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∗∗
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Abstract: This paper deals with the problem of achieving high performance and fault tolerance
properties of a given plant by switching between a collection of different sensor-controller
pairs. We assume that each sensor-controller pair has been previously designed to achieve an
appropriate performance objective according to disturbances, sensor noises, available bandwidth
and uncertainties. The proposed strategy selects, at each instant of time, the sensor-controller
pair that minimises a suitable switching criterion. Stability of the switching system under normal
(fault-free) operation conditions is established in the main result of this paper. In addition, a
simulation example of active suspension control illustrates that the proposed switching system
is able to maintain performance levels, and to preserve stability under the occurrence of severe
faults in some of the sensors.

1. INTRODUCTION

Faults are deviations from a specified mode of behaviour
that can take place in different parts of a control system;
they can appear in sensors, actuators, or any other com-
ponent of the system. A fault can be abrupt, intermittent
or incipient. Thus, the unpredictable location and charac-
teristic of a fault makes the problem of fault detection a
very complex task to be solved.

The problem of fault detection and isolation (FDI) has
largely been studied during the last decade and still
remains an interesting research topic. The main paradigm
consists of first detecting a fault (location and nature) and
then, by means of a suitable mechanism, reconfiguring the
faulty system in order to maintain its operability (probably
accepting a degraded performance). Most of the known
approaches for FDI assume knowledge of the possible
fault scenario, and then propose control structures that
ensure the good behaviour of the system under such faults,
see Blanke et al. [2003], Isermann [2005]. Systems that
are tolerant to faults, that is, systems that continue to
perform adequately in the presence of faults, are called
fault-tolerant control (FTC) systems.

FTC systems are generally divided into passive-FTC and
active-FTC classes. Passive-FTC systems are mainly based
on robust-controller design techniques and aim at synthe-
sising one robust controller that makes the closed-loop sys-
tem insensitive to certain faults [Stoustrup and Niemann,
2001, Blanke et al., 2003]. The main advantage of this
approach is that it does not require online detection of the
faults. However, its applicability is restricted to faults that
have a small effect on the behaviour of the system. Hence,
increased robustness to certain faults is only possible at the
expense of decreased nominal (fault-free) performance.

1 Corresponding author. Email: Jairo.Martinez@inpg.fr

In the case of active-FTC systems, the main problem
concerns the integration of an FDI system together with
a particular reconfigurable mechanism which decides the
best configuration of the system to achieve fault tolerance.
Most of the approaches in the literature are focused on one
of both parts—the FDI part or the reconfiguration part—
considering that the other part either is absent or behaves
perfectly. Indeed, on the one hand many FDI algorithms do
not consider the closed-loop operation of the system, and,
on the other hand, many FTC reconfigurable mechanisms
assume the availability of perfect fault estimates from the
FDI scheme. Most of the proposed interconnections do not
provide any guarantee of the post-fault performance, or
even stability, which can be maintained by such schemes.

In this paper we present a control scheme that tackles
the problem of FTC within a new paradigm. This new
paradigm consists of using a switching mechanism to
implicitly detect the healthy components of the system
and automatically reconfigure it to avoid the use of faulty
components in closed loop. In addition to this implicit
FTC property, the proposed scheme is mainly aimed to
maintain high performance of the system during normal
(fault-free) operation. The strategy selects, at each instant
of time, the suitable sensor-controller pair that provides
robust stability. Stability of the switching system under
normal (fault-free) operation conditions is established in
the main result of this paper. In addition, a simulation
example (active suspension control) illustrates that the
proposed switching system is able to maintain performance
levels, and to preserve stability under the occurrence
of severe faults in some of the sensors. Conditions for
guaranteing robust stability for different classes of faults
are under study.

The control scheme presented here is an extension of that
presented in Mart́ınez et al. [2006] and Seron et al. [2007],
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Fig. 1. Multisensor switching scheme with plant P , sen-
sors S1, . . . SN , estimators F1, . . . , FN and feedback
gains K1, . . . , KN .

which was designed for a single control performance objec-
tive, that is, using the same feedback gain for all sensor-
estimator pairs. In this paper, we consider the use of dif-
ferent feedback gains according to the desired performance
for each independent loop, that is, it is assumed that each
controller has been designed according to the nature of the
corresponding loop disturbances, sensor noises, available
bandwidth, uncertainties and actuation constraints. The
stability proof established in Mart́ınez et al. [2006], Seron
et al. [2007] and Seron et al. [2008], based on a single
Lyapunov function for the resulting switched system, is
no longer valid for the new scheme, and a new stability
proof using multiple Lyapunov functions is then required.

