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Abstract: In this paper we present the analysis and design of distributed estimators for formation flying
spacecraft with time-varying sensing topologies. We first develop a discrete-time, switched linear model
of the formation translational dynamics in which the the measurement vector is characterized in terms
of the edge matrix of a graph associated with the sensing topology. Then a switched, linear estimator
is developed, called a A-estimator, for a general class of discrete-time, switched linear systems. This
estimator is replicated on each spacecraft to estimate the entire relative translational state of a formation,
and estimator gain switching occurs as a function of the instantaneous sensing topology. These estimators
guarantee that the mean of the estimation error decays to the origin with a prescribed decay rate and that
the error covariance decays to an ultimate bound, also with a prescribed decay rate. In addition, linear
matrix inequality-based design procedures are developed for A-estimators. It is proven that a stable
formation A-estimator exists if all of the possible sensing topologies describe connected graphs. This
observation leads to the design of opportunistic A-estimators for formations switching among connected

sensing topologies in which more sensing links are available than considered in estimator design.

1. INTRODUCTION

This paper presents the analysis and design of distributed esti-
mators for formation flying spacecraft with time-varying sens-
ing topologies. This research is motivated by NASA’s formation
flying missions, such as the Terrestrial Planet Finder Interfer-
ometer (TPF-I) [Lawson (2001)], in which several spacecraft
operate in a coordinated manner to achieve a common objec-
tive. Each spacecraft in a formation is assumed to estimate
a maximal, linearly independent set of inter-spacecraft (i.e.,
relative) translational states (see Smith and Hadaegh (2006) for
a similar distributed estimator structure). The resulting state
vector is referred to as the formation state. Each estimator
uses all available inter-spacecraft measurements, which form a
subset of the relative position vectors. This set of relative mea-
surements defines a sensing topology and an associated sensing
graph. It is also assumed that the overall measurement vector is
instantaneously available to all spacecraft. Subsequent research
will address extensions to account for communication delays.
We consider systems whose dynamics are accurately modeled
by linear, time-invariant ordinary differential equations, which
includes formations of an arbitrary number of spacecraft both
in deep space, such as TPF-I, and near-circular planetary orbits.

Formation maneuvers, such as reconfigurations, will change the
sensing topology. Further, with multiple sensing levels, specific
sensors can go in and out of lock. Previous work related to TPF-
I developed a steady-state-Kalman-based estimator for the three
levels of sensing available in the baseline TPF-I design [Scharf
et al. (2004)]. Mode changes and assumptions on timing were
used to ensure TPF-I estimator performance as sensors were
added or removed from the measurement vector. Both more
operational flexibility and more rigorous performance guaran-
tees are desired. To this end, we assume the sensing topology
can vary arbitrarily in time within a specified set of topolo-
gies. However, no a priori knowledge of the time sequence of
topologies from the set is assumed. An estimator determines
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the instantaneous sensing topology in real-time upon receiving
the overall measurement vector. While the Kalman filter ad-
dresses this scenario, flight computers on-board formation fly-
ing spacecraft will perform a variety of autonomous operations
that restrict the complexity of formation estimation algorithms.
Computationally efficient algorithms are required. In this re-
gard, simply matching the steady-state Kalman filter gain to the
instantaneous sensing topology, as done previously, provides
no guarantee of stability. Further, the transient performance
of Kalman-based estimators can be significantly degraded by
errors in the initial covariance due to, for example, delays or
errors in inter-spacecraft communication of measurements.

Our objective is to develop formation state estimators that are:
(i) stable, (ii) exponentially convergent, (iii) precise, and (iv)
computationally inexpensive. Here, stability simply means that
the dynamics of the expected estimation error (mean error) are
asymptotically stable. Exponential convergence of the estima-
tor requires that the mean error converges to the origin at least
as fast as a prescribed decay rate. Precision is determined by
the error variance, and the estimator must minimize the error
variance in a sense described subsequently.

In the following sections, the dynamics of the formation state
are first formulated in discrete time. The measurements are
then expressed in terms of edge matrices and Laplacians of the
sensing graph. This system is shown to be observable when
the sensing graph is connected. Next, we describe a class of
fast estimators, termed A-estimators, with desirable properties
of stability, fast decay, precision, and simplicity. The scalar
A €10, 1] specifies the decay rate.

For formation estimation, the A-estimator on-board each space-
craft contains a copy of the relative state dynamics and a
feedback term that utilizes the measurement error (i.e., the
difference between the measurement vector and the current
estimate of the measurement vector). Hence, the A-estimator
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has the same structure as a Luenberger observer [Luenberger
(1964)] or a Kalman filter [Kalman (1960)]. However, the the A-
estimator gain is constant for each sensing topology, changing
only as the sensing topology changes, whereas the Kalman
gain is always varying. Also, the Luenberger observer does not
consider stochastic optimality of the estimation error. For A-
estimator design, a linear matrix inequality (LMI)-based [Boyd
et al. (1994)] synthesis method minimizes the ultimate variance
of the estimation error vector while guaranteeing a decay rate
in the mean error that is specified by A. The estimation error
covariance matrix also converges to an ultimate bound with a
decay rate determined by A.

