Kronecker product; σ(A) is the
spectral radius of matrix A; I is the identity matrix of appropri-
ate dimension and In is n×n identity matrix; 0n is n×n zero ma-
trix and 0n×m is the n×m zero matrix; Z+ is the set of positive
integers; E{·} is the expectation operator; for random vector
x ∈ IRn, x̄ = E{x} is its mean, P = E

{
(x− x̄)(x− x̄)T

}
is its

covariance matrix, and trP is its variance; two random vectors
x and y are called independent when E

{
(x− x̄)(y− ȳ)T

}
= 0

and E
{
(y− ȳ)(x− x̄)T

}
= 0; imA denotes the range space of

A; kerA denotes the null space of A; |A| is the matrix with the
absolute values of the entries in matrix A; ‖ ·‖ is a vector norm,
and ||| · ||| is the matrix norm induced by it.

Let G(V,E) represent an undirected graph with set of vertices
V and edges E. The elements of V and E are distinct. A
sequence of vertices and distinct edges define a path. G(V,E)
is connected if there exists a path between any two vertices.
A cycle is a path of length greater than one that starts and
ends at the same vertex. An acyclic graph has no cycles. A
tree is a connected acyclic graph, that is, every two vertices
are connected by a unique path [Deo (1974)]. For any sensing
topology, the corresponding sensing graph is constructed by
considering each spacecraft as a vertex, and by putting an
edge between any two vertices where the corresponding relative
position vector is one of the measurements.

2. PROBLEM FORMULATION
The inertial dynamics of spacecraft in deep space or in a
circular planetary orbit can be expressed as

ξ̇l = A0ξl +B0(ηl +θl) l = 1, ..,ns, (1)

where ξl ∈ IR6 is the translational state vector of lth spacecraft
with the first three entries describing the position vector and the
last three describing the velocity vector, ηl ∈ IR3 is the control
input, θl ∈ IR3 is a zero-mean, random disturbance vector, ns is
the total number of spacecraft,

A0 =
[

03 I3
ω

2D0 ωS0

]
, B0 =

[
03
I3

]
, (2)

D0 = diag(3,0,−1), S0 =

[ 0 2 0
−2 0 0
0 0 0

]
,

and ω is a scalar determined by the orbit: ω = 0 for deep space
and ω =

√
µ/R3, where µ is the gravitational parameter for the

planetary body and R is the orbital radius. The inertial dynamics
of the entire formation can be expressed compactly as

ξ̇ = (A0⊗ Ins)ξ+(B0⊗ Ins)(η+θ) (3)
where, noting ξl = [ξl,1, ...,ξl,6]T , the “augmented” inertial
formation state vector ξ ∈ IR6ns is given by

ξ = [ξ1,1, ..., ξns,1, ξ1,2, ..., ξns,2, ..., ξ1,6, ..., ξns,6]
T

and similarly, η ∈ IR3ns and θ ∈ IR3ns are defined as
η = [η1,1, ..., ηns,1, ..., η1,3, ..., ηns,3]

T

θ = [θ1,1, ..., θns,1, ..., θ1,3, ..., θns,3]
T .

The control of formations is typically partitioned into control
of the overall formation location, in which a formation is
treated as a single object, and control of the relative positions
within a formation. Further, in deep space often only on-board,
relative measurements are available to the necessary precision.
Hence, we focus on estimating relative spacecraft positions. As
there is no unique, linearly-independent set of relative position
vectors, the designer must select the relative states that will be
estimated. For each maximal, linearly independent set, there
is an onto matrix T ∈ Z+

ns−1×ns (T T T > 0) that relates the
inertial positions to the relative ones, that is, r = (I3 ⊗ T )p
where r ∈ IR3(ns−1) is the “augmented” vector of all the relative
position vectors, and p is the “augmented” vector of all the
inertial position vectors. Note that Te = 0 where e is a vector of
ones. The formation state vector x ∈ IR6(ns−1), consisting of the
relative positions and velocities selected by T , is related to the
inertial formation state vector by

x = (I2⊗ (I3⊗T ))ξ = (I6⊗T )ξ. (4)
With this relationship, the formation dynamics are given by

ẋ = Acx+Bc(u+w) where (5)
u = (I3⊗T )η, w = (I3⊗T )θ

Ac = A0⊗ Ins−1, Bc = B0⊗ Ins−1.
(6)

Discretizing with time step ∆t and a zero-order hold for the
control input, we obtain

xk+1 = Axk +B(uk +wk) where

A = eA0∆t︸︷︷︸
:= Ad

⊗Ins−1, B =
Z

∆t

0
eA0(t−τ)B0dτ︸ ︷︷ ︸
:= Bd

⊗Ins−1. (7)

Recall the sensing topology can vary arbitrarily over a finite
number of specified topologies. Each sensing topology deter-
mines a distinct set of relative position measurements described
by the edge matrix, E ∈ Z+

q×ns , where q is the number of rela-
tive position vectors measured. A sensing link exists between
the ith and jth spacecraft if their relative position vector is
measured. For each sensing link, a row is added to the edge
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matrix with lth entry +1, the mth entry -1 (assuming m > l),
and zero otherwise. The measurement vector y is then given in
terms of the inertial position vector as

y = (I3⊗E)p.