The remainder of the paper is organised as follows. In Sec-
tion 2 we present and discuss the proposed control scheme.
Then, in Section 3, we prove closed-loop stability of the
switched system in the presence of bounded disturbances.
Finally, in Section 4, an illustrative example is presented,
where a quarter active car suspension system affected by
different type of disturbances and sensor faults is simulated
and discussed.

2. SWITCHING CONTROL SCHEME

In this section we describe the proposed switching control
scheme. A schematic of the resulting feedback control
system is depicted in Figure 1.

2.1 Problem statement

Consider the following linear discrete-time plant model

x+ = Ax + Bu + Ew, (1)

y = Cx + Du + Hw, (2)

where x ∈ R
n and x+ ∈ R

n are, respectively, the current
and successor system states, u ∈ R

m is the input, w ∈ R
r

is a bounded process disturbance and y ∈ R
p is the output

made available to the sensors (see Section 2.2 below). For
the system (1) we consider the problem of tracking a state
reference signal xref that satisfies

x+

ref = Axref + Buref . (3)

Assumption 2.1. The pair (A, B) is stabilisable. ◦

Assumption 2.2. The reference signals uref and xref in
(3) are bounded. ◦

Note that in the case where A has eigenvalues on or outside
the unit circle, uref must be obtained from some stabilising
feedback controller for system (3).

We will study the plant tracking error defined as

z , x − xref . (4)

In addition, we define the tracking error for the input as

v , u − uref . (5)

Then, from (1),(3) and (4), the plant tracking error dy-
namics are described by

z+ = Az + Bv + Ew. (6)

In this paper, we assume that the nature of the disturbance
w can change with time as a consequence of the system’s
interaction with its environment. For example, w can
change from being a signal with rich harmonic content
to a simple low frequency sinusoidal signal (following a
changing road profile, for instance, in the case of an active
suspension system).

In this context, the tracking problem that we address is to
design a control input v such that (i) z is bounded when-
ever w is bounded and (ii) the sequence z(k) converges to
zero as k goes to infinity when so does w(k). In addition, we
explore the adaptation of the control objective by means of
a switching mechanism so that the bounds on the tracking
error remain consistently “small” irrespective of the nature
of the disturbance.

2.2 Multi-sensors and Multi-estimators

We assume that the system output (2) is measured via a
family of N sensors

ξ+

i = Asi
ξi + Bsi

y, (7)

yi = Csi
ξi + Dsi

y + ηi, i = 1, · · · , N, (8)

where, for each sensor, ξi ∈ R
ni is the state, yi ∈ R

pi is the
measured output and ηi ∈ R

pi is a bounded measurement
disturbance.

Assumption 2.3. The matrices Asi
in (7) have all their

eigenvalues strictly inside the unit circle. ◦

Assumption 2.4. The pairs
([

A 0
Bsi

C Asi

]

, [Dsi
C Csi

]

)

are detectable for i = 1, . . . , N . ◦

We consider N state estimators, each of which estimates
the states of the series connection of the plant and a sensor.
The estimators are described by the following equations,
for i = 1, · · · , N :

x̂+

i = Ax̂i + Bu + Li(yi − ŷi), (9)

ξ̂+

i = Asi
ξ̂i + Bsi

Cx̂i + Bsi
Du + Lsi

(yi − ŷi), (10)

ŷi , Dsi
Cx̂i + Csi

ξ̂i + Dsi
Du. (11)

Assumption 2.5. The gains Li, Lsi
are such that

ALi
,

[

A 0
Bsi

C Asi

]

−

[

Li

Lsi

]

[Dsi
C Csi

] , (12)

for i = 1, · · · , N , have all their eigenvalues strictly inside
the unit circle [note that this is always possible by As-
sumption 2.4] 2 . ◦

2 If the estimators are steady-state Kalman filters then Li and Lsi

are obtained via an algebraic Riccati equation. More generally, Li,
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Remark 2.6. The estimation errors, defined as
[

x̃i

ξ̃i

]

,

[

x − x̂i

ξi − ξ̂i

]

, i = 1, · · · , N, (13)

satisfy, using (1), (7), (8), (9), (10) and (12),
[

x̃+

i

ξ̃+

i

]

= ALi

[

x̃i

ξ̃i

]

+

[

E − LiDsi
H

Bsi
H − Lsi

Dsi
H

]

w−

[

Li

Lsi

]

ηi. (14)

Hence, it follows from Assumption 2.5 that x̃i and ξ̃i are
bounded whenever w and ηi are bounded. ◦

2.3 Multi-controllers

We define the tracking error for the plant state estimates
as:

ẑi , x̂i − xref , (15)

for i = 1, · · · , N .