Related work in LMI-based estimator synthesis for switched,
discrete-time linear systems includes Luenberger-type observer
synthesis for linear [Alessandri and Coletta (2003); Alessandri
et al. (2005)] and nonlinear systems [Ag¢gikmege and Corless
(2005)]. These LMI-synthesized observers establish globally
stable error dynamics but do not have stochastic performance
measures. The work presented here extends the LMI-design
methods to optimize such measures and adds a guaranteed, pre-
scribed decay rate. Such fast estimators can be useful in practice
when the estimator dynamics drive performance limits, such
as on the Spitzer Space Telescope [Bayard (1998)]. Another
contribution is to augment A-estimator to utilize measurements
in addition to those specified in the design sensor topologies.
This opportunistic use of additional measurements preserves
stability and the exponential decay properties as well as im-
proves the error covariance beyond the designed level.

A partial list of notation is as follows: P = PT > (>)0 implies P
is a positive (semi-) definite matrix; diag(Ay,...,A,) is a block-
diagonal matrix with matrix entries Ay,...,Ap; trA is the trace
of square matrix A; A > 0 indicates each entry of matrix A is
strictly positive; Ayqc(P) and Ay, (P) are the largest and small-
est eigenvalues of P; ® is the Kronecker product; 6(A) is the
spectral radius of matrix A; [ is the identity matrix of appropri-
ate dimension and I, is n X n identity matrix; 0, is n X n zero ma-
trix and Oy, is the n X m zero matrix; 2, is the set of positive
integers; E{-} is the expectation operator; for random vector
x € IR", x = E{x} is its mean, P = E{(x—x)(x —x)" } is its
covariance matrix, and trP is its variance; two random vectors
x and y are called independent when E{(x—%)(y—3)"} =0
and E{(y—y)(x—x)"} = 0; imA denotes the range space of
A; kerA denotes the null space of A; |A| is the matrix with the
absolute values of the entries in matrix A; || - || is a vector norm,
and || - || is the matrix norm induced by it.

Let G(V,E) represent an undirected graph with set of vertices
V and edges E. The elements of V and E are distinct. A
sequence of vertices and distinct edges define a path. G(V,E)
is connected if there exists a path between any two vertices.
A cycle is a path of length greater than one that starts and
ends at the same vertex. An acyclic graph has no cycles. A
tree is a connected acyclic graph, that is, every two vertices
are connected by a unique path [Deo (1974)]. For any sensing
topology, the corresponding sensing graph is constructed by
considering each spacecraft as a vertex, and by putting an
edge between any two vertices where the corresponding relative
position vector is one of the measurements.

2. PROBLEM FORMULATION

The inertial dynamics of spacecraft in deep space or in a
circular planetary orbit can be expressed as

& = Aok +Bo(n; + ) I=1,.ng, (1)

where & € IR® is the translational state vector of /th spacecraft
with the first three entries describing the position vector and the
last three describing the velocity vector, n; € IR? is the control
input, 0; € IR? is a zero-mean, random disturbance vector, n, is
the total number of spacecraft,

1 03 L 103
A0|:(,02D0 (DS():|’ B0|:I3:|7 (2)
020
DO:diag(S,O,—l), So = [—2 0 O‘| s
000

and o is a scalar determined by the orbit: ® = 0 for deep space
and ® = /u/R3, where p is the gravitational parameter for the
planetary body and R is the orbital radius. The inertial dynamics
of the entire formation can be expressed compactly as

Z:»: (AO@IHS)F:+(BO®IHS)(T|+9) 3
where, noting & = [&1,...,&.6]7, the “augmented” inertial
formation state vector & € IR%" is given by

g: [él,la sy gnx,la &1,2; neey any,Za neey 51,67 "y &ny,6]T

and similarly, n € IR*» and 6 € IR¥" are defined as

n = [nl,la ctty nl‘lx,la R n1,37 AR nnx,:‘;]T

0=1[011, s Oty ey 013, ooy By, 3]7.
The control of formations is typically partitioned into control
of the overall formation location, in which a formation is
treated as a single object, and control of the relative positions
within a formation. Further, in deep space often only on-board,
relative measurements are available to the necessary precision.
Hence, we focus on estimating relative spacecraft positions. As
there is no unique, linearly-independent set of relative position
vectors, the designer must select the relative states that will be
estimated. For each maximal, linearly independent set, there
is an onto matrix T € 2, " (TTT > 0) that relates the
inertial positions to the relative ones, that is, r = (K& T)p
where r € R3"~1 is the “augmented” vector of all the relative
position vectors, and p is the “augmented” vector of all the
inertial position vectors. Note that Te = 0 where e is a vector of
ones. The formation state vector x € RO(s=1) consisting of the
relative positions and velocities selected by 7', is related to the
inertial formation state vector by

x=(LBLRT))E=(lRT)E. 4
With this relationship, the formation dynamics are given by