Since all relative measurements can be expressed by means
of the relative position vector r, we have imET ⊂ imTT. This
inclusion implies that there exists some matrix H such that
E = HT . One such matrix is H = ET T (T T T )−1, which gives

y = (I3⊗HT )p = (I3⊗H)(I3⊗T )p = (I3⊗ET T (T T T )−1)r.
Hence,

y = [ I3⊗ET T (T T T )−1 03(ns−1) ]x. (8)
As a result, the discrete-time relative dynamics of the formation
with switched sensing topology are

xk+1 = Axk +B(uk +wk) (9)
yk = CT (k)xk + vk, T (k) ∈ S (10)

where S = {1,2, ...,qs} is the index set of sensing topologies,
qs is the number of sensing topologies, T : Z+ → S maps the
time index k into the sensing topology,

Ci = [ I3⊗EiT T (T T T )−1 03(ns−1) ], i ∈ S , (11)
and the process and measurement noise vectors are zero mean
independent random vectors with

E
{

vkvT
k
}

= RT (k) > 0 and E
{

wkwT
k
}

= Q≥ 0.

In addition to the edge matrix Ei, a sensing topology can be
uniquely specified by the graph Laplacian Li, where

Li = ET
i Ei, i = 1, ...,qs. (12)

Intuitively, a sensing topology must be connected for the for-
mation dynamics (Ci,A) to be observable. From graph theory, a
sensing topology is connected if and only if sgn(|Lns−1

i |) � 0,
which leads to the following result.
Lemma 1. The pair (Ci,A) is observable, where Ci and A are
given by (11), (7), and (2), if the sensing graph corresponding
to the matrix Ci is connected and ω∆t ∈ [0,2π). 2

Proof: First we show that kerHi = {0} where Hi =
EiT T (T T T )−1. Suppose that Hiv = 0 for some v. Since T T

is one-to-one, w 6= 0 when v 6= 0 where w := T T (T T T )−1v.
Now suppose that Eiw = 0 that is wT ET

i Eiw = wT Liw = 0.
Since Li corresponds to a connected graph, it has 0 as a non-
repeating eigenvalue with e = [1, ...,1]T as the corresponding
eigenvector, and all the other eigenvalues are positive [Deo
(1974)]. This implies that w = αe for some scalar α. If α 6= 0,
this implies that, since w = T T (T T T )−1v, there must be some
vector z such that e = T T z, which implies that T T T z = Te. Note
that Te = 0, which can easily be obtained by noting that the
relative positions of point which are all the same location is zero
vectors. Hence T T T z = 0. Since T T T is invertible, this implies
that z = 0, which leads to a contradiction proving that α = 0.
Hence w = 0 and then v = 0. Hence kerHi = {0}. This implies
that ker I3⊗Hi = {0}. Consequently Cix = 0 implies that x1 = 0
where x = [xT

1 , xT
2 ]T . Now consider CiAx for x = [0, xT

2 ]T .
Partitioning matrix Ad in (7) into square blocks as follows

Ad =
[

A1 A2
A3 A4

]
CiAx = (I3⊗Hi)(A2⊗ Ins−1)x2. Since kerHi = {0}, this implies
that CiAx = 0 for some x2 6= 0 if and only if A2 is singular.
Note that A2 = I3 when ω = 0. For ω∆t ∈ (0,2π) detA2 = 0

if and only if g(ω∆t) = 0 (see p.112 in Kaplan (1976) for an
expression of A2 that leads to this observation) where

g(θ) := θsin(θ)(4sin(θ)/(θ)−3)+4(1− cos(θ))2.

Since g(θ) > 0 for all θ ∈ (0,2π) (can be shown simply by
evaluating it), A2 is nonsingular. Hence

ker
[

Ci
CiA

]
= {0},

which implies the observability of the pair (Ci,A).

3. ESTIMATOR ANALYSIS AND SYNTHESIS

In this section we introduce an algorithm to estimate the for-
mation state vector xk of (9). The estimation algorithm is devel-
oped for a more general class of systems of the form

xk+1 = Aτxk +Bτuk +Gτwk

yk = Cτxk + vk
τ = T (k), (13)

where T : Z+ → S maps the time index k into the index set
S = {1,2, . . . ,M}, xk is the state vector having random initial
condition x0 with a mean x̄0 and variance P0, yk is the measured
output vector, uk is the vector of known inputs, and wk and vk
are zero mean and independent random vectors with

E{wkwl}= δklQT (k), E{vkvl}= δklRT (k)

where δkl is the Kronecker delta

δkl =
{

1 when k = l
0 otherwise .