Then, to each sensor-estimator pair we associate a feed-
back controller of the form:

vi = −Kiẑi, (16)

for i = 1, · · · , N . Each controller gain Ki is designed
independently; for example, in such a way that a certain
performance objective is satisfied for the ith plant-sensor-
estimator-controller loop. In particular, we assume that
Ki is stabilising, that is, the matrix (A − BKi) has all its
eigenvalues inside the unit circle.

Thus, we can always find matrices Pi that satisfy the
following condition:

Condition 2.7. Every pair (Ki, Pi) satisfies:

(A − BKi)
′Pi(A − BKi) − Pi ≤ −Qi, (17)

for i = 1, · · · , N , Pi > 0, Qi > 0.

When the controller gain Ki is designed for certain control
objectives, for instance H2 or H∞ norm minimisation, an
associated Riccati equation that implies inequality (17)
will be satisfied. For simplicity and generality, we will only
use Condition 2.7 in the stability analysis of Section 3.

2.4 Switching strategy

We propose a switching strategy that at each time instant
selects a suitable feedback control as follows:

v = −Klẑl, (18)

for l defined as

l , arg min
i=1,··· ,N.

{ẑ′iPiẑi}, (19)

where Pi, i = 1, . . . , N , satisfy Condition 2.7.

In the sequel we refer to the index l as the switching signal.

Thus, at each time instant, the switching strategy selects
the feedback control (18) that achieves the smallest value
ẑ′lPlẑl of the “switching performance criterion” in (19).

3. STABILITY IN PRESENCE OF BOUNDED
DISTURBANCES

In this section we prove closed-loop stability of the switch-
ing scheme described in Section 2.

Lsi
can be computed by placement of the poles of ALi

in some
desired location.

From the definitions (4), (13) and (15), the plant tracking
error z can be expressed in terms of any estimation
tracking error, as

z = ẑi + x̃i, (20)

for i = 1, · · · , N .

Then, to prove the boundedness of z, it is sufficient to
prove the boundeness of ẑi and x̃i. The estimation errors
x̃i are bounded by Assumption 2.5. So, we are left with
the problem of proving that ẑi is bounded.

From definition (15), and using (3), (5), (8), (2), (9) and
(13), we have:

ẑ+

i = Aẑi + Bv + γi, (21)

for i = 1, · · · , N , where

γi = Li(Dsi
Cx̃i + Csi

ξ̃i + Dsi
Hw + ηi), (22)

which is bounded.

Our main stability result, given in Theorem 1 below, is
based on the stability properties of the system (21) in
feedback with (18)-(19), that is,

ẑ+

i = Aẑi + B(−Klẑl) + γi. (23)

Using the fact that, from (20), ẑl = ẑi + (x̃i − x̃l), for
all l, i ∈ {1, . . . , N}, the systems (23) can be expressed in
terms of ẑi as follows:

ẑ+

i = (A − BKl)ẑi + γli, (24)

for i = 1, . . . , N , where l is the switching sequence given
by (19) and where

γli , −BKl(x̃i − x̃l) + γi. (25)

Note that γli is bounded. Also note that, even though the
matrices

Ai , (A − BKi) (26)

have their eigenvalues inside the unit circle, we have to
prove the stability of the switched system (24) for any
switching signal sequence dictated by (19).

The following theorem establishes stability of the proposed
switching control scheme.

Theorem 1. Under Assumptions 2.1 to 2.5, the system
(24) in closed loop with the switching control law (18)–
(19), has bounded trajectories. Moreover, the plant track-
ing error (4) and the estimation tracking error (15), for
i = 1, . . . , N , asymptotically converge to zero in the ab-
sence of process and measurement disturbances.

Proof. Consider the family of Lyapunov functions

Vi(ẑi) = ẑ′iPiẑi, (27)

for i = 1, · · · , N , where Pi > 0 is as in Condition 2.7.
From (17) and (26) we have that the following inequalities
are satisfied:

ẑ′iA
′
iPiAiẑi − ẑ′iPiẑi ≤ −ẑ′iQiẑi, (28)

for Pi > 0, Qi > 0, i = 1, · · · , N .