X=Ax+B.(u+w) where (5)
u=LoTM, w=(LoT)8 ©
Ac:AO®In5713 Bc:BO®InS71~

Discretizing with time step Ar and a zero-order hold for the
control input, we obtain
X1 = Axg + B(ug +wg) where

At
eAO(tiT)Bod‘C Qb—1. (D
0

B =

= Bd

Recall the sensing topology can vary arbitrarily over a finite
number of specified topologies. Each sensing topology deter-
mines a distinct set of relative position measurements described
by the edge matrix, E € Z, 9", where q is the number of rela-
tive position vectors measured. A sensing link exists between
the ith and jth spacecraft if their relative position vector is
measured. For each sensing link, a row is added to the edge
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matrix with /™ entry +1, the m™ entry -1 (assuming m > I),

and zero otherwise. The measurement vector y is then given in
terms of the inertial position vector as

y=(B®E)p.
Since all relative measurements can be expressed by means
of the relative position vector r, we have imET C imTT. This

inclusion implies that there exists some matrix H such that
E = HT. One such matrix is H = ETT (TT”)~', which gives

y=(L&HT)p=(LoH)(LeT)p=(LRETT(TTT) ")r.
Hence,
y=[BRET"(TT")™"  034,_1)]x. (8)

As aresult, the discrete-time relative dynamics of the formation
with switched sensing topology are

X1 = Axg + B(ug +wi) )
Yk = Cr[(k))Ck + Vi, 'T(k) €S (10)

where § = {1,2,...,q,} is the index set of sensing topologies,
g5 is the number of sensing topologies, 7 : Z, — S maps the
time index k into the sensing topology,

C=[BRET(TT")™"  0O3,_n], i€S, (D

and the process and measurement noise vectors are zero mean
independent random vectors with

E{vkv,{} :R’T(k) >0 and E{WkW]];} =0>0.

In addition to the edge matrix E;, a sensing topology can be
uniquely specified by the graph Laplacian £;, where

£; =ETE;, i=1,...,qs. (12)

Intuitively, a sensing topology must be connected for the for-
mation dynamics (C;,A) to be observable. From graph theory, a

sensing topology is connected if and only if sgn(|£,1"r] [) >0,
which leads to the following result.

Lemma 1. The pair (C;,A) is observable, where C; and A are
given by (11), (7), and (2), if the sensing graph corresponding
to the matrix C; is connected and wAtr € [0, 27). m|

Proof: First we show that kerH; = {0} where H; =
E;TT(TTT)~!. Suppose that H;v = 0 for some v. Since 77
is one-to-one, w # 0 when v # 0 where w := TT(TTT)~!y.
Now suppose that E;w = 0 that is wTEiTEiw =w' Liw=0.
Since L; corresponds to a connected graph, it has 0 as a non-
repeating eigenvalue with e = [1,...,1]7 as the corresponding
eigenvector, and all the other eigenvalues are positive [Deo
(1974)]. This implies that w = ote for some scalar a. If o # 0,
this implies that, since w = T (TTT)~!v, there must be some
vector z such that e = T7 z, which implies that TT7 z = Te. Note
that Te = 0, which can easily be obtained by noting that the
relative positions of point which are all the same location is zero
vectors. Hence TTTz = 0. Since TT7 is invertible, this implies
that z = 0, which leads to a contradiction proving that o0 = 0.
Hence w = 0 and then v = 0. Hence ker H; = {0}. This implies
that ker I3 ® H; = {0}. Consequently C;x = 0 implies that x; =0
where x = [xT, xI]T. Now consider C;Ax for x = [0, xT]T.
Partitioning matrix A4 in (7) into square blocks as follows

_ A1 A2
aa= 2]

CiAx = (B ®H;) (A2 ®I,,_1)x2. Since ker H; = {0}, this implies
that C;Ax = 0 for some x; # 0 if and only if A; is singular.
Note that A, = I when ® = 0. For wAr € (0,27n) detA, =0

if and only if g(wAr) = 0 (see p.112 in Kaplan (1976) for an
expression of A; that leads to this observation) where

2(8) := 05sin(0)(4sin(B)/(8) —3) +4(1 — cos(0))?.
Since g(0) > 0 for all 6 € (0,27) (can be shown simply by
evaluating it), A, is nonsingular. Hence

G|
ker [C,A] = {0},
which implies the observability of the pair (C;,A). m
3. ESTIMATOR ANALYSIS AND SYNTHESIS

In this section we introduce an algorithm to estimate the for-
mation state vector x; of (9). The estimation algorithm is devel-
oped for a more general class of systems of the form
X1 = Axg + Briyg + Gewy
Vi = Coxg+ v
where 7 : Z, — S maps the time index k into the index set
S =1{1,2,...,M}, x; is the state vector having random initial
condition xy with a mean ¥y and variance Py, y; is the measured
output vector, uy is the vector of known inputs, and wy and vy
are zero mean and independent random vectors with

E{wiw;} =00y,  E{vivi} = 8uR
where 8y, is the Kronecker delta

8kl:{lwhenkzz

T=T(k), (13)