For the formation dynamics (9), M = qs, Aτ = A, Bτ = Gτ = B,
and Qτ = Q for τ = 1, . . . ,M. Our objective is to design a linear
estimator for the state xk, which is a random vector for each k,
of the following form:

x̂k+1 = Aτx̂k +Lτ(Cτx̂k− yk)+Bτuk where τ = T (k) (14)
where Lτ is the estimator gain matrix. Let ek := x̂k − xk be the
estimation error. Its propagation is given by

ek+1 = (Aτ +LτCτ)ek−Lτvk−Gτwk. (15)
Letting Pk := E

{
(ek− ēk)(ek− ēk)T

}
be the estimation error

covariance matrix and noting that
ēk+1 = (Aτ +LτCτ)ēk, (16)

we have
ek+1− ēk+1 = (Aτ +LτCτ)(ek− ēk)−Lτvk−Gτwk.

Since ek depends on the process and measurement noise vectors
for only time steps 0, ...,k−1,

E
{
(ek− ēk)vT

k
}

= 0 and E
{
(ek− ēk)wT

k
}

= 0.

The previous two relations imply
Pk+1 = (Aτ +LτCτ)Pk(Aτ +LτCτ)T +LτRτLT

τ +GτQτGT
τ . (17)

The following definition describes a class of estimators that
have the properties stated in the Introduction.
Definition 1. For λ ∈ [0,1], P = PT > 0, and any switching
function T , a filter of the form (14) is a λ-estimator with
ultimate covariance P for the system (13) if

(1) For any e0

lim
k→∞

ēk = 0 and ∃c > 0 s.t. ‖ēk‖ ≤ cλ
k‖ē0‖ (18)

(2) For any e0 and P0 the covariance sequence {Pk}∞
k=0 is

bounded and
∀ ε > 0, ∃n≥ 1 s.t. Pk ≤ P+ εI ∀ k ≥ n, (19)
Pk ≤ P for k > 0 when P0 ≤ P. (20)

2
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For any ultimate covariance P, the covariance Y = Y T ≥ P is
also an ultimate bound. Therefore, since P > 0, there exists an
infimal ultimate covariance for any λ-estimator. This observa-
tion leads to the definition of an optimal λ-estimator.
Definition 2. A λ-estimator with ultimate covariance P is op-
timal if, for any other λ-estimator with ultimate covariance Q,
trP≤ trQ. 2

Remark 1. If a system (13) has singleton S (no switching),
(C,A) detectable, and (A,GQ1/2) reachable, then the optimal
1-estimator is the steady-state Kalman filter. 2

The next two theorems establish sufficient conditions for the
existence of a λ-estimator for the system (13). The first theorem
considers λ ∈ [0,1) and the second, λ = 1. The majority of
proofs are omitted for brevity.
Theorem 1. Given λ ∈ [0,1) and P = PT > 0, a filter of the
form (14) with gain matrices L1, ...,LM is a λ-estimator with
ultimate covariance P for the system (13) if the following
matrix inequalities are satisfied with some F = FT > 0 for
i = 1, ...,M,

P− (Ai +LiCi)P(Ai +LiCi)T −GiQiGT
i −LiRiLT

i > 0 (21)

λ
2F− (Ai +LiCi)F(Ai +LiCi)T ≥ 0. (22)

Further, for any initial covariance P0,
Pk−P≤ c2

λ
2k|||P0−P|||I for k ≥ 1 (23)

where c =
√

λmax(F)
λmin(F) is the c of condition (18). 2

Proof: A candidate Lyapunov function for the mean error
dynamics (16) is

Vk = ēT
k F−1ēk.

Then,
λ

2Vk−Vk+1 = ēT
k [λ2F−1−(

AT (k)+ LT (k)CT (k)
)T F−1 (AT (k)+LT (k)CT (k)

)
]ēk

(24)

where T (k) ∈ S . By using Schur complements twice, the
inequality (22) is equivalent to

λ
2F−1− (Ai +LiCi)T F−1(Ai +LiCi)≥ 0 ∀ i ∈ S .

Since T (k) ∈ S , the previous two inequalities imply all solu-
tions of the mean error dynamics satisfy

Vk+1 ≤ λ
2Vk, ∀k ≥ 0.

Consequently,

Vk ≤ λ
2kV0 ⇒ ‖ēk‖2

λmax(F) ≤ λ
2k ‖ē0‖2

λmin(F)

⇒ ‖ēk‖ ≤ cλ
k‖ē0‖ where c =

√
λmax(F)
λmin(F) .

(25)

This proves the satisfaction of the condition (18).

Suppose that, for n ≥ 0, Pn ≤ P that is P = Pn + H for some
H = HT ≥ 0. Then, by using the inequality (21), there is some
i ∈ S such that

Pn+1 = Aci(P−H)AT
ci +Si ≤ P−AciHAT

ci ≤ P
where

Aci = Ai +LiCi and Si = LiRiLT
i +GiQiGT

i .