Let lk be the index selected at time k by the switching
strategy (19). We then have from (27) that Vlk(ẑlk(k)) ≤
Vi(ẑi(k)), for all i = 1, . . . , N and, in particular,

Vlk(ẑlk(k)) ≤ Vlk−1
(ẑlk−1

(k)), (29)

where lk−1 is the index selected at the previous time k− 1
by the switching strategy (19). Also, using (24), (26),

ẑlk(k + 1) = Alk ẑlk(k) + γlk(k), (30)
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where we have used the fact that γli = γi when l = i
[see (25)].

In addition, using (28), (30) and assuming knowledge of a
bound 3 ‖γlk(k)‖ ≤ γ̄lk , we have

Vlk(ẑlk(k + 1)) ≤ Vlk(ẑlk(k)) + glk(ẑlk(k)), (31)

where, for i = 1, . . . , N ,

gi(ẑi(k)) , −λm(Qi)‖ẑi(k)‖2+2‖ẑi(k)‖‖A′
iPi‖γ̄i+‖Pi‖γ̄

2
i ,

(32)
and ‖ · ‖, λm( · ) denote the 2-norm of a vector and the
minimum eigenvalue of a matrix, respectively. Note that

gi(ẑi(k)) < 0 if and only if ‖ẑi(k)‖ > ρi, (33)

where

ρi ,
‖A′

iPi‖ +
√

‖A′
iPi‖2 + λm(Qi)‖Pi‖

λm(Qi)
γ̄i.

Next, we observe that at least one sensor, say with index j,
will be selected infinitely many times by the switching
strategy. Let k and k − r ≥ 0, for some r ≥ 1, be two
time instants at which sensor j is selected, that is, lk = j
and lk−r = j. We then have the following two possibilities
regarding the satisfaction of condition (33), which result
in two different cases for the evolution of the Lyapunov
function Vj(ẑj):

• ‖ẑlk−i
(k − i)‖ > ρlk−i

, for 1 ≤ i ≤ r, and hence,
using (29), (31) and (33) repeatedly we obtain

Vj(ẑj(k)) < Vlk−r
(ẑlk−r

(k − r)) = Vj(ẑj(k − r)).

• ‖ẑlk−i
(k − i)‖ > ρlk−i

, for 1 ≤ i ≤ s − 1 < r, and
‖ẑlk−s

(k − s)‖ ≤ ρlk−s
. Hence, combining (33) with

iterations of (29), and (31) yields

Vj(ẑj(k)) < Vlk−s
(ẑlk−s

(k − s)) + glk−s
(ẑlk−s

(k − s)),

≤ max
‖ẑ‖≤ρl

k−s

[

Vlk−s
(ẑ) + glk−s

(ẑ)
]

,

≤ max
i∈{1,...,N}

{

max
‖ẑ‖≤ρi

[

Vi(ẑ) + gi(ẑ)
]

}

.

Note that the quantity on the right hand side above is
bounded since both functions Vi and gi are continuous.

Thus, the Lyapunov function Vj(ẑj) either decreases be-
tween times when sensor j is selected, or is bounded at
the times when sensor j is selected. Moreover, in between
those instants, the state ẑj(k) evolves with the bounded
dynamics (24) during a finite number of steps. 4 We con-
clude that the state ẑj(k) is bounded for all k ≥ 0.

In addition, any other tracking error subsystem trajecto-
ries (even if the corresponding sensor is never chosen) are
also bounded because the following property always holds:

z = ẑi + x̃i = ẑj + x̃j , (34)

for i, j = 1, · · · , N . Property (34) also shows that the
plant tracking error z is bounded whenever ẑi and x̃i are

3 Such bounds can be obtained from (14) and (22) assuming knowl-
edge of bounds on the process and measurement disturbances.
4 Alternatively, one can argue that, by a similar analysis, the
tracking error states of all sensors chosen between the times at which
sensor j is selected are bounded at the times when they are selected.
Hence, the relation ẑj = ẑi + (x̃i − x̃j), for all i, j = 1, . . . , N ,
together with bounds on the estimation errors prove boundedness of
the state ẑj(k) between its selection times. This alternative argument
also yields a computable bound estimate on the tracking error states.
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Fig. 2. Active suspension system.

bounded and converges to zero if ẑi and x̃i converge to
zero. This completes the proof of the theorem. 2

4. ILLUSTRATIVE EXAMPLE

In this section we apply the proposed switching scheme to
a simulation example of vehicle active suspension control.

