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Abstract: In many industrial processes, the first order plus time delay (FOPDT) is still being
widely used. FOPDT systems are also called “KLT systems (gain, delay, and time constant).”
Considering uncertainties in the time delay, this paper attempts to answer this research question:
“Will a fractional order controller help and do better?” In this paper, we first focus on fractional
order proportional and integral controller (FOPI) for varying time-delay systems. Based on
our previously proposed FOPI controller tuning rules using fractional Ms constrained integral
gain optimization (F-MIGO), we tried to simultaneously maximize the jitter margin and ITAE
performance (minimize ITAE performance index) for a set of hundred KLT systems having
different time-constants and time-delay values. We observed that the optimization results in
enlarged jitter margin of all systems at expense of a slight decrease in ITAE performance of delay
dominated systems. Further, the F-MIGO optimization based tuning rules were summarized by
approximation of optimized gain parameters and fractional orders α of the FOPI controller.
Simulation results are presented to verify the proposed new tuning rules for best jitter margin
and ITAE performance.

Keywords: Fractional calculus; fractional order controller, varying time-delay system, FMIGO
algorithm, multi-objective Optimization, jitter margin, ITAE performance index.

1. INTRODUCTION

Time-delays are responsible for poor performance, controller com-
plexity and even instability of system in many chemical, biologi-
cal, mechanical and transportation processes. Extensive simulation
results on how the jitter in the loop can degrade system perfor-
mance and lead to instability of system can be found in thesis
works of, e.g., [Marti, 2002, Cervin, 2000]. Ensuring the stability
of systems with varying time-delays has always been an interesting
area of research for control engineers [Wu et al., 2003, Phat and
Niamsup, 2006, Kao and Rantzer, 2007]. This paper introduces a new
jitter-robust controller design by optimizing the gain parameters of
Fractional Order Proportional Integral (FOPI) controller based on
Fractional Ms constrained Integral Gain Optimization (F-MIGO)
algorithm [Koštial et al., 2007, Bhaskaran et al., 2007a, Eriksson
and Johansson, 2007a,b]. This controller design is helpful in finding
the maximum value of jitter (variance in time-delay) at which the
system remains stable. The Integral of Time weighted Absolute Error
(ITAE) performance of the proposed controller is better than the best
integer order PID controller.

The reason we focused on PI/D (proportional integral derivative)
controllers is that they are the most popular controllers used in indus-
try due to their simplicity, performance robustness and availability of
many effective yet simple tuning methods based on minimum plant
model knowledge [Zeigler and Nichols, 1942]. A survey has shown
that 90% of control loops are of PI or PID structure [Koivo and
Tanttu, 1991, Yamamoto and Hasimoto, 1991]. As for the reason
of considering fractional order controllers, we remark that, dynamic
systems characterized using fractional order differential equations
are based on fractional calculus, or calculus of non-integer order.
The past decade has seen an increase in research efforts related to
fractional calculus [Debnath, 2004, Magin, 2004] and its applications
to control theory [Vinagre and Chen, 2002, Xue and Chen, 2002,
Chen, 2006, Xue et al., 2006]. Hence, our objective is to apply
the Fractional-Order Control (FOC) to enhance the (integer order)

dynamic system control performance [Vinagre and Chen, 2002, Xue
et al., 2006]. Pioneering works in applying fractional calculus in
dynamic systems and controls and the recent developments can be
found in [Manabe, 1960, 1961, Oustaloup, 1981, Axtell and Bise,
1990, Vinagre and Chen, 2002, Editor), 2002, Ortigueira and Edi-
tors), 2003].

In this paper, a test batch of hundred FOPDT systems is considered
and FOPI tuning rules are used to compute the proportional gain,
integral gain and non-integer order α of the integrator for each
system. The gain and α values so obtained for each system are then
used to compute the ITAE performance and jitter margin. Finally
multi-objective optimization algorithm is applied to optimize these
gains and α values for each system. Jitter margin and ITAE value are
calculated at these optimum values as in [Eriksson and Johansson,
2007a,b].

The main contribution of this paper lies in answering this research
question: “Will a fractional order controller help and do better?”
when there are uncertainties in the time delay due to e.g., jitter in
the loop.

This paper is organized as follows: Section 2 provides an introduction
to FOPDT model, FOPI controller & FMIGO tuning rules and
briefly defines the jitter margin, ITAE performance index and the
multi-objective optimization method. Section 3 focuses on optimal
tuning of FOPI controller followed by Sec. 4 which aims at approxi-
mation of optimized gain parameters Kp, Ki and α to get new set of
optimal FOPI tuning rules that ensures the best jitter margin and
ITAE performance. Finally, Sec. 5 concludes this paper with remarks
on future research work.