When P0 ≤ P, the above implies (by induction) that Pk ≤ P for
all k ≥ 0. Hence, if Pn ≤ P for some n ≥ 0 then Pk ≤ P for all
k ≥ n.

Now consider the case when P0 ≥ P and let ∆k := Pk−P. Since
P = PT > 0, there exists some r > 1 such that rP≥ P0. Since P
satisfies the inequality (21) and r > 1

rP≥ Aci(rP)AT
ci + rSi ≥ Aci(rP)AT

ci +Si.

Hence rP satisfies the inequality (21) for all r≥ 1. Furthermore,
by using the earlier arguments

Pk ≤ rP ∀k ≥ 0.

This proves the boundedness of Pk, k = 0,1, ... (also note that
Pk ≥ 0). Now we claim that, for any solution of the error
dynamics (15) there exists some n ≥ 1 such that Pn ≤ P. This
will be proved by contradiction. Suppose this is not the case,
that is, for any integer n≥ 1 there exists some vector x 6= 0 such
that xT ∆nx > 0. Observe that the inequality (21) implies that
there exists some α > 0 such that

P−AciPAT
ci−Si ≥ αI ∀ i ∈ S . (26)

Let Ãk := AT (k) +LT (k)CT (k),

∆k+1 = ÃkPkÃT
k +GT (k)QT (k)G

T
T (k) +LT (k)RT (k)L

T
T (k)−P.

Since Pk = ∆k + P and Ãk = Aci for some i and T (k) ∈ S , the
above equality with the inequalities (26) imply that, for any T ,

∆k+1 ≤ Ãk∆kÃT
k −αI, ∀k ≥ 0.

Then, for any function T : Z+ → S ,

∆1 ≤ Ã0∆0ÃT
0 −αI

∆2 ≤ Ã1∆1ÃT
1 −αI

≤ Ã1(Ã0∆0ÃT
0 −αI)ÃT

1 −αI ≤ Ã1Ã0∆0ÃT
0 ÃT

1 −αI
...

...

∆k ≤ Ãk−1...Ã0∆0 ÃT
0 ...ÃT

k−1︸ ︷︷ ︸
:= Γk

−αI.

Here for any vector x 6= 0, define the following dynamics

xk+1 = ÃT
k xk with x0 = x. (27)

Since all the solutions of the mean error dynamics exponen-
tially converge to the origin as shown earlier, where the mean
error dynamics can be expressed as ēk+1 = Ãkēk, all the so-
lutions of the system (27) also converge exponentially to the
origin, which can easily be proven with Lyapunov function
Vk = xT

k Fxk. In particular, for any x 6= 0

‖xk‖ ≤ cλ
k‖x‖.

Note that xk = Γkx. This implies that

|||Γk||| ≤ cλ
k.

Hence
∆k ≤ Γ

T
k ∆0Γk−αI ≤ (c2

λ
2k|||∆0|||−α)I. (28)

Since there exists some n∗ ≥ 1 such that c2λ2k|||∆0||| < α for
k ≥ n∗, we have

xT
∆kx < 0 ∀x 6= 0 when k ≥ n∗.

Consequently, this establishes the contradiction, hence proving
that there exists some n ≥ 1 such that Pk ≤ P for all k ≥ n. The
inequality (28) also proves the condition (23).

Theorem 2. Given P = PT > 0, a filter of the form (14) with
gain matrices L1, ...,LM is a 1-estimator with ultimate covari-
ance P for system (13) if matrix inequalities (21) are satisfied.
2

Proof: The inequality (21) implies that there exists a small
enough positive scalar 1 > ε > 0 such that, for i = 1, ...,M,

P− (Ai +LiCi)P(Ai +LiCi)T −BiQiBT
i −LiRiLT

i ≥ εP.
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Since LiRiLT
i ≥ 0 and BiQiBT

i ≥ 0, this implies that

(1− ε)︸ ︷︷ ︸
λ

P− (Ai +LiCi)P(Ai +LiCi)T ≥ 0, (29)

where λ ∈ (0,1). Now the inequalities (29) and (21) are same
as the inequalities (21) and (22) with F replaced by P, hence
the conclusions of Theorem 3 apply with some λ ∈ (0,1).

An LMI approach to design λ-estimator is given as follows.
Theorem 3. Given λ ∈ [0,1), suppose there exist matrices S =
ST > 0, X = XT > 0, and Yi, i = 1, ...M, such that the following
LMIs hold:

S SAi+YiCi YiR
1/2
i SGiQ

1/2
i

AT
i S+CT

i Y T
i S 0 0

R1/2
i Y T

i 0 I 0
Q1/2

i GT
i S 0 0 I

> 0, i=1, ...M (30)

[
λ

2X AT
i S +CT

i Y T
i

SAi +YiCi 2S−X

]
≥ 0, i=1, ...M.