4.1 Active-suspension system description

We consider the synthesis of active controllers for a sus-
pension system similar to that described in Poussot-Vassal
et al. [2006]. We consider the rear wheel of a tractor-trailer
combination as depicted in Figure 2. Here, m1 represents
tire, wheel and rear axle mass, and m2 denotes a fraction
of the semitrailer mass. The deflection variables x2, x1 and
w are properly scaled so that x2 − x1 = 0 and x1 −w = 0
in steady state.

The system is modeled by the state space equations

x+ = Ax + Bu + Ew, (35)

which correspond to the discretisation of the continous
time system with a sample time of 10ms. The disturbance
signal w (road profile), is modeled as a sinusoidal signal
with magnitude W , frequency Ω, and phase φ, that is,

w(t) = W · sin(Ω · t + φ), ∀t > 0. (36)

We have simulated the disturbance (36) with the following
values: W = 0.01m, Ω = 2πf with (f = 3Hz) and φ = 0.
The model parameters values and the respective matrices
are presented in Appendix A.

The state of the system is defined (in continuous time) as
follows: x = [x1 x2 ẋ1 − b1w/m1 ẋ2]

′ and the states that
form part of the output equation (2) are [ẍ2 x2 − x1]

′.
The control input is the force u = F and the exogenous
disturbance input is the road profile w. The sensor models
are assumed to have no dynamics and are described as
follows:

yi = y + ηi = Cx + Du + Hw + ηi, i = 1, · · · , N.
(37)

We assume the availability of two different controllers
which assure the stability of the closed-loop system. The
controllers are previously designed to achieve low levels of
vertical acceleration (ẍ2), bounded suspension deflection
(x2 − x1 and x1 − w) and bounded dynamic tire force
(F ). The estimators are suitable filters designed as in
Section 2.2, and the controllers are particular feedback
gains obtained by LQR methods. One of the controller
only penalises the states deviations, while the second one
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Fig. 3. a) State trajectories (solid line) and reference tra-
jectories (dotted line), and b) The switching sequence.

penalises both the state deviations and the control effort
with same weight. The controller gains K1 and K2, and
resulting eigenvalues achieved for each loop are given in
Appendix A. Also given in Appendix A are the associated
cost function matrices P1 and P2, obtained from the
Riccati equations corresponding to each LQR controller,
which are used in the switching strategy (19). Note that
the controller gains and cost function matrices satisfy
Condition 2.7 and thus closed-loop stability in the absence
of failure is guaranteed by Theorem 1.

4.2 Sensor-failure scenario

Here, we consider abrupt faults that lead to a sensor
outage. In the moment of a sensor fault, its output does
not provide information about states, and only produces
a noise signal (possibly with higher variances), i.e., when
the j sensor fails, its measured output during the fault is
given by:

yj = ηF
j ,

where ηF
j is a bounded noise. We also consider the recovery

of a sensor after a fault, that is, when it measured output
instantly reverts to (37). The simulated scenario concerns,
firstly, a failure in sensor-2 at 0 seconds, and its recovery
at 3 seconds. Sensor 1 is healthy from 0 to 7 seconds,
time when it fails. Thus, only during the period of 3 to 7
seconds both sensors work perfectly (fault-free operation).
The switching sequence (chosen controller) is obtained by
the strategy described in Section 2.4.

Figure 3 illustrates the dynamic behavior of the switched
system. In particular, Figure 3a shows the state values
(solid lines), which track the state references (dotted
curves). We remark that the state signals are not affected
by the controller switching and the performance remains
within acceptable values (according to the chosen con-
troller).

Figure 4a depicts the cost function values for each sensor.
Figures 4b and 4c, show the estimation errors (accessible
only in simulation) and Figures 5a and 5b the tracking
errors. From these figures we observe that the high cost
function values are well correlated with the high estimation

0 2 4 6 8 10
0

5000

10000

15000

a
)

0 2 4 6 8 10
−10
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10

b
)

0 2 4 6 8 10
−10
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Fig. 4. a) Cost functions ẑ′iPiẑi during failures: sensor 2
(left) and sensor 1 (right), b) Estimation errors from
sensor 1, and c) Estimation errors from sensor 2. Both
non available in practice.
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Fig. 5. a) Tracking errors from sensor 1, and b) Tracking
errors from sensor 2. Both available in practice.

errors and the tracking errors due to the faulty sensor. The
following equation, from (34), could explain this behavior.