2. BASIC CONCEPT AND TERMINOLOGIES

This work is based on design of optimum FOPI controller to control
a class of systems which can be approximated by FOPDT model,
also called KLT model.
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2.1 FOPDT Model

A FOPDT system can be represented mathematically as in (1):

G(s) = K
e−Ls

Ts + 1
, (1)

where K is static gain or steady-state gain of the system, L is the
time-delay and T is the time-constant of the system. These three
model parameters can be obtained by drawing the S-shaped open-
loop step response or reaction curve of the system as shown in Fig. 1.
In the open-loop step response curve, K is the ratio of the final open-

Fig. 1. Determining system parameters of FOPDT model
from step response

loop output step response value to the initial input value of open-loop
step response of the system; L is the time at which the tangent to the
maximum slope intersects the time axis and T is the time at which
the tangent to the maximum slope of the system intersects the final
response of the system. Another important characteristic of FOPDT
system is its relative time-delay, τ , represented by (2).

τ =
L

L + T
(2)

Systems with τ > 0.6 are called delay-dominated and τ < 0.1 are
called lag-dominated. Making generalizations, any system plant with
T > L is lag-dominated plant and with T < L is delay-dominated
plant [Eriksson and Johansson, 2007b].

2.2 FOPI Controller and F-MIGO Tuning Rules

As in [Koštial et al., 2007], in time-domain, if u(t) is the control input,
r(t) is the set-point signal and y(t) is the output, the fractional PIα

controller is represented by (3) as:

u(t) = Kp(r(t)− y(t)) + KiD
−α
t (r(t)− y(t)), (3)

where Dα
t x is the fractional differointegral operator. We adopt the

following definition for the fractional derivative of order α of function
f(t) [Oldham and Spanier, 1974],

dα

dtα
f(t) =

{
f (n)(t) if α = n ∈ N,
tn−α−1

Γ(n− α)
∗ f (n)(t) if n− 1 < α < n,

(4)

where the ∗ denotes the time convolution between two functions.

In frequency-domain, the FOPI controller C(s) is simply written as

C(s) = Kp +
Ki

sα
(5)

where Kp and Ki are the proportional and integral gain parameters
of the fractional controller and α is the non-integer order of the
integrator. Note that the delay in the system is after the plant G(s).
How to tune the gains Kp, Ki and the non-integer order α has been
studied in [Bhaskaran et al., 2007b] and experimentally validated in
[Bhaskaran et al., 2007a]. The tuning rules developed in [Bhaskaran
et al., 2007b] are summarized as:

Kp =
0.2978

K(τ + 0.000307),
(6)

Ki =
Kp(τ2 − 3.402τ + 2.405)

0.8578T
,

α =


0.7, if τ < 0.1
0.9, if 0.1 ≤ τ < 0.4
1.0, if 0.4 ≤ τ < 0.6
1.1, if τ ≥ 0.6

.

based on fractional Ms constrained integral gain optimization
method (F-MIGO) and the detailed information can be found in
[Bhaskaran et al., 2007b].

2.3 Multi-objective Optimization Problem

A multi-objective optimization method is used which simultaneously
minimizes n objective functions O(x) which are functions of decision
variables x bounded by some nonlinear equality and inequality
constraints. This is represented mathematically as:

min
x

O(x) (7)

subject to the following equality and inequality constraints

σ =

{
ci(x) ≤ 0, i = 1, · · · , n1,
ceqi(x) = 0, i = 1, · · · , n2, (8)

where O(x) = [O1, O2, · · · , On]T and x = [x1, x2, · · · , xk]T .

2.4 Optimization Criteria

This work is based on optimization of two important controller
performance indices, namely, jitter margin and ITAE which are
briefly described in this subsection.

Jitter Margin Let G(s) be an FOPDT plant system as shown
in (1) and C(s) be the FO-PI controller given by (5). Let ∆(t) be
the time-varying delay of the system as shown in Fig. 2. closed-loop

Fig. 2. Block diagram of closed-loop system with delay

system can have while still maintaining its stability and performance.
Furthermore, the condition of stability for continuous-time varying
delay systems can be verified by (9). This paper takes into account
the form of equation given in [Eriksson and Johansson, 2007a,b] for
finding the stability condition for SISO continuous systems, though
information provided in [Marti, 2002] is also quite useful in regard
to jitter margin.

|
G(jω)C(jω)