0 otherwise -
For the formation dynamics (9), M = g5, At = A, By = Gy =B,
and Q; = Qfort=1,...,M. Our objective is to design a linear
estimator for the state x;, which is a random vector for each k,
of the following form:

Rpr1 = Ak + Lo(Cofy — i) + Bepy  where t= T (k) (14)
where L is the estimator gain matrix. Let e := X — x; be the
estimation error. Its propagation is given by

ek+] = (A’C +L1CT)ek — Ltvk — G’ka' (15)
Letting P, := E { (ex —er)(ex — ék)T} be the estimation error
covariance matrix and noting that

Crr1 = (A‘C +L-;C1;)€_k, (16)

we have
€j1 — €1 = (Ar+ LiCr)(ex — &) — Lovg — Gowy.
Since e; depends on the process and measurement noise vectors
for only time steps 0, ...,k — 1,
E{(ek — Ek)VZ} =0 and E{(ek —e‘k)w,{} =0.
The previous two relations imply
Piy1 = (Ar+LiCr) (A + LCr)" + LR LT + G 0:GY. (17)

The following definition describes a class of estimators that
have the properties stated in the Introduction.
Definition 1. For A € [0,1], P=PT >0, and any switching
function T, a filter of the form (14) is a A-estimator with
ultimate covariance P for the system (13) if

(1) For any eq

Jim & =0 and 3e>0st. fé] < e (18)

(2) For any eg and Py the covariance sequence {Fy}y, is
bounded and

Ve>0, dn>1 st. P.<P+el Vk>n, (19)

P, <P for k>0 when Py <P. (20)

O
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For any ultimate covariance P, the covariance ¥ = YT >Pis
also an ultimate bound. Therefore, since P > 0, there exists an
infimal ultimate covariance for any A-estimator. This observa-
tion leads to the definition of an optimal A-estimator.

Definition 2. A A-estimator with ultimate covariance P is op-
timal if, for any other A-estimator with ultimate covariance Q,
trP < trQ. O
Remark 1. 1f a system (13) has singleton § (no switching),

(C,A) detectable, and (A, GQ'/?) reachable, then the optimal
1-estimator is the steady-state Kalman filter. |

The next two theorems establish sufficient conditions for the
existence of a A-estimator for the system (13). The first theorem
considers A € [0,1) and the second, A = 1. The majority of
proofs are omitted for brevity.

Theorem 1. Given A € [0,1) and P = PT > 0, a filter of the
form (14) with gain matrices Li,...,Ly is a A-estimator with
ultimate covariance P for the system (13) if the following
matrix inequalities are satisfied with some F = FT > 0 for
i=1,...M,
P— (A +LC)P(A; +LiC)" — G;Q;GI —LiR.LT >0 (21)
AMF — (A + LiC)F (A; + LiC)T >0. (22)
Further, for any initial covariance Py,

Pi—P<A*||Po—P|lI  for k>1 (23)
where ¢ = ;‘L”L((FF)) is the ¢ of condition (18). O
Proof: A candidate Lyapunov function for the mean error

dynamics (16) is
Vi= e_,Z‘Filék.
Then,
7\.2Vk—Vk+1 = e",z [7\,2F71—

T . _
Azt LrwCrw) F~' (Arw+LrwCr ) e
where 7'(k) € S. By using Schur complements twice, the
inequality (22) is equivalent to
}\.ZF_I7(A,‘+L,'Ci)TF_1(A,‘+L,‘Ci)ZO Vies.
Since 7 (k) € S, the previous two inequalities imply all solu-
tions of the mean error dynamics satisfy

(24)

Vi1 < }\-2Vk, Vk > 0.
Consequently,
2% A 2k lléo|?
_ _ Amax (F
= fletll < e where ¢ = /3l

This proves the satisfaction of the condition (18).

Suppose that, for n > 0, P, < P that is P = P, + H for some
H = H" > 0. Then, by using the inequality (21), there is some
i € S such that
Pop1 =Ac(P—H)AL +5i <P—A4HAL <P
where
Ai=A;+LC; and  S;=LR.L! +G,Q:G!.
When Py < P, the above implies (by induction) that P, < P for

all £ > 0. Hence, if P, < P for some n > 0 then P, < P for all
k>n.

Now consider the case when Py > P and let A := P, — P. Since
P =PT > 0, there exists some r > 1 such that rP > P,. Since P
satisfies the inequality (21) and r > 1

rP > A.i(rP)AL +1S; > Ay (rP)AL 4 5.
Hence rP satisfies the inequality (21) for all » > 1. Furthermore,
by using the earlier arguments
P. <rP Vk > 0.