(31)
Then the filter of the form (14) is a λ-estimator for system (13)
with ultimate covariance P and gains Li, i = 1, ...m, given by

Li = S−1Yi and P = S−1. (32)
Condition (23) is also satisfied with F = X−1. 2

Proof: First we prove that the satisfaction of LMIs (30) implies
the satisfaction of the inequalities (21). To do that pre and post-
multiply (30) by diag(P, I, I, I) where P = S−1 and let Li = PYi
to obtain

P (Ai +LiCi) LiR
1/2
i GiQ

1/2
i

(Ai +LiCi)T P−1 0 0
R1/2

i LT
i 0 I 0

Q1/2
i Gi 0 0 I

> 0, i = 1, ..,M.

Using Schur complements twice, the matrix inequality above
can be reduced to[

P−LiRiLT
i −GiQiGT

i (Ai+LiCi)
(Ai+LiCi)T P−1

]
> 0 ⇒

P−(Ai+LiCi)P(Ai +LiCi)T−LiRiLT
i−GiQGT

i >0, i= 1, ...,M.

To prove that the LMIs (31) imply the inequalities (22), pre
and post-multiply each of the LMIs (31) by [I (Ai + LiCi)],
i = 1, ...,M, to obtain

λ
2X − (Ai +LiCi)T X(Ai +LiCi), i = 1, ...,M.

By using Schur complements several times, the above inequal-
ities imply [

λ
2X (Ai +LiCi)T

(Ai +LiCi) X−1

]
≥ 0, i = 1, ..,M

⇒ λ
2F− (Ai +LiCi)F(Ai +LiCi)T ≥ 0, i = 1, ..,M,

where F = X−1. Now we can conclude the proof by using
Theorem 1.

The following is a specialized LMI result for 1−estimators and
its proof follows the same steps as in the proof of Theorem 3.
Theorem 4. Suppose there exist matrices S = ST > 0, X = XT >
0, and Yi, i = 1, ...M, such that the LMIs (30) hold for λ = 1.
Then the filter of the form (14) is a 1-estimator for the system

(13) with ultimate covariance P and gains Li, i = 1, ...M, given
by (32). 2

These results suggest the following optimization problem to
design λ-estimators.

max
S,X ,Yi

trS subject to

S=ST > 0, X =XT >0, and
LMIs (30) and, when λ ∈ [0,1), (31).

(33)

Since the LMI conditions are only sufficient, the resulting ul-
timate covariance is suboptimal in general. However, the fol-
lowing corollary establishes that the LMI optimization problem
(33) produces the optimal 1-estimator 1 .
Corollary 1. Suppose that there exists a feasible solution of
the inequalities (21) for P = PT > 0 and L1, ...,LM . Then the
solution of the optimization problem (33) gives the optimal 1-
estimator for system (13). 2

4. ESTIMATION OVER CONNECTED SENSING
TOPOLOGIES WITH ARBITRARY ADDITIONAL LINKS

In this section the previous design techniques are extended to
the case in which sensing topologies are not known a priori.
However, it is assumed that there are persistent, connected
sensing topologies with edge matrices Ei, i = 1, ...,qs, such that
the actual sensing topology at any given time contains one of
these persistent topologies as a sub-graph. Equivalently, at any
time step k, we have imET

i ⊂ imET
k for some 1 ≤ i ≤ qs. The

following theorem shows a λ-estimator exists for a spacecraft
formation with connected sensing graphs.
Theorem 5. Consider the system (9) with ω∆t ∈ [0,2π) and
measurements (10) in which the Ci given by (11) result from
connected sensing graphs. Then there exists a λ-estimator with
some ultimate covariance P=PT >0 for any λ∈ [0,1].

Proof: Since each Ci defines a connected graph, for any Ci
and C j, it is straight forward to show that there exists some Vi j
such that Ci = Vi jC j. Pick any of the sensing tree and consider
the corresponding Ci with Ri. Since (Ci,A) is observable, we
can place the poles of A + LiCi in any circle in the complex
plane. So pick Li such that σ(A+LiCi) < λ, which implies that
σ((A + LiCi)/λ) < 1, which is equivalent to the existence of
F = FT > 0 satisfying

F− (A+LiCi)
λ

F
(A+LiCi)T

λ
> 0

⇒ λ
2F− (A+LiCi)F(A+LiCi)T > 0.

Since Ci = Vi jC j, LiCi = LiVi jC j, which implies that A+LiCi =
A + L jC j with L j = LiVi j. Then choosing all L j by using Li in
this manner, the matrix inequalities (22) are satisfied with F and
L j, j = 1, ..,qs.

Now since Ã := A+LiCi = A+L jC j for any i and j, and Ã has
its eigenvalues strictly in the unit circle,

P− ÃPÃT > W

has a positive definite solution for P = PT when W = W T ≥ 0.
Let W be such that

W ≥ GQGT +LiRiLT
i .