1 + G(jω)C(jω)
| <

1

δmaxω
. (9)

stability, consider the transformed system shown in Fig. 3 which is
equivalent to system represented by Fig. 2 [Kao and Lincoln, 2004],
where signals m(t) and n(t) are marked between two dashed blocks
∆F and Gnm. Following [Kao and Lincoln, 2004], let us denote the
operator ∆ as

∆m(t) = m(t− δ(t)) s.t. 0 ≤ δ(t) ≤ δmax (10)

and obviously, via the operator ∆F of the left dashed box in Fig. 2,

n(t) = ∆F m(t) = (∆− 1)
1

s
. (11)

Then, y(t), the output signal of the plant G(s), can be expressed as

y(t) =

∫ t

0

m(ν)dν. (12)

Therefore, ∆F can be expressed as

n(t) = ∆F m(t) = y(t− δ(t))− y(t) =

∫ t

t−δ(t)

m(ν)dν. (13)

Thus,

∆F m(t)2 ≤ δ(t)

∫ t

0

m(ν)2dν ≤ δmax

∫ t

0

m(ν)2dν. (14)
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Fig. 3. Block diagram of the equivalently transformed
system

Now, the L2 norm of n(t) is bounded as

‖ ∆F ‖2L2
≤

∫ ∞

0

δmax

(∫ t

t−δ(t)

m(ν)dν
)
dt (15)

= δmax

∫ ∞

0

∫ 0

−δmax

m(t + s)2dsdt

= δmax

∫ 0

−δmax

∫ ∞

0

m(t)2dtds

= δmax ‖ m(t) ‖2L2

∫ 0

−δmax

ds = δ2
max ‖ m(t) ‖2L2

.

Thus, the L2 gain of operator ∆F is bounded by δmax. The stability
criterion in (9) is from the small gain theorem applied to transformed
system block diagram. Thus, one can conclude that the transformed
system is stable if L2 induced norm of linear part of system from n
to m is bounded by 1/δmax, i.e,

‖ Gnm ‖L2= sup
ωε[0,∞]

|
G(jω)C(jω)

1 + G(jω)C(jω)
| <

1

δmaxω
. (16)

This paper deploys above stability condition for computing jitter
margin of KLT systems.

ITAE Criterion ITAE stands for integral of time weighted
absolute error, that is,

ITAE =

∫ ∞

0

t|e(t)|dt. (17)

Optimum ITAE is used as a deciding factor in design and tuning of
controllers by many researchers, e.g., [Caceres et al., 2000, Shrivas-
tava, 1992]. implies better performance of the system.

3. TEST BENCH SIMULATION AND OPTIMIZATION

The objective of this study is to design an optimum FOPI controller
such that the jitter margin and system performance are maximized
and yet the closed-loop feedback system is stable. For our numerical
simulation and optimization studies, a set of 100 FOPDT systems are
used with 10 delay values L = [1, 2, · · · , 10]T and 10 time-constant
values T = [1, 2, · · · , 10]T and K = 1. These values are substituted
in equation of first order plus time delay systems as in (1) to get 100
different systems. Further two objective functions are targeted as:

O1(x) = ITAE =

∫ ∞

0

t|e(t)|dt

and

O2(x) =
1

δmax
.

Note that, here δmax can be computed from (9) as

δmax = min
ω

ε[0,∞]|
1 + G(jω)C(jω)

jωG(jω)C(jω)
|. (18)

Hence the multi-objective optimization problem takes the following
form:

min
x=[Kp,Ki,α]

O(x) (19)

where O(x) = [O1, O2] subject to the following equality and inequal-
ity constraints

σ :

{
|C0 + G(jω)C(jω)|2 ≥ R2

0, i = 1, · · · , n1

∂|C0 + G(jω)C(jω)|2

∂ω
= 0, i = 1, · · · , n2

(20)

where the objective function O1(x) is the ITAE criterion and O2(x) is
the inverse of jitter margin. These values should be minimized while
still ensuring robust stability of the system. The set of constraint
equations defined by σ ensures the robustness and stability. The
inequality constraint |C0+G(jω)C(jω)|2 is the sensitivity constraint
which is also a function of Kp, Ki, α and ω and must be greater than
R2

0. Here, C0 and R0 are the center and radius of the circle which
encloses both the Ms and Mp circles described by

C0 =
Ms −MsMp − 2MsM2

p + M2
p − 1

2Ms(M2
p − 1)

, (21)

R0 =
Ms + Mp − 1

2Ms(M2
p − 1)