ẑi = z − x̃i,
ẑj = z − x̃j ,

(38)

for i = 1, · · · , N , j 6= i. Thus, during a sensor failure,
for sufficiently small values of z, the estimation error
magnitudes x̃i (always unmeasurable in practice), are
mostly described by the tracking error magnitudes. This
aspect suggests that there may exist system conditions
(system parameters, noise levels, estimation errors, etc.) to
guarantee the selection of healthy sensors that will assure
the stability of the switching system during failures.

The conditions for the switching controller to always
choose a healthy sensor to close the loop, or even for admit-
ting to choose a faulty sensor at particular times without
affecting stability of the system are under investigation.

The previous figures illustrate the stabilising role of the
switching strategy during failures. However, we may be
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Fig. 6. Failure scenario using only sensor 1 (i.e. without
switching); here sensor 1 fails at 7 seconds. a) State
trajectories (solid line) and reference trajectories (dot-
ted line), and b) estimation errors from sensor 1.

interested in observing the performance of the system
without the switching strategy. Figure 6 illustrates the
behaviour of the system in closed loop with only one
sensor-controller pair (the first sensor and its associated
controller), that is, without using the switching strategy.
Sensor 1 fails at 7 seconds and we can observe, as expected,
that the closed-loop system becomes unstable.

5. CONCLUSIONS

In this paper, we have presented a novel control switching
scheme which selects at each time instant a controller
(from a bank of different controllers) in such a way that
the stability of the closed-loop system is guaranteed. The
proposed scheme presents interesting properties in terms
of both fault-free performance and fault-tolerance.

Faulty sensor detection and isolation is achieved “im-
plicitly” by guaranteeing that the switching cost avoids
selecting faulty sensors. This is the main feature of the
proposed strategy, which departs from other available
techniques. The on-line implementation of the scheme is
simple, requiring only to compare cost values. The stability
properties during different classes of failures are under
study.

Appendix A. SIMULATION PARAMETERS

The following table summarises the parameter values of
the active suspension model used during simulations:

Parameter values

m1 59 m2 290 (Kg)

k1 19e4 k2 16812 (N/m)

c1 34 c2 1000 (N/m/s)

The matrices A, B, E, C, D, and H of the continuous time
model (before discretisation) are described as follows:

A =





0 0 1 0
0 0 0 1

−k1 + k2/m1 k2/m1 −c1 + c2/m1 c2/m1

k2/m2 −k2/m2 c2/m2 −c2/m2



 , (A.1)

[B E] =





0 c1/m1

0 0
−1/m1 (k1/m1) − (c1(c1 + c2))/(m1m1)

1/m2 c1c2/m1m2



 , (A.2)

C =

[

k2

m2

−
k2

m2

c2

m2

−
c2

m2

−1 1 0 0

]

, (A.3)

[D H] =

[

1

m2

c1c2

m1m2

0 0

]

. (A.4)

The discrete version of the system is obtained by using
the Bilinear (Tustin) approximation, and a sample time of
10ms. The feedback gains used for each loop are:

K1 = 1.0e3 · [−0.9907 0.8327 − 0.9205 3.0363],

K2 = 1.0e3 · [−0.1463 0.1883 − 0.3173 1.1963],

achieving the following closed-loop eigenvalues for K1:
0.9903 ± 0.0171i, 0.9963 ± 0.0039i; and for K2: 0.9968 ± 0.0185i,
0.9982 ± 0.0028i. Matrices Ad and Bd are the corresponding
matrices of the discrete system (Ad, Bd, Cd, Dd) obtained
from the continuous model (A.1)-(A.4). The cost function
matrices P used for performing the switching law (19) are:

P1 = 1.0e3 ·





0.3434 −0.0949 −0.0060 −0.3256
−0.0949 0.3129 0.0366 0.4251
−0.0060 0.0366 0.0724 0.0843
−0.3256 0.4251 0.0843 1.3059



 ,

P2 = 1.0e3 ·





0.7639 −0.1158 0.0039 −0.4243
−0.1158 0.4326 0.0269 0.6834
0.0039 0.0269 0.2054 0.0842
−0.4243 0.6834 0.0842 3.8980



 .

The estimators were designed according to Section 2.2.
The estimation error dynamics is mainly described by the
eigenvalues of the matrix ALi

, in equation (2.5). We have
chosen the following eigenvalues: 0.000951, 0.360515, 0.983325,

0.999983. For simplicity, we have used the same estimator
design for both sensors.
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Z. Szabó, and J. Bokor. Multi-objective qLPV H∞/H2

control of a half vehicle. In In: Proc. of the Mini
conference on Vehicle System Dynamics, Identification
and Anomalies (VSDIA), Budapest, Hungary, 2006.
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