1 The proof of Corollary 1 is involved and it is omitted for brevity.
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Then, P is a feasible solution of the inequality (21). Now
the proof is completed by using Theorem 1 for λ ∈ [0,1) or
Theorem 2 for λ = 1.

Each measurement can now be decomposed into two parts:

• yk = Ckx + vk with Ck corresponding to one of the persis-
tent connected sub-graphs, and

• Additional measurements beyond those available in the
current persistent sub-graph given by

zk = Hkxk +nk where E
{

nknT
k
}

=Nk (34)

such that [CT
k HT

k ]T gives the full measurement vector.

The random vectors vk and nk are independent. The persistent
sub-graphs characterized by Ck are used to design a λ-estimator.
Existence of a λ-estimator is guaranteed by Theorem 5. The
Hk are unknown a priori and are determined in real-time as
measurements become available.

To incorporate the “opportunistic” information zk, the filter
form (14) is augmented to

x̂k+1 =Aτx̂k +Lτ(Cτx̂k− yk)+Kk(Hkx̂k− zk)+Bτuk, (35)
where τ=T (k). The following corollary (see the Appendix for
a proof) of Theorems 1 and 2 establishes the theoretical basis
for this filter form and specifies the opportunistic gain matrix
Kk.
Corollary 2. Given λ ∈ [0,1), P = PT > 0, and possible, ad-
ditional measurements (34), a filter of the form (35) with gain
matrices L1, ...,LM is a λ-estimator with ultimate covariance
P and opportunistic measurements for the system (13) if there
exist γi such that following matrix inequalities are satisfied for
i = 1, ..,M,

λ
2P−(Ai+LiCi)P(Ai+LiCi)T−GiQiGT

i −LiRiLT
i ≥γiI,

γi ≥ 0 for λ ∈ [0,1) and γi > 0 for λ = 1,
(36)

where the opportunistic gain matrix is given by

Kk =−ÃkPHT
k (HkPHT

k +Nk)−1, (37)

where Ãk = AT (k) + LT (k)CT (k). Further, if the estimator exists,
then the error covariance satisfies the inequality (23) when λ ∈
[0,1). Finally, let {P̂k}∞

k=0 be the sequence of error covariance
matrices when Hk ≡ 0⇒ Kk ≡ 0. Then,

Pk ≤ P̂k, k ≥ 0. (38)
2

Remark 2. Corollary 2 is used to set up the following optimiza-
tion problem to obtain estimator gains as in Theorem 3.

max
S,Yi

trS subject to

S=ST > 0, and
LMIs (30) with S in 1×1 block diagonal
entry replaced by λ2S.

(39)

Clearly the ultimate covariance obtained from the design pro-
cedure above, which is S−1, is at least as large as the ultimate
covariance obtained from the optimization problem (33). They
are guaranteed to be identical only for λ = 1. Hence, the esti-
mator performance can suffer by using the measurements in an
opportunistic fashion when λ < 1. �

The inequality (38) shows that including opportunistic mea-
surements will not reduce performance. A key step in the proof

of Corollary 2, namely, that conditions (23) and (38) are satis-
fied, is showing that the inequalities (36) imply

λ
2P−(Ak+LkCk)P(Ak+LkCk)T−GkQkGT

k −LkRkLT
k ≥ 0 (40)

for all k ≥ 0 and λ ∈ [0,1) (similar result for λ = 1). Then, the
inequalities (40) combined with the choice of Kk in (37) implies

λ
2P− (Ak +LkCk +KkHk)P(Ak +LkCk +KkHk)T

−GkQkGT
k −LkRkLT

k −KkNkKT
k ≥ 0,

for all k ≥ 0, which leads to the corollary.

Corollary 2 can be repeatedly applied within a single time step.
In particular, if zk has a large dimension, then inverting the
matrix Nk + HkPHT

k is computationally expensive. To reduce
computation, zk can be partitioned and incorporated in smaller
pieces within the same time step. More precisely, suppose that
we have the following description of the additional measure-
ments zk

zk =
[

zT
1,k . . . zT

p,k
]T

where zk, j = H j,kxk +n j,k (41)
where n j,k, j = 1, .., p, are independent, zero mean random
vectors with covariances N j,k. Then, extending (35), the oppor-
tunistic λ-estimator with partitioned update is

x̂k+1 =Aτx̂k+Lτ(Cτx̂k − yk)+
p

∑
i=1

Ki,k(Hi,k x̂k − zi,k), τ = T (k),

K1,k =−ÃkPHT
1,k(H1,kPHT

1,k +N1,k)−1, Ãk = AT (k)+LT (k)CT (k)

Ki,k =−

(
Ãk+

i−1

∑
l=1

Kl,kHl,k

)
PHT

i,k(Hi,kPHT
i,k+Ni,k)−1, i = 2, ..., p.