, (22)

where Ms and Mp are the maximum absolute values of sensitivity
and complementary sensitivity functions, respectively, Furthermore,
as remarked in [Bhaskaran et al., 2007a, Eriksson and Johansson,
2007a,b], |1 + G(jω)C(jω)|2 = 0 is the stability region of the sensi-
tivity constraint and satisfies the boundary condition at critical point
or the point at which C0 = 1 and R0 = 0. In our implementation, a
MATLAB command fgoalattain is used to get optimized values of x
by multi-objective goal attainment. fgoalattain command finds the
minimum of a multi-objective optimization problem by minimizing
γ such that O(x) − Wγ ≤ Ogoal, where x are the optimized gain
parameter values, W is the weight (generally equal to absolute value
of goal function) and Ogoal is the target values of the objective
functions. In our case, goal and weight values are given by

Ogoal =

[
JFMIGO

1

T + L

]
(23)

W =

[
JFMIGO

2T

T + L

]
where JFMIGO is the ITAE cost criterion value if FMIGO tuning
rules are used and since (T + L) gives relatively large jitter margin
for both delay dominated and lag dominated systems, it is chosen as
goal for jitter margin. For systems with T > L, setting goal equal
to weight results in poor performance because of trade-off between
the objectives. To avoid this situation, weight is different from goal.
Optimization is run for many iterations until minimum values of Ox
are obtained. The final value of x which is the result of fgoalattain
command is the optimized gain parameters and α value. At these
values, the system has maximum jitter margin and good performance
ensuring robustness and stability.

Furthermore, extensive simulations were performed to investigate
the behavior of fractional order proportional integral controller after
optimization. A plot of jitter margin as a function of τ , before and
after optimization, of FOPI controller is shown in Fig. 4. The jitter
margin of KLT systems after optimization is comparatively larger
(up to two fold for τ ≤ 0.8) than the jitter margin of systems prior
to optimization. Similar increase in jitter margin for delay dominated
systems (τ > 0.6) is accompanied with very slight decrease in
performance. This is in contrast to lag-dominated systems that
show an increase in the jitter margin without adversely affecting
the system performance, as shown in Fig. 5. Nonetheless, the jitter
margin is improved in all the cases studied above. Thus, it could
be inferred that the optimal F-MIGO tuning is a better option over
simple FMIGO tuning in increasing the jitter margin of closed-loop
systems controlled by fractional order controllers.

4. OPTIMAL FOPI TUNING RULES & VERIFICATION

This section describes the methods used for derivation of optimal
FO-PI tuning rules. The optimized gain parameters and α obtained
as result of fgoalattain command in previous section were plotted in
MATLAB and analyzed carefully to find any hidden pattern or there
dependence on the delays L and the time-constants T of the systems.
For example, it was found that the optimal proportional gain param-
eter Ko

p increases with increasing T and decreases with increasing L.
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Fig. 4. Improvement of jitter margin of KLT systems after
optimization of FOPI controller

Fig. 5. Performance of KLT systems before and after
optimization of FOPI controller

Whereas optimal integral gain parameter Ko
i shows a decrease with

increasing values of T and L, though this decrease is more profound
for small values of L and becomes almost constant for large values
of L. Furthermore, it should be noted here that the integral gain
parameters so obtained from multi-objective optimization method
ensure the stability of the systems, but do not result in true jitter
margin when tested in Simulink. Thus, to tighten the constraint,
the optimized Ki values were increased by some integer factor which
was determined by simulation results. The optimal fractional order
αo of the integrator was a function of the relative dead time τ and
delay L of the system. These optimal tuning rules are expressed
mathematically as:

Ko
p =

0.2T

L
+ 0.16, (24)

Ko
i =

0.25

TL
+

0.19833

L
+ 0.09, (25)

αo = τ − 0.04L + 1.2399. (26)

To verify the tuning rules obtained above, three different types of
systems are considered. These are a lag dominated system with
τ = 0.2 (K = 1, L = 2, T = 8), an intermediate delayed system with
τ = 0.5 (K = 1, L = 8, T = 8) and a delay dominated system with
τ = 0.8 (K = 1, L = 8, T = 2). The optimal gain parameters Ko

p , Ko
i

and αo are computed using (24), (25) and (26), respectively. These
are then used to compute the jitter margins using stability criteria
in (9). The step response of the systems are plotted at various input
delays as shown in Figs. 6, 7 and 8.

It can be observed that for all the three cases considered, systems
are stable at jitter margin (shown by JM in the figures) and become
unstable if the jitter margin is increased by just 20 per cent. Several

Fig. 6. Step response of lag dominated system (K = 1, L =
2, T = 8) at different delays

Fig. 7. Step response of an intermediate system (K =
1, L = 8, T = 8) at different delays

other systems were simulated to see the validity of the tuning rules
and it was found that tuning rules are quite accurate.