This proves the boundedness of P, k = 0,1,... (also note that
P, > 0). Now we claim that, for any solution of the error
dynamics (15) there exists some n > 1 such that P, < P. This
will be proved by contradiction. Suppose this is not the case,
that is, for any integer n > 1 there exists some vector x # 0 such
that x” A,x > 0. Observe that the inequality (21) implies that
there exists some o > 0 such that

P—AqPAL —§; > al
Let Ay := Az + Ly Cr k)

Ayt = APAL + Gy Q7 Gl + L R o Lip ) — P.
Since P, = Ay + P and A; = A,; for some i and T (k) € S, the
above equality with the inequalities (26) imply that, for any 7,

Ay S ANAT —al, Yk >0.
Then, for any function 7 : Z, — §,
Ay < AgAoAl —od
Ay <A MAT —al
< A~1 (A~0AOA~g — OLI)A~{ —ol < A~1AOAOA~5A~{ —ol

Vies. (26)

A < Akfl ...AQA(y&%...AZﬁI —aod.
——
= Fk
Here for any vector x # 0, define the following dynamics
with  xp = x. 27

Since all the solutions of the mean error dynamics exponen-
tially converge to the origin as shown earlier, where the mean
error dynamics can be expressed as x| = Arér, all the so-
lutions of the system (27) also converge exponentially to the
origin, which can easily be proven with Lyapunov function
Vi = xI Fxy.. In particular, for any x # 0

] < |||
Note that x;, = I[';x. This implies that
Tl < .

AT
Xir1 = Ap xk

Hence

A <TT ATy — ol < (PA||Ao]| — )1 (28)
Since there exists some 7. > 1 such that ¢2A%|Ao|| < o for
k > n, we have

xTAx <0 Vx#0
Consequently, this establishes the contradiction, hence proving

that there exists some n > 1 such that P, < P for all k > n. The
inequality (28) also proves the condition (23). ]

when k > n,.

Theorem 2. Given P = PT > 0, a filter of the form (14) with
gain matrices L1,...,Ly is a 1-estimator with ultimate covari-
ance P for system (13) if matrix inequalities (21) are satisfied.
O

Proof: The inequality (21) implies that there exists a small
enough positive scalar 1 > € > 0 such that, fori=1,....M,

P—(A;+LC)P(A; +LiC;))T — B;Q;BI — LiR,.LT > ¢P.
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Since L;R;LT > 0 and B;Q;B! > 0, this implies that
(1—&)P— (A; + LiC;)P(A; + LiC))T >0,
——

A

where A € (0,1). Now the inequalities (29) and (21) are same
as the inequalities (21) and (22) with F replaced by P, hence
the conclusions of Theorem 3 apply with some A € (0,1). m

(29)

An LMI approach to design A-estimator is given as follows.
Theorem 3. Given A € [0,1), suppose there exist matrices S =
ST>0,X=XT">0,andY;, i = 1,...M, such that the following
LMIs hold:

S SAHYG YR 560
Als+cly? s 0 0 ,
>0, i=1,..M (30
RT o 1 o0 l G0
12
0%GTs 0 o I |
Mx  Als+cly! | o
Saivc sk |Z0 i,
(31)

Then the filter of the form (14) is a A-estimator for system (13)

with ultimate covariance P and gains L;, i = 1,...m, given by
Li=S"'Y, and P=S" (32)

Condition (23) is also satisfied with F = X~ !. O

Proof: First we prove that the satisfaction of LMIs (30) implies
the satisfaction of the inequalities (21). To do that pre and post-
multiply (30) by diag(P,1,1,1) where P = S~! and let L; = PY;
to obtain

P (AHLG) LK GO}
A,’ Ll'C,‘ P~ 0 0 .
( T/Z T) >0, i=1,.,M.
RL] 0 I 0
0!G, 0 0 I

Using Schur complements twice, the matrix inequality above
can be reduced to

P-LR,LT —G;Q:GT (A;+LC;)
(Ai+LC)" P!
P—(A;+LC))P(A; + LiC;)"-L:R,.L- G;QG! >0, i=1,..,.M.
To prove that the LMIs (31) imply the inequalities (22), pre
and post-multiply each of the LMIs (31) by [I (A; + LC;)],
i=1,...,M, to obtain
7\.2X7(Ai+LiCl‘)TX(A,'+Ll‘C,'), i=1,...M.
By using Schur complements several times, the above inequal-
ities imply

>0 =

X (A; +L,‘C,')T
(Ai+LiC) x!
= MF — (Ai+LC)F(Ai+LC)T >0, i=1,..,M,

where F = X~'. Now we can conclude the proof by using
Theorem 1. ]

>0,i=1,..,.M

The following is a specialized LMI result for 1 —estimators and
its proof follows the same steps as in the proof of Theorem 3.

Theorem 4. Suppose there exist matrices S =S >0, X = X7 >
0,and Y;, i = 1,...M, such that the LMIs (30) hold for A = 1.
Then the filter of the form (14) is a [-estimator for the system

(13) with ultimate covariance P and gains L;, i = 1,...M, given
by (32). m]

These results suggest the following optimization problem to
design A-estimators.

max trS subject to
$,X,Y;

§=5">0, X=x7>0, and (33)

LMIs (30) and, when A € [0, 1), (31).

Since the LMI conditions are only sufficient, the resulting ul-
timate covariance is suboptimal in general. However, the fol-
lowing corollary establishes that the LMI optimization problem
(33) produces the optimal 1-estimator ! .