(42)

The requirement that partitions z j,k have independent measure-
ment noise n j,k is not limiting for spacecraft formations. Rel-
ative position measurements can be partitioned based on the
originating, physically-independent sensors.

4.1 Sensor Topology-Independent Formation Estimation

Corollary 2 suggests a design methodology for a universal
formation estimator. Assume a formation’s sensing topology
is always connected as is required for observability. Then the
sensing graph always contains a tree [Deo (1974)]. In practice
then, a tree sub-graph is selected at every time step for yk, and
the remainder of measurements are collected into zk. Now also
assume that the relative position measurements between any
two spacecraft have the same noise properties. This implies
that for any tree in the sensing graph with the corresponding
measurement yk = Ckx + nk, we have E

{
nknT

k

}
= R = Ins−1⊗

R0 where R0 ∈ IR3×3 is the measurement error covariance
matrix per relative position measurement. Since yk has the same
dimension for any tree, E

{
nknT

k

}
is identical among different

tree sub-graphs (but Ck can be different). Consider any two
different trees with corresponding matrices Ci and C j, then
there exists an invertible matrix Λi j such that Ci = Λi jC j and
Λ ji := Λ

−1
i j . Note that Λi j = Λ̃i j ⊗ I3 where Λ̃i j ∈ IRns−1×ns−1.

When these trees correspond to the same unlabeled graph, it can
be shown that Λ ji = ΛT

i j. In this case, suppose an estimator gain
Li defines a λ−estimator for the measurement matrix Ci with
an ultimate covariance P satisfying the inequality (36). Then
A+LiCi = A+L jC j where L j = LiΛi j. Additionally

L jRLT
j = LiΛi jRΛ

T
i jL

T
i

= Li(Λ̃i j⊗ I3)(Ins−1⊗R0)(Λ̃i j⊗ I3)T LT
i

=Li(Λ̃i j⊗R0)(Λ̃i j⊗ I3)Li = Li(Λ̃i jΛ̃
T
i j⊗R0)LT

i =LiRLT
i .
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Fig. 1. Sensing Topologies for Seven-Spacecraft Formation.
Links are solid lines, and gray links are noisier.
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Fig. 2. Sensing-Topology Switching Sequence for Simulations.

This together with A + LiCi = A + L jC j show that L j with C j
also satisfies the inequality (36), that is, L j defines a λ-estimator
with ultimate covariance P as well. Note that this is not the
case if Ci and C j correspond to different unlabeled trees where
Λi jΛ

T
i j 6= I. Hence, a λ-estimator can address every connected

sensing topology of a formation by designing for all unla-
beled trees only. Performance will necessarily be sub-optimal.
However, considering ten spacecraft, there are 11,716,571 con-
nected, unlabeled graphs, but only 106 unlabeled trees [Sloane
(2007)], which is a considerable design simplification.

5. SIMULATION RESULTS

The preceding theory is demonstrated with simulations of a
seven-spacecraft formation switching between four connected
sensing topologies. The topologies are depicted in Figure 1.
Sensing links are solid lines; the lighter-shaded lines had
higher noise. Figure 2 provides the switching sequence used
in the provided simulations. Comparisons are made between (i)
LMI-designed λ-estimators, (ii) the Kalman filter, and (iii) the
Switched Steady-State Kalman Filter (SSKF). The SSKF has
the same form (14) as a λ-estimator, but with gains Lτ given
by the steady-state Kalman gain corresponding to the instanta-
neous sensing topology. SSKF has no performance guarantees.

An uncertainty is assumed in the initial error covariance, which
noticeably affects the Kalman filter. In this case, Figure 3 shows
that the λ-estimator converges to its ultimate variance faster
than the Kalman filter. The ultimate variance is slightly larger
than Kalman due to the decay rate constraint of λ = 0.9. Figure
4 shows a case for λ = 0.4, which requires faster decay. The
λ-estimator ultimate variance is significantly worse than for
the Kalman filter. However, the mean error goes to zero much
faster, as shown in Figure 5. These two figures illustrate the
trade-off between convergence of the mean error and steady-
state variance.

6. SUMMARY AND FUTURE WORK

A new class of computationally-efficient estimators, called λ-
estimators, has been developed for switched, discrete-time lin-
ear systems. An explicit constraint on the convergence rate of
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the mean estimation error allows a trade-off between speed
and an ultimate bound on variance. These estimators were then
applied to spacecraft formations in deep space or near-circular
planetary orbits that have time-varying sensor topologies. An
LMI-based synthesis technique was described. Further, by di-
viding sensor measurements into persistent and opportunistic
categories, sensor topology-independent λ-estimators can be
designed efficiently for large formations. These formation esti-
mators provide guaranteed performance under arbitrary sensor
topology variations with significantly less computation than a
traditional Kalman filter.