5. COMPARISON BETWEEN OFOPI & OPID CONTROLLERS

In addition to designing of an optimal FOPI (OFOPI) controller
and developing optimal FOPI tuning rules, we also compare the
OFOPI controller and the optimal PID controller (OPID) studied in
[Eriksson and Johansson, 2007a,b]. Briefly summarizing, the OPID
controller is represented in time-domain as

u(t) = k(pyr(t)− yf (t)) + ki

∫ t

0

(yr(τ)− yf (τ))dτ

+kd(q
dyr(t)

dt
−

dyf (t)

dt
), (27)

where k, ki and kd are the gain parameters of the controller given by
AMIGO tuning rules, p and q are the set-point weights and yf is the
filtered process variable. The output is considered to pass through a
low pass filter having a transfer function Gf (s) given as

Gf (s) =
1

(Tf s + 1)2
. (28)

The other controller parameters are defined mathematically as

p =

{
0, if τ ≤ 0.5,
1, if τ > 0.5; (29)
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Fig. 8. Step response of delay dominated system (K =
1, L = 8, T = 2) at different delays

q = 0;

Tf =

{
0.05

ωgc
, if τ ≤ 0.2,

0.1L, if τ > 0.2;

where ωgc is the cut off frequency of the filter. Further, the tuning
rules proposed in [Eriksson and Johansson, 2007a,b] on PID con-
troller were

k =
0.4T − 0.04

KpL
+

0.16

Kp
(30)

ki = 0.01
(−0.11T 3 + 1.5T 2 − 1.5

KpL2
+

0.35T 2 + 4T + 50

KpL

)
(31)

kd = 0.01
(0.4T 2 + 11T

Kp

)
. (32)

It should be noted that the OPID controller proposed in [Eriksson
and Johansson, 2007a,b] uses a low pass filter which enhances the
performance of the controlled system whereas the OFOPI controller
designed in this paper uses no filter for process output. Jitter margins
and ITAE indices were calculated for the test batch of hundred
KLT systems by using these optimal AMIGO tuning rules (OPID
controller) and optimal F-MIGO tuning rules (OFOPI controller).
These are shown in Fig. 9 and Fig. 10, respectively.

Fig. 9. Jitter margin of KLT systems controlled by OPID
and OFOPI controllers

Thorough investigation of these figures reveals that OFOPI is a
better controller than OPID for systems with τ < 0.5. These systems

Fig. 10. Performance of KLT systems controlled by OPID
and OFOPI controllers

have larger jitter margin and lower ITAE values than that obtained
by OPID controller. This is in contrast to OPID controller which
have a better performance for systems with τ > 0.5.

6. CONCLUSION & FUTURE WORKS

Fig. 11. Step response of lag dominated system (K =
1, L = 2, T = 8) at different delays

This paper provided a detailed explanation of design of a robust-jitter
controller called optimum fractional proportional integral controller.
The efficiency of controller in providing higher jitter margin when
compared to simple FOPI controller and PID controller (for τ <
0.5) was proved by simulating 100 KLT systems and making a
comparison. Finally, tuning rules were given to determine the gain
parameters and α of OFOPI controller. This kind of controller could
prove to be a better option than OPID controller for systems with
small value of τ and when large jitter margin and better controller
performance are desirable.

Present work considers a special case when δ(t) = δmax, for all values
of t. In other words, ‖ ∆F ‖L2= δmax. For such a case, the tuning
rules give the gain parameters of the OFOPI controller at which
the jitter margin is maximized for the system. In other cases when
δ(t) 6= δmax, these tuning rules no longer hold. This is shown in
Fig. 11, Fig. 12 and Fig. 13 by simulating three different systems
when δ(t) 6= δmax and δ(t) is uniformly distributed in a a given
range.

Future research work will include design of OFOPI tuning rules for
systems when δ(t) 6= δmax. We also plan to investigate several other
sets of 100 KLT test batches for validation purpose and engineering
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Fig. 12. Step response of an intermediate system (K =
1, L = 8, T = 8) at different delays

Fig. 13. Step response of delay dominated system (K =
1, L = 8, T = 2) at different delays

an embedded and telepresence control of a three-axis T2 Stand-alone
Smart wheel control at CSOIS using the OFOPI controller/tuning
rules.
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I. Koštial, P. Kmetek, J. Prokop, M. Olejár, and L. Dorčák. On
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