Corollary 1. Suppose that there exists a feasible solution of
the inequalities (21) for P = PT > 0 and L,,...,Ly;. Then the
solution of the optimization problem (33) gives the optimal I-
estimator for system (13). O

4. ESTIMATION OVER CONNECTED SENSING
TOPOLOGIES WITH ARBITRARY ADDITIONAL LINKS

In this section the previous design techniques are extended to
the case in which sensing topologies are not known a priori.
However, it is assumed that there are persistent, connected
sensing topologies with edge matrices E;, i = 1, ..., g, such that
the actual sensing topology at any given time contains one of
these persistent topologies as a sub-graph. Equivalently, at any
time step k, we have imE! C imE] for some 1 <i < ¢,. The
following theorem shows a A-estimator exists for a spacecraft
formation with connected sensing graphs.

Theorem 5. Consider the system (9) with ®Az € [0,21) and
measurements (10) in which the C; given by (11) result from
connected sensing graphs. Then there exists a A-estimator with
some ultimate covariance P=PT >0 for any L€ [0, 1].

Proof: Since each C; defines a connected graph, for any C;
and Cj, it is straight forward to show that there exists some V;;
such that C; = V;;C;. Pick any of the sensing tree and consider
the corresponding C; with R;. Since (C;,A) is observable, we
can place the poles of A 4 L;C; in any circle in the complex
plane. So pick L; such that 6(A + L;C;) < A, which implies that
o((A+ LiC;)/\) < 1, which is equivalent to the existence of
F =FT > 0 satisfying
(A + L,'C,') F (A + L,'Cl')T
A A
= MF—(A+LC)F(A+LGC)" >0.
Since C; = V;;Cj, LiC; = L;V;;C;, which implies that A + L;C; =
A+ L;C; with L; = L;V;;. Then choosing all L; by using L; in
this manner, the matrix inequalities (22) are satisfied with ' and
Lj7 ]: 17"7qS'
Now since A := A+ L,C; =A+L;C;j for any i and j, and A has
its eigenvalues strictly in the unit circle,
P—APAT >w
has a positive definite solution for P = PT when W = W7 > 0.
Let W be such that

F— >0

W > GOG" +LiR,L!.

! The proof of Corollary 1 is involved and it is omitted for brevity.
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Then, P is a feasible solution of the inequality (21). Now
the proof is completed by using Theorem 1 for A € [0,1) or
Theorem 2 for A = 1. |

Each measurement can now be decomposed into two parts:

e y; = Cyx + v with Gy corresponding to one of the persis-
tent connected sub-graphs, and

e Additional measurements beyond those available in the
current persistent sub-graph given by

zr = Hyxp +n;,  where E {}’lkl’l]{} =N; (34)

such that [C] H[']" gives the full measurement vector.

The random vectors v; and ny are independent. The persistent
sub-graphs characterized by Cy are used to design a A-estimator.
Existence of a A-estimator is guaranteed by Theorem 5. The
H; are unknown a priori and are determined in real-time as
measurements become available.

To incorporate the “opportunistic” information zi, the filter
form (14) is augmented to

B 1 =Ackk + Lo (Cofi — yi) +Kie (Hiki — 2) +Brug, — (35)
where T=7 (k). The following corollary (see the Appendix for
a proof) of Theorems 1 and 2 establishes the theoretical basis
for this filter form and specifies the opportunistic gain matrix
K.
Corollary 2. Given A € [0,1), P = PT > 0, and possible, ad-
ditional measurements (34), a filter of the form (35) with gain
matrices Li,...,Ly is a A-estimator with ultimate covariance
P and opportunistic measurements for the system (13) if there

exist ¥; such that following matrix inequalities are satisfied for
i=1,..M,

A2p— (A,‘JrL,'C,')P(AHrL,'C,')T* GiQiG,T *LiRiLiT >,

36
vi>0 for A€[0,1) and v; >0 for A=1, (36)
where the opportunistic gain matrix is given by
Ki=—APH] (HPH] +N,) ™!, (37)

where Ay =Aqg + LggCq. Further, if the estimator exists,
then the error covariance satisfies the inequality (23) when rE
[0,1). Finally, let {P;};_, be the sequence of error covariance
matrices when H;, = 0 = K, = 0. Then,
P < B, k>0 (38)
O
Remark 2. Corollary 2 is used to set up the following optimiza-
tion problem to obtain estimator gains as in Theorem 3.

maxtrS subject to

§=5T >0, and
LMIs (30) with Sin 1 x 1 block diagonal
entry replaced by A%S.