Future work includes: (i) incorporating dwell time constraints,
which limit how fast topologies can vary, thereby reducing the
ultimate variance, (ii) extending to time-varying state dynamics
for formations in elliptical orbits, and (iii) developing time-
based sequences of λ-estimators with increasing λ that allow
faster convergence to smaller ultimate variances. Finally, delays
due to communicated measurements are being included.

APPENDIX
Proof of Corollary 2
First note that the inequalities (36) for λ = 1 are the same as the
inequalities (21). For λ < 1, the inequalities (36) are also same
as the inequalities (21) and (22). To see this, first note that the
inequalities (36) imply that, for i = 1, ..,M,
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P−(Ai +LiCi)P(Ai +LiCi)T −BiQiBT
i −LiRiLT

i ≥ (1−λ)P > 0,

which are the inequalities (21). Also, letting F = P the inequal-
ities (36) clearly imply the satisfaction of the inequalities (22).

Now we follow similar steps as in the proof of Theorem 1 to
prove the corollary for λ ∈ [0,1). Let Vk = ēT

k P−1ēk. Then,

λ
2Vk−Vk+1 = ēT

k

[
λ

2P−1−
(
Ãk +KkHk

)T P−1(Ãk +KkHk

]
ēk,

where Ãk := AT (k) +LT (k)CT (k). By using Schur complements
twice, the following inequality holds

λ
2P−1−

(
Ãk +KkHk

)T P−1(Ãk +KkHk)≥ 0
if and only if

Wk := λ
2P−

(
Ãk +KkHk

)
P(Ãk +KkHk)T ≥ 0.

By noting that Ãk = Ai + LiCi for some i ∈ {1, ...,M}, the
inequalities (36) imply that

λ
2P−ÃkPÃT

k ≥ 0.

Here
Wk = λ

2P−ÃkPÃT
k︸ ︷︷ ︸

≥0

−Zk

where
Zk = ÃkPHT

k KT
k +KkHkPÃT

k +KkHkPHT
k KT

k .

Note that
Zk ≤ Zk +KkNkKT

k . (43)
By using the equality (37),

Zk ≤ Zk +KkNkKT
k

=−ÃkPHT
k (HkPHT

k +Nk)−1HkPÃT
k ≤ 0 ⇒ Wk ≥ 0.

(44)

This inequality implies that

λ
2Vk−Vk+1 ≥ 0.

Then, as done in the equation (25), we prove the decay proper-
ties of the vector ēk.

Suppose that for n ≥ 1, Pn ≤ P and P = Pn + X where X +
XT ≥ 0. Then,

Pn+1 = (Ãn +KkHk)(P−X)(Ãn +KkHk)T +Sn +KnNnKT
n

= Ãn(P−X)ÃT
n +Sn +Zn +KnNnKT

n

≤ Ãn(P−X)ÃT
n +Sn

≤ ÃnPÃT
n − ÃnXÃT

≤ λ
2P≤ P

where Sn = LT (n)RT (n)LT
T (n) +BT (n)QT (n)BT

T (n). By induction,
this implies that Pk ≤P for all k≥ n. Similarly we can prove that
the sequence of error covariance matrices {Pk}∞

k=0 is bounded.

By using the inequalities (36), since T (k)∈ S , there exists some
α > 0

P− ÃkPÃT
k −Sk ≥ αI ∀k ≥ 0.

Since
P− (Ãk +KkHk)P(Ãk +KkHk)T −Sk−KkNkKT

k

= P− ÃkPÃT
k −Sk− (Zk +KkNkKT

k )︸ ︷︷ ︸
≤0

≥ αI

⇒ P≥ ÃkPÃT
k +Sk +αI.

Letting ∆k := Pk−P,

∆k+1 = ÃkPkÃT
k +Sk +(Zk +KkNkKT

k )−P

≤ Ãk∆kÃT
k −αI.

Once we have the above inequality, we can use the same
arguments in the proof of Theorem 1 after the inequality (26)
to conclude the decay properties of the estimator for λ ∈ [0,1).

The recursive relationship for Pk can be written as
Pk+1 = ÃkPkÃT

k +Sk +Φ(Kk)
where

Φ(Kk) = Φ(Kk)T := Zk +KkNkKT
k ≤ 0.

Note that if Kk = 0 then Φ(Kk) = 0. Now suppose that P̂k ≥ Pk
(where Pk is the error covariance when Kk 6= 0). Then

Pk+1 = ÃkPkÃT
k +Sk +Φ(Kk)≤ ÃkP̂kÃT

k +Sk +Φ(Kk)

≤ P̂k+1 +Φ(Kk)≤ P̂k+1.

Since P̂0 = P0, by induction, this implies that
Pk ≤ P̂k, ∀k ≥ 0.

The proof of the case with λ = 1 uses the results for λ ∈ [0,1)
exactly as it is done in the proof of Theorem 2 which uses the
results of Theorem 1.
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