(39)

Clearly the ultimate covariance obtained from the design pro-
cedure above, which is S~!, is at least as large as the ultimate
covariance obtained from the optimization problem (33). They
are guaranteed to be identical only for A = 1. Hence, the esti-
mator performance can suffer by using the measurements in an
opportunistic fashion when A < 1. o

The inequality (38) shows that including opportunistic mea-
surements will not reduce performance. A key step in the proof

of Corollary 2, namely, that conditions (23) and (38) are satis-
fied, is showing that the inequalities (36) imply

AP — (A +HLiCr) P(Ar+ Ly Cr) T Gr Ok GF — LRy LY >0 (40)
for all k > 0 and A € [0,1) (similar result for A = 1). Then, the
inequalities (40) combined with the choice of K} in (37) implies

AP — (Ap + LiCy + K Hy ) P(Ay + LiCy + KiHy) T
— GyOx Gl — LiR LY — Ky Ny KT >0,

for all k£ > 0, which leads to the corollary.

Corollary 2 can be repeatedly applied within a single time step.
In particular, if z; has a large dimension, then inverting the
matrix Ng +HkPHkT is computationally expensive. To reduce
computation, z; can be partitioned and incorporated in smaller
pieces within the same time step. More precisely, suppose that
we have the following description of the additional measure-
ments Zx

a= [y 2] (1)
where nji, j=1,..,p, are independent, zero mean random
vectors with covariances N; ;. Then, extending (35), the oppor-
tunistic A-estimator with partitioned update is

where Zk,j = Hj’kxk +njk

)4
Spi1 =ActeA+Lo(Cote — i) +Y Kig(Hipde —zip),  ©= T (k),
i=1
Kix :_A~kPHIT,k(Hl.kPH17:k N A =Agg Lo Crw 42)

i—1
Kiy=— <Ak+ Yy K,,kH,,k> PH[ (Hi PH AN )™, i=2,..,p.
=1

The requirement that partitions z; x have independent measure-
ment noise n; is not limiting for spacecraft formations. Rel-
ative position measurements can be partitioned based on the
originating, physically-independent sensors.

4.1 Sensor Topology-Independent Formation Estimation

Corollary 2 suggests a design methodology for a universal
formation estimator. Assume a formation’s sensing topology
is always connected as is required for observability. Then the
sensing graph always contains a tree [Deo (1974)]. In practice
then, a tree sub-graph is selected at every time step for y;, and
the remainder of measurements are collected into z;. Now also
assume that the relative position measurements between any
two spacecraft have the same noise properties. This implies
that for any tree in the sensing graph with the corresponding
measurement y; = Cyx + ng, we have E{mn] } =R =1, ®
Ry where Ry € IR¥3 is the measurement error covariance
matrix per relative position measurement. Since y; has the same
dimension for any tree, E {nkn,{} is identical among different
tree sub-graphs (but C; can be different). Consider any two
different trees with corresponding matrices C; and C;, then
there exists an invertible matrix A;; such that C; = A;;C; and
Ajii= Ai;l. Note that A;; = 1~\,-j ® Iz where /~\,~j e R»s— D=l
When these trees correspond to the same unlabeled graph, it can
be shown that A j; = AZTJ In this case, suppose an estimator gain
L; defines a A—estimator for the measurement matrix C; with
an ultimate covariance P satisfying the inequality (36). Then
A+LCi=A+ LjCj where Lj = LiAij- Additionally

T T,T
L;RLT = L;A;;RALL]
=Li(Aij @) (I,—1 ®Ro)(Aj; @ ) LT

:Li(]\ij & R()) (;\ij (9 I3)Li =1 (;\ij;\ij ® Ro)LiTZLl'RLiT.
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Topology 2

Topology 1

Topology 3
Topology 4

Fig. 1. Sensing Topologies for Seven-Spacecraft Formation.

Links are solid lines, and gray links are noisier.
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Fig. 2. Sensing-Topology Switching Sequence for Simulations.

This together with A + L;C; = A+ L;C; show that L; with C;
also satisfies the inequality (36), that is, L; defines a A-estimator
with ultimate covariance P as well. Note that this is not the
case if C; and C; correspond to different unlabeled trees where
A; inTj # 1. Hence, a A-estimator can address every connected
sensing topology of a formation by designing for all unla-
beled trees only. Performance will necessarily be sub-optimal.
However, considering ten spacecraft, there are 11,716,571 con-
nected, unlabeled graphs, but only 106 unlabeled trees [Sloane
(2007)], which is a considerable design simplification.

5. SIMULATION RESULTS

The preceding theory is demonstrated with simulations of a
seven-spacecraft formation switching between four connected
sensing topologies. The topologies are depicted in Figure 1.
Sensing links are solid lines; the lighter-shaded lines had
higher noise. Figure 2 provides the switching sequence used
in the provided simulations. Comparisons are made between (i)
LMI-designed A-estimators, (ii) the Kalman filter, and (iii) the
Switched Steady-State Kalman Filter (SSKF). The SSKF has
the same form (14) as a A-estimator, but with gains L; given
by the steady-state Kalman gain corresponding to the instanta-
neous sensing topology. SSKF has no performance guarantees.

An uncertainty is assumed in the initial error covariance, which
noticeably affects the Kalman filter. In this case, Figure 3 shows
that the A-estimator converges to its ultimate variance faster
than the Kalman filter. The ultimate variance is slightly larger
than Kalman due to the decay rate constraint of A = 0.9. Figure
4 shows a case for A = 0.4, which requires faster decay. The
A-estimator ultimate variance is significantly worse than for
the Kalman filter. However, the mean error goes to zero much
faster, as shown in Figure 5. These two figures illustrate the
trade-off between convergence of the mean error and steady-
state variance.

6. SUMMARY AND FUTURE WORK

A new class of computationally-efficient estimators, called A-
estimators, has been developed for switched, discrete-time lin-
ear systems. An explicit constraint on the convergence rate of

0.35 T T
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—— SSKF
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Kalman Limit
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@
S 0.15[1 : : ]
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Fig. 5. e, A=0.4.

the mean estimation error allows a trade-off between speed
and an ultimate bound on variance. These estimators were then
applied to spacecraft formations in deep space or near-circular
planetary orbits that have time-varying sensor topologies. An
LMI-based synthesis technique was described. Further, by di-
viding sensor measurements into persistent and opportunistic
categories, sensor topology-independent A-estimators can be
designed efficiently for large formations. These formation esti-
mators provide guaranteed performance under arbitrary sensor
topology variations with significantly less computation than a
traditional Kalman filter.

Future work includes: (i) incorporating dwell time constraints,
which limit how fast topologies can vary, thereby reducing the
ultimate variance, (ii) extending to time-varying state dynamics
for formations in elliptical orbits, and (iii) developing time-
based sequences of A-estimators with increasing A that allow
faster convergence to smaller ultimate variances. Finally, delays
due to communicated measurements are being included.

APPENDIX
Proof of Corollary 2

First note that the inequalities (36) for A = 1 are the same as the
inequalities (21). For A < 1, the inequalities (36) are also same
as the inequalities (21) and (22). To see this, first note that the
inequalities (36) imply that, fori=1,..,M,
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P—(A;+LiCG)P(Ai+LiC;)" —B;QiBI —LiR,LT >
which are the inequalities (21). Also, letting F' = P the inequal-
ities (36) clearly imply the satisfaction of the inequalities (22).

Now we follow similar steps as in the proof of Theorem 1 to
prove the corollary for A € [0,1). Let Vi, = &/ P~'&;. Then,

}\,ZVk — Vi1 = é]{ |:7\,2P71 — (Ak +Kka)TP71 (Ak + K Hy | é,

where Ay 1= Aq(x) + Lz 1) C1 (k). By using Schur complements
twice, the following inequality holds
WP — (A + KeHy)' PV (A + KiHy) > 0
if and only if
=\ P— (Ak + Kka> P(A~k + Kka)T > 0.

By noting that Ay = A; + L;C; for some i € {1, ...,
inequalities (36) imply that

A2P—APAT > 0.

M}, the

Here I
W, = M2 P—APAT —7,
————
>0
where B B
= AyPHI KT + K H PAT + K H PHT K] .
Note that
Zi < Zi + KiK. (43)

By using the equality (37),

Zi < Zi + KeNie K} “4)

= —APH] (HPH! +Ny) " 'HPAT <0 = W; > 0.
This inequality implies that
NV —Viy1 > 0.

Then, as done in the equation (25), we prove the decay proper-
ties of the vector ;.

Suppose that for n > 1, P, < P and P = P, + X where X +
X7 > 0. Then,

Poi1 = (A, + KeHy ) (P —X) (A, + KieHy)T + S, 4+ KN KT
Ay(P=X)AL +S,+Z, + KN, K]

<A,(P—X)AT +5,

<A,PAT — A,xXAT

<AMP<P

where S, = LT(,,)RT(”)L T(n) —|—B¢ YO T (n) By induction,

this implies that P, < P for all k > n. Slmllarly we can prove that
the sequence of error covariance matrices {Py};_ is bounded.

By using the inequalities (36), since 7 (k) € S, there exists some
o>0

P—APAL —S, >al  Vk>0.
Since
— (Ax + KeHy )P (A + K H) T — Si — KkNG KT
= P—APA] —S; — (Z1 + KkNi KT ) > ol
<0
= P> APAT 4 Si +al.

Letting Ay := P, — P,
= A PAL +Si+ (Zi + KN KD) — P
< AkAkA’,]; —ol.

Arti

(1-A)P >0,

Once we have the above inequality, we can use the same
arguments in the proof of Theorem 1 after the inequality (26)
to conclude the decay properties of the estimator for A € [0, 1).

The recursive relationship for P, can be written as

Pyt = APAL + S+ P(Ky)
where ; .
D(K) = P(Ki)" = Z + KkNiK <0.
Note that if K; = 0 then ®(K};) = 0. Now suppose that B> P,

(where Py is the error covariance when Kj 7 0). Then
= AkPkA]{ + Sk + CI)(Kk) < AkpkA’]{ + S; + CI)(Kk)
< Prp1 + P(Ki) < Pryr-
Since Py = Py, by induction, this implies that
P <P, Yk > 0.
The proof of the case with A = 1 uses the results for A € [0, 1)

exactly as it is done in the proof of Theorem 2 which uses the
results of Theorem 1